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ABSTRACT

An embedded, block-based, wavelet transform coding al-
gorithm of low complexity is proposed. Three-Dimensional
Set Partitioned Embedded bloCK(3D-SPECK) efficiently en-
codes hyperspectral volumetric image data by exploiting
the dependencies in all dimensions. Integer wavelet trans-
form is applied to enable lossy and lossless decompression
from the same bit stream. We demonstrate that 3D-SPECK,
a wavelet domain algorithm, like other time domain algo-
rithms, can preserve spectral profiles well. Airborne Vis-
ible Infrared Imaging Spectrometer (AVIRIS) imagery is
used to test the proposed algorithm. Results show that 3D-
SPECK, in addition to being very flexible, retains all the de-
sirable features of compared state-of-the-art algorithms and
is highly competitive to 3D-SPIHT and better than JPEG2000
multi-component in compression efficiency.

1. INTRODUCTION

Hyperspectral images produced by a new generation of sen-
sors are finding many applications in detection and identifi-
cation of the surface and atmospheric constituents present,
analysis of soil type, environmental studies, and military
surveillance. Hyperspectral images contain a wealth of data
— they are generated by collecting hundreds of narrow and
contiguous spectral bands of data such that a complete re-
flectance spectrum can be obtained for each point in the re-
gion being viewed by the instrument. As an example, the
Airborne Visible InfraRed Imaging Spectrometer (AVIRIS)
instrument, a typical hyperspectral imaging system, can yield
about 16 Gigabytes of data per day. Efficient compression
should be applied to these data sets before storage and trans-
mission.

Many analysis hyperspectral image applications, such
as common classification tools or feature extractions, can
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perform reliably on images compressed to very low bit rates.
On the other hand, hyperspectral data carries rich informa-
tion in the spectral domain. A ground sample point in a
hyperspectral data set has a instinct spectral profile, which
is the fingerprint information of the point. Some hyperspec-
tral data users will rely on the spectrum of each point to
create application products using their remote sensing al-
gorithms. When compressing the hyperspectral images, we
would like to preserve the important spectral profiles. Fur-
thermore, given the extraordinary expense of acquiring hy-
perspectral imagery, it makes more sense to require lossless
coding for archival applications. Therefore, in this study,
we present integer wavelet filter solution allowing lossy-to-
lossless compression for hyperspectral images.

Many Vector Quantization (VQ) based algorithms were
proposed recently for hyperspectral image compression. Ryan
and Arnold [5] proposed mean-normalized vector quanti-
zation (M-NVQ) for lossless AVIRIS compression. Each
block of the image is converted into a vector with zero mean
and unit standard variation. Motta [4] et al. proposed a VQ
based algorithm that involved locally optimal design of a
partitioned vector quantizer for the encoding of source vec-
tors drawn from hyperspectral images. Pickering and Ryan
jointly optimized spatial M-N'VQ and spectral Discrete Co-
sine Transform (DCT) to produce compression ratios sig-
nificantly better than those obtained by the optimized spa-
tial M-NVQ technique alone. Other than VQ based meth-
ods, Harsanyi and Chang [1] applied Principle Component
Analysis (PCA) on hyperspectral images to simultaneously
reduce the data dimensionality, suppress undesired or inter-
fering spectral signature, and classify the spectral signature
of interest. A training sequence based entropy constrained
predictive trellis coded quantization scheme was also pro-
posed recently by Abousleman et al. for hyperspectral im-
age compression. All these algorithms have promising per-
formance on hyperspectral image compression. However,
none of them generates embedded bit stream, and therefore
cannot provide progressive lossy-to-lossless transmission.

To incorporate the embedded requirement and maintain
other compression performances, many promising volumet-



ric image compression algorithms based on wavelet trans-
form were proposed recently. Several widely used ones are
Three-Dimensional Context-Based Embedded Zerotrees of
Wavelet coefficients (3D-CB-EZW) Three-Dimensional Set
Partitioning In Hierarchical Trees (3D-SPIHT) [3], and An-
nex of Part II of JPEG2000 standard for multi-component
imagery compression.

In this study, we propose a block-based volumetric im-
age compression technique for hyperspectral images — Three-
Dimensional Set Partitioned Embedded bloCK (3D-SPECK).
It is an extended and modified version of SPECK [2]. Inte-
ger wavelet transform enables lossy-to-lossless reconstruc-
tion from the same embedded bit stream.

This paper is organized as following: We first present
the 3D-SPECK algorithm in section II, followed by exper-
imental results in section III. Section IV will conclude this
study.

2. THE 3D-SPECK ALGORITHM

3D-SPECK is an extended and modified version of SPECK.
Consider an image sequence which has been adequately trans-
formed using the discrete wavelet transform in three dimen-
sions. The transformed image sequence is said to exhibit
a hierarchical pyramidal structure defined by the levels of
decomposition, with the topmost level being the root. Pix-
els are grouped together in sets which comprise regions in
the transformed images. As shown in Figure 1, each sub-
band is treated as a code block, and the code block is called
S set. The dimension of a set S depends on the dimension
of the original images and the subband level of the pyra-
midal structure at which the set lies. Unlike SPECK, 3D-
SPECK only has type S set. The algorithm only needs to
check whether a set S is significant with respect to a certain
bit plane.

To start the algorithm, all subbands are initialized as sets
S and are put in the List of Insignificant Sets (LIS). In the
first pass at the highest n, 3D-SPECK tests the significance
of sets S in the LIS following the subband order of lowpass
bands to highpass bands. As an example, for one-level de-
composition, the scanning order is LLL, LHL, HLL, LLH,
HHL, HLH, LHH, HHH. For higher level decomposition,
the scanning path starts from the top of the pyramid down to
its bottom by following the same order from lowpass bands
to highpass bands.

If a set S is found significant, it will be split into eight
approximately equal subsets. 3D-SPECK then treats each
of these subsets as new type S sets, and in turn, tests their
significance. This process will be executed recursively until
reaching pixel level where the significant pixel in the origi-
nal set S is located or reach the bit budget.

Integer wavelet filter is applied to enable lossy-to-lossless
reconstruction from a same embedded bit stream. To achieve
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Fig. 1. Structure for 3D-SPECK

good lossy performance, it is important to have an unitary
transform. If the transform is not unitary, the mean squared
quantization error in the wavelet domain is, thus, not equal
to the mean squared error (MSE) in the time domain. There-
fore, the lossy coding performance will be compromised.
Appropriate transform structure and scaling the integer wavelet
coefficients can make the transform approximately unitary
before quantization.

We adopt the transform structure mentioned in [7]. A
4-level 1D wavelet packet tree structure is applied on the
spectral axis with appropriate scaling factors. As each scal-
ing factor is some power of two, we can implement the scal-
ing factor by bit shifting. For the spatial axes, we keep the
same 2D dyadic wavelet transform to each slice.

The adaptive arithmetic coding algorithm is used to fur-
ther improve the coding efficiency. As described, 3D-SPECK
splits the significant set S into eight smaller subsets and tests
the significance of the new subsets in turn. Instead of cod-
ing the significance test results of the eight subsets sepa-
rately, 3D-SPECK codes them together first before further
processing the subsets. Simple context is applied for con-
ditional coding of the significance test result of this subset
group.

3D-SPECK has low computational complexity. The al-
gorithm is very simple, consisting mainly of comparisons,
and does not require any complex computation. As 3D-
SPECK checks sets from lowest subband to highest sub-
band, it is natural multi-resolution analysis, while 3D-SPIHT
does not have this advantage. Comparing to JPEG2000
multi-component, 3D-SPECK obviously has much lower
complexity. 3D-SPECK also has low dynamic memory re-
quirements. At any given time during the coding process,
only one connected region is processed.

3. EXPERIMENT RESULTS

We performed coding experiments on three signed 16-bit
reflectance AVIRIS image volumes. AVIRIS has 224 bands



Coding moffett | moffett | jasper

Methods scene 1 | scene 3 | scene 1
3D-SPECK 6.91 6.82 6.70
3D-SPIHT 6.94 6.74 6.72
JPEG2000 Mul 7.17 7.00 6.90
SPIHT 7.97 7.58 7.98
JPEG2000 7.79 7.73 8.59

Table 1. Comparison of methods for Lossless coding of test
16 bit image volumes. The data are given in bits per pixel
per band (bpppb), averaged over the entire image volume.
JPEG2000 Mul stands for JPEG2000 multi-component.

and 614 x 512 pixel resolution that corresponds to an area
of approximately 11 km x 10 km on the ground. We have
1997 runs of Moffett Field scene 1 and 3 and Jasper Ridge
scene 1. For our experiments, we cropped each scene to 512
x 512 x 224 pixels.

3.1. Comparison of Lossless Compression Performance

Table 1 presents the lossless performances of 3D-SPECK,
3D-SPIHT!, JPEG2000 multi-component, 2D-SPIHT and
JPEG2000. JPEG2000 multi-component is implemented by
first applying S+P? filter on spectral dimension to decorre-
late spectral correlation and followed by JPEG2000 on spa-
tial dimensions. S+P integer filters are used for 3D-SPECK,
3D-SPIHT and 2D-SPIHT, while for JPEG2000, the integer
filter (5,3) is used. For all 3D algorithms, including 3D-
SPECK, 3D-SPIHT and JPEG2000 multi-component, the
results of AVIRIS data are obtained by coding all 224 bands
as a single unit, and for the two 2D algorithms, the results
are obtained by first coding the AVIRIS data band by band
and then averaging over the entire volume.

Overall, 3D algorithms perform better than 2D algo-
rithms. Compared with 2D-SPIHT and JPEG2000, our pro-
posed algorithm, 3D-SPECK yields, on average, 13.1% and
18.6% decreases in compressed file sizes for AVIRIS test
image volumes. 3D-SPECK and 3D-SPIHT are fairly com-
parable as their results are quite close. They both out-perform
the benchmark JPEG2000 multi-component, averaged over
the three image volumes, by 3.0% and 3.2% decreases in
file size, respectively. Surprisingly, considering its consid-
erably higher complexity, JPEG2000 is not as efficient as
2D-SPIHT for hyperspectral images. As shown in the ta-
ble, 2D-SPIHT always yields smaller bits per pixel per band
(bpppb) than that of JPEG2000.

'We use symmetric tree 3D-SPIHT here.
2 All S+P filters used in this study are B filters.

Coding SNR (dB) at bit rates (bpppb)
Methods 0.2 | 0.5 | 1.0 | 4.0

| moffett scene 1 |
3D-SPECK 20.78 | 29.20 | 37.28 | 54.07
3D-SPIHT 20.61 | 29.11 | 37.20 | 53.96
JPEG2000 Mul | 19.66 | 27.99 | 36.31 | 53.69

| moffett scene 3 |
3D-SPECK 16.56 | 25.99 | 34.85 | 49.46
3D-SPIHT 16.74 | 26.10 | 34.95 | 49.55
JPEG2000 Mul | 15.95 | 25.21 | 33.84 | 49.24

| jasper scene 1 |
3D-SPECK 22.68 | 30.40 | 36.70 | 51.76
3D-SPIHT 22.55 | 30.28 | 36.65 | 51.70
JPEG2000 Mul | 21.87 | 29.04 | 36.04 | 51.12

Table 2. Comparative evaluation the rate distortions of 3D-
SPECK, 3D-SPIHT and JPEG2000 multi-component.

3.2. Comparison of Lossy Compression Performance

We report lossy coding performances using rate-distortion
results, by means of Signal-to-Noise Ratio (SNR) for the

whole sequence: SNR = 10 log;, M‘—SZE dB . Where aﬁ is
the average squared value of the original AVIRIS sequence,
and MSE is the mean squared error over the entire sequence.

The rate-distortion results for 3D-SPECK, 3D-SPIHT
and JPEG2000 multi-component are plotted in Table 2 for
our three test image volumes. Overall, both 3D-SPECK and
3D-SPIHT perform better than JPEG2000 multi-component,
providing higher SNR all the time. For all three test image
volumes, the results show that 3D-SPECK is comparable
to 3D-SPIHT, being slightly worse for moffett scene 3, but
slightly better for moffett scene 1 and jasper scene 1.

As the most import information for hyperspectral users
is the spectral profile, we also illustrate the performance of
3D-SPECK by plotting the original spectral profiles of indi-
vidual pixels, along with associated reconstructed and error
profiles. Figure 2 shows the profiles for one asphalt pixel
of Jasper scene 1. The spectral profiles are preserved excel-
lently even at 1.0 bppp, with only several larger values of
errors occur at the spectral valleys around bands 160 and
224. The largest error correspond to 2.4% of the maxi-
mum value. Increasing the bit rate, the error (difference)
values drop quickly. The absolute values of errors are al-
ready within 25 at 2.0 bppp, corresponding to 0.7% of the
maximum values. For bit rate at 4.0 bppp, as shown in fig-
ure 2, the differences between the original pixels and the re-
constructed ones are barely distinguishable, and the errors
are very small.
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Fig. 2. The original, reconstructed and the difference values
between the original and reconstructed pixels for an asphalt
pixel for Jasper scene 1. The first graph is the original, the
second one is the reconstructed pixel at 1.0 bppp, the third
one is the difference values at 1.0 bppp, the fourth one is
the reconstructed pixel at 4.0 bppp, and the last one is the
difference values at 4.0 bppp.

3.3. Classification Performance

To address how our compression algorithm impacts remote
sensing applications, we provide an experiment for a well-
known remote sensing classification method, Spectral An-
gle Mapper (SAM), to test 3D-SPECK.

Table 3 lists the classification results for two classes (as-
phalt and vegetation) of Jasper scene 1. We can see that
the classification tasks investigated are robust with respect
to lossy compression of the source image. The percentage
of correctly classified pixels converges to 100% at the rates
higher than 1 bppp for all three algorithms, with JPEG2000
multi-component being slightly worse than that of 3D-SPECK
and 3D-SPIHT. The distortions in the reconstructed data
caused by the compression process result in only minor losses
in classification accuracy even at low bit rate such as 1 bppp,
with the classification accuracy higher than 99% almost all
the time. For 3D-SPECK and 3D-SPIHT at very low bit rate
such as 0.2 bppp, the percentages of classification accuracy
are already higher than 97%. JPEG2000 multi-component
provides much worse classification performances at 0.2 bppp.
Overall, JPEG2000 multi-component performs not as well
as the other two algorithms, rendering much poorer clas-
sification accuracy at very low bit rates and slightly worse
performance at higher bit rate.

4. CONCLUSION

The proposed 3D-SPECK provides excellent performance
on hyperspectral image compression, while preserving im-

Coding CA (%) at bit rates (bpppb)
Methods 0.2 | 1.0 | 2.0 | 4.0

| Asphalt |
3D-SPECK 97.91 | 99.87 | 99.97 | 99.98
3D-SPIHT 97.56 | 99.42 | 99.97 | 99.98
JPEG2000 Mul | 75.57 | 99.31 | 99.88 | 99.96

| Vegetation |
3D-SPECK 97.20 | 99.64 | 99.82 | 99.99
3D-SPIHT 97.83 | 99.84 | 99.90 | 99.99
JPEG2000 Mul | 84.40 | 98.99 | 99.58 | 99.93

Table 3. Jasper scene 1 SAM classification. CA stands for
Classification Accuracy.

portant information of spectral profiles. It is a good candi-
date for many hyperspectral image applications.
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