
 Open access  Journal Article  DOI:10.1109/LGRS.2008.2006571

Lossy-to-Lossless Compression of Hyperspectral Imagery Using Three-Dimensional
TCE and an Integer KLT — Source link 

Jing Zhang, James E. Fowler, Guizhong Liu

Institutions: Mississippi State University

Published on: 09 Dec 2008 - IEEE Geoscience and Remote Sensing Letters (IEEE)

Topics: Lossy compression, Data compression, Lossless compression, Dictionary coder and Transform coding

Related papers:

 Transform Coding Techniques for Lossy Hyperspectral Data Compression

 Matrix factorizations for reversible integer mapping

 JPEG2000 : image compression fundamentals, standards, and practice

 Hyperspectral Image Compression Using JPEG2000 and Principal Component Analysis

 Progressive 3-D coding of hyperspectral images based on JPEG 2000

Share this paper:    

View more about this paper here: https://typeset.io/papers/lossy-to-lossless-compression-of-hyperspectral-imagery-using-
28b8qfh1ro

https://typeset.io/
https://www.doi.org/10.1109/LGRS.2008.2006571
https://typeset.io/papers/lossy-to-lossless-compression-of-hyperspectral-imagery-using-28b8qfh1ro
https://typeset.io/authors/jing-zhang-3behlv9gqr
https://typeset.io/authors/james-e-fowler-ri4yr2emmz
https://typeset.io/authors/guizhong-liu-4wdfwlv4r0
https://typeset.io/institutions/mississippi-state-university-eypmms3g
https://typeset.io/journals/ieee-geoscience-and-remote-sensing-letters-b5iw6iaz
https://typeset.io/topics/lossy-compression-27cguzwg
https://typeset.io/topics/data-compression-3fp83o4g
https://typeset.io/topics/lossless-compression-9pt4hqmw
https://typeset.io/topics/dictionary-coder-1sup1mgo
https://typeset.io/topics/transform-coding-259kknvz
https://typeset.io/papers/transform-coding-techniques-for-lossy-hyperspectral-data-1ocdynnjhl
https://typeset.io/papers/matrix-factorizations-for-reversible-integer-mapping-52zfvevdy7
https://typeset.io/papers/jpeg2000-image-compression-fundamentals-standards-and-2l9m56c2ba
https://typeset.io/papers/hyperspectral-image-compression-using-jpeg2000-and-principal-1h1mf22vyi
https://typeset.io/papers/progressive-3-d-coding-of-hyperspectral-images-based-on-jpeg-3u54fjlc8n
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/lossy-to-lossless-compression-of-hyperspectral-imagery-using-28b8qfh1ro
https://twitter.com/intent/tweet?text=Lossy-to-Lossless%20Compression%20of%20Hyperspectral%20Imagery%20Using%20Three-Dimensional%20TCE%20and%20an%20Integer%20KLT&url=https://typeset.io/papers/lossy-to-lossless-compression-of-hyperspectral-imagery-using-28b8qfh1ro
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/lossy-to-lossless-compression-of-hyperspectral-imagery-using-28b8qfh1ro
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/lossy-to-lossless-compression-of-hyperspectral-imagery-using-28b8qfh1ro
https://typeset.io/papers/lossy-to-lossless-compression-of-hyperspectral-imagery-using-28b8qfh1ro


Lossy-to-Lossless Compression of Hyperspectral

Imagery Using Three-Dimensional TCE and an

Integer KLT
Jing Zhang, James E. Fowler, Senior Member, IEEE, and Guizhong Liu

Abstract—An embedded lossy-to-lossless coder for hyperspec-
tral images is presented. The proposed coder couples a reversible,
integer-valued Karhunen-Loève transform (KLT) with an exten-
sion into 3D of the tarp-based coding with classification for
embedding (TCE) algorithm that was originally developed for
lossy coding of 2D images. The resulting coder obtains lossy-to-
lossless operation while closely matching the lossy performance of
JPEG2000. Additionally, for lossless compression, it consistently
outperforms not only JPEG2000 but often several prominent
purely lossless methods.

Index Terms—tarp filtering, TCE, integer KLT, hyperspectral
compression, lossy-to-lossless coding

I. INTRODUCTION

With increasing resolution and deployment of hyperspectral

imaging devices, compression of hyperspectral datasets is

becoming of critical interest in many application areas. There

have been a number of compression techniques proposed for

hyperspectral images, and these include both prediction-based

and transform-based algorithms, capable of both lossy and

lossless compression performance.

Lossless compression algorithms are typically prediction-

based. For example, in 3D-CALIC [1], the predictor alternates

between 2D intraband prediction and 3D interband predic-

tion to best exploit both interband and intraband statistical

redundancies. M-CALIC [2] is similar, except that interband

prediction is always used, and all parameters and thresholds

are adjusted to suit hyperspectral images. A clustered DPCM

(C-DPCM) approach was taken in [3]; in C-DPCM, for each

band, linear prediction minimizes the squared error within

each cluster. Finally, lookup tables (LUTs) were used in [4]

to expedite searching the previous band for a pixel identical

to that co-located with the one to be coded.

For transform-based algorithms, coding with a discrete

wavelet transform (DWT) dominates. The most widely-used

approach is the JPEG2000 standard [5, 6]. Wavelet-based

coders like JPEG2000 are typically developed for lossy com-

pression but are capable of lossy-to-lossless performance when

wavelet transforms that map integers to integers are used. Such

J. Zhang and G. Liu are with the School of Electronics and Information
Engineering, Xi’an Jiaotong University, Xi’an, China.

J. E. Fowler is with the Department of Electrical & Computer Engineering,
Mississippi State University, Starkville, MS, USA, and the GeoResources
Institute (GRI) at the Mississippi State High Performance Computing Col-
laboratory (HPC2).

This work was conducted while J. Zhang was visiting GRI at Mississippi
State University as a joint Ph.D. candidate funded by China Scholarship
Council under the State Scholarship Fund.

integer DWTs permit coders to provide completely reversible

transformation as is needed for lossless coding. However,

the inherently progressive nature of the DWT-based coders

permits one to truncate the lossless bitstream at any point

to produce a lossy representation of the dataset. Since the

JPEG2000 standard supports integer-valued reversible trans-

forms, JPEG2000 represents the most prominent example of

such lossy-to-lossless coding. While lossy-to-lossless coding is

considered to be a useful characteristic for certain applications,

it is generally acknowledged that this capability comes at a

cost—purely lossless algorithms like M-CALIC, C-DPCM,

and LUT typically achieve more efficient lossless performance

than their lossy-to-lossless counterparts.

In this paper, we propose a new lossy-to-lossless coder

that closely matches the lossy performance of JPEG2000,

outperforms JPEG2000 at lossless compression, and yields

performance closer to—and often better than—that of purely

lossless methods. The starting point is a 2D lossy coder

called tarp-based coding with classification for embedding

(TCE) [7]. Here, we extend this TCE coder to 3D and

couple the resulting 3D-TCE with the reversible integer-valued

Karhunen-Loève transform (KLT)1 of [8–10] to yield lossy-to-

lossless coding performance. Experimental results on several

hyperspectral images demonstrate on the order of 3% better

lossless compression than JPEG2000 imbued with an identical

reversible KLT and performance often better than that of the

purely lossless M-CALIC and LUT techniques. Additionally,

lossy compression is very close to that of JPEG2000.

Below, we first present brief overviews of tarp coding, TCE,

and the integer KLT in Sec. II before describing our proposed

3D-TCE approach in detail in Sec. III. Experimental results

are presented in Sec. IV, while several concluding remarks are

made in Sec. V.

II. BACKGROUND

A. Tarp Coding

Let c[x] be a field of real-valued transform coefficients.

Given a threshold t, define the significance state of the

coefficient at location x to be

v[x] =

{
1, |c[x]| ≥ t,

0, otherwise.
(1)

For a hyperspectral image, c[x] would be a 3D subband of

wavelet coefficients and x = [x1, x2, x3] a location within

1The KLT is also known as principal component analysis (PCA).
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the subband. Regardless of the dimensionality of the dataset,

however, many wavelet-based compression algorithms trans-

mit the most significant bit of all coefficient magnitudes, then

the next-most significant bit of all coefficient magnitudes,

etc., such that each coefficient is successively approximated

in a procedure known as bitplane coding. Fundamental to

such bitplane coding is the coding of binary-valued fields, or

significance maps, v[x], one for each threshold value t which

is successively decreased as coding progresses (see [11] for an

overview of wavelet-based coding for hyperspectral imagery).

Although there are many possible approaches for coding

a significance map v[x], of particular interest here is the

so-called tarp filter [12] which uses a Parzen window to

estimate the probability, p[x], that v[x] = 1. This probability

estimate then is used to drive a non-adaptive arithmetic coder

to efficiently code v[x]. For a 1D signal, this probability is

generated by a simple first-order recursive filter,

p[x] = αp[x − 1] + (1 − α)v[x − 1], (2)

where p[x] is the probability estimate for position x, v[x] is
the significance map at position x, and α is a learning-rate

parameter.

In [12], the main focus is the coding of still images, so an

extension of (2) is derived for 2D. In 2D, the tarp-filtering

process of (2) becomes the successive application of three 1D

filters [12]. In [13], the 2D-tarp algorithm of [12] was extended

to 3D for the coding of hyperspectral imagery. In this case,

the tarp filter of (2) becomes the successive application of

five 1D filters. Specifically, in order to generate the probability

estimate p[x], the information of three neighbors is used—one

to the left, one above, and one in the same spatial position in

the previous spectral band. In 3D-tarp, the five filters are as

follows (see [13] for more detail). For each of the spectral

bands, one filter runs each row from left to right, one filter

runs this row from right to left, and then one filter runs each

column from top to bottom. Then, after a full spectral band is

coded with these three filters, another two filters are applied

to update the probability in the spectral direction.

B. TCE

The probability estimate resulting from the tarp filter in

the algorithms of [12, 13] is most accurate for the areas in

significance map v[x] that are relatively sparsely populated

with significant coefficients. In [7], the 2D-tarp algorithm of

[12] was extended to make use of fractional bitplane coding

wherein the significance map is processed in multiple distinct

passes to improve the encoding order and, consequently, the

compression performance. In the resulting system, TCE [7],

coefficients are divided into three classes, and each class is

handled by a different coding pass. These passes are:

• Nonzero-Neighbor (NZN) Pass: v[x] is coded using an

adaptive arithmetic coder for all coefficients which have

neighboring coefficients which are already significant.

• Zero-Run (ZR) Pass: v[x] is coded for all currently

insignificant coefficients not processed in the NZN pass;

a tarp filter is used to produce a probability estimate that

drives a non-adaptive arithmetic coder in this pass.

• Refinement (RF) Pass: Refinement bits are coded for

currently significant coefficients.

The NZN pass codes v[x] for coefficients that have a high

probability of becoming significant, since their neighboring

coefficients are already significant; for this pass, the neighbors

are defined to be those coefficients spatially adjacent to the

current coefficient as illustrated in Fig. 1(a). Since, in this

case, the density of significant coefficients is high, tarp filtering

is less effective for these coefficients. On the other hand,

coefficients processed in the ZR pass have a lower probability

of significance, and the tarp filter is much more effective for

them. The third coding pass, the RF pass, is essentially the

same as in the original 2D-tarp coder, processing consecutive

bitplanes of coefficients already known to be significant from

prior coding passes.

In addition to the adoption of fractional bitplane coding,

TCE also introduces techniques to improve the accuracy of

the probability estimate of the tarp filter within the ZR pass.

Briefly, a cross-scale parent-child relationship is used to refine

the probability estimates arising in high-resolution subbands

based on probabilities previously obtained for tarp filtering

in lower-resolution subbands; this process exploits cross-scale

correlations among wavelet coefficients that are ignored by the

original 2D-tarp coder. Additionally, a so-called “reversed”

tarp filter is applied both before and after the ZR pass to

incorporate additional information from the NZN pass to

update the probability estimate; see [7] for greater detail. For

lossy coding, experimental results reported in [7] exhibit a

gain of 0.5–0.8 dB in PSNR for 2D-TCE over the original

2D-tarp of [12] and performance essentially comparable to

that of JPEG2000.

C. Integer KLT

The typical approach for coding hyperspectral imagery is

to couple a 3D extension of an existing 2D coding algorithm

with a 1D transform designed to decorrelate the data in the

spectral direction. Although DWTs have been commonly used

for such spectral transforms, a spectral KLT is known to

yield significantly superior results (e.g., [14]). However, the

usual KLT is an irreversible transform. For lossy-to-lossless

compression—the focus here—what is needed is a reversible

KLT that maps integers to integers. Such a reversible integer

KLT was proposed in [9, 10] based on reversible matrix

factorizations originating in [8].

Specifically, consider an M × M upper triangular matrix

B =
[
bmn

]
with ±1 on the diagonal. From [8], a reversible

version of transform ỹ = By, can be achieved by lifting steps

in the form

ỹm =





bmmym +

[
M∑

n=m+1

bmnyn

]

Z

, m = 1, . . . ,M − 1,

bmmym, m = M,

(3)

where [·]
Z
denotes rounding to the nearest integer. The inverse

transform is trivially obtained in the reverse order. Reversible

integer lifting steps similar to (3) can be easily derived for the

case that B is lower triangular with unit diagonal [8].
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In [8], an M × M transform matrix A with determinant

|A| = ±1 is factored as

A = PLUS, (4)

where L and S are lower triangular, U is upper triangular,

and P is a reversible permutation matrix. Implementing the

U transform using (3) and the L and S transforms using

its corresponding lower-triangular counterpart results in a

reversible calculation of A. Since the KLT is an orthonormal

transform (i.e., its determinant is 1), this factorization was used

in [9] to obtain a reversible integer transform that approximates

the KLT. Here, we employ the variant using quasi-complete

pivoting proposed in [10].

III. PROPOSED CODER

The first step in the proposed 3D-TCE coder is a spectral

transform that decorrelates the hyperspectral image spectrally.

This is followed by a dyadic DWT that decomposes the data

spatially, resulting in a subband decomposition of the data

cube. For lossless coding, the spectral transform is either a

traditional 1D wavelet transform using the popular reversible

5/3 DWT or an integer KLT as described above in Sec. II-C.

The former is referred to below as DWT+3D-TCE, the latter

as KLT+3D-TCE. The structure of the resulting subbands for

DWT+3D-TCE takes the form as illustrated in Fig. 2(a) which

is commonly known as the wavelet-packet decomposition

(e.g., [11]). On the other hand, when a KLT is used for spectral

decorrelation, we consider subbands to be defined so as to

include all principal components as illustrated in Fig. 2(b).

In either case, the TCE coder is conducted on a subband-by-

subband basis as described below.

For a given threshold in TCE, coefficients are partitioned

into one of the three passes as described in Sec. II-B—

coefficients that are currently insignificant but which have at

least one significant neighbor fall into the NZN pass; coeffi-

cients that are currently insignificant and have all neighbors

being insignificant fall into the ZR pass; while the remaining,

significant coefficients are processed in the RF pass. For 3D-

TCE, the definition of the neighbors of the current coefficient

is extended in the spectral direction to encompass a total of

26 coefficients as illustrated in Fig. 1(b).

The other changes involved in going from 2D to 3D center

on the tarp-filter process in the ZR pass. Specifically, 2D tarp

filtering is replaced by the 3D tarp filter developed in [13],

while the cross-scale parent-child relationship used to refine

probability estimates in TCE is suitably modified for the 3D

character of the subbands. The 3D parent-child relationship is

spatially similar to that of the original 2D-TCE, while there are

links in the spectral direction between certain coefficients (i.e.,

the spatially low-resolution coefficients). These parent-child

relations are illustrated in Fig. 3(a) and (b) for DWT+3D-TCE

and KLT+3D-TCE, respectively.

Finally, in the KLT+3D-TCE coder, if the maximum coef-

ficient magnitude in a specific principal component resulting

from the spectral KLT is less than the value of the current

threshold, then coding of that principal component is skipped

in the TCE coding of all subbands. This component skipping

helps efficiently code large numbers of insignificant coef-

ficients since relatively few principal components typically

contain significant signal energy. Components to be skipped

are indicated to the decoder by a list of maximum bitplanes for

each subband of each component; the list itself is losslessly

coded with DPCM.

IV. EXPERIMENTAL RESULTS

A. Lossless Coding

We performed coding experiments on several hyperspec-

tral image datasets. We used four popular AVIRIS radiance

datasets of size 512×512 with 224 bands, specifically Scene 1

of the “Cuprite,” “Jasper Ridge,” “Lunar Lake,” and “Moffett”

radiance datasets2 cropped spatially to size 512×512 from the

upper left corner. We also used a TRWISIII dataset (“DREC”)

of spatial size 256× 256 with 384 spectral bands as well as a

CASI dataset of spatial size 150×250 with 72 spectral bands.

Table I compares the performance at lossless compression

for the proposed 3D-TCE algorithm against that of several

other state-of-the-art lossy-to-lossless coders. Specifically, Ta-

ble I tabulates the bitrate in bits per pixel per band (bpppb)

of the lossless bitstream produced by the various coders.

We investigate the performance of 3D-tarp [13], JPEG2000

[5, 6] and the proposed 3D-TCE algorithm using for spectral

decorrelation both a DWT (DWT+3D-tarp, DWT+JP2K, and

DWT+3D-TCE, respectively) as well as a KLT (KLT+3D-

tarp, KLT+JP2K, and KLT+3D-TCE, respectively). In the case

of the spectral DWT, five levels of the reversible, integer-

valued 5/3 DWT is applied; for the spectral KLT, the re-

versible, integer-valued KLT factorization of [10] is applied.

All techniques use a 5-level reversible 5/3 spatial DWT.

Implementations of 3D-tarp and 3D-TCE are from QccPack3

[15]; Kakadu4 Version 5.1 is used for the JPEG2000 results.

Bitrate figures for all KLT-based coders include the overhead

of the KLT transform matrix. We see from Table I, that, for the

same spectral transform, the proposed 3D-TCE coder always

outperforms the 3D-tarp coder of [13] from which it originates.

Additionally, 3D-TCE outperforms JPEG2000 for both the

wavelet-based as well as KLT-based spectral transforms. For

example, the KLT+3D-TCE coder averages 4.76 bpppb on

the set of AVIRIS images, an improvement of 3.6% over

JPEG2000 with the same spectral KLT.

We also include in Table I results for these datasets for two

state-of-the-art techniques that are strictly lossless coders not

capable of lossy-to-lossless operation, namely, M-CALIC [2]

and LUT [4]. Of particular note is that, out of the set of lossy-

to-lossless and strictly lossless coders, KLT+3D-TCE obtains

the best compression for half of the datasets, being second to

LUT for two of the AVIRIS datasets and to M-CALIC for the

TRWIS dataset.

B. Lossy Coding

We present results for lossy coding for the hyperspectral

datasets and coders under consideration using both traditional,

2http://aviris.jpl.nasa.gov/
3http://qccpack.sourceforge.net/
4http://www.kakadusoftware.com/
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irreversible, floating-point transforms as well as the reversible,

integer-value transforms that enable lossy-to-lossless oper-

ation. First, in Table II, we have lossy coding with irre-

versible transforms—all DWTs use 5 levels of the popular

irreversible 9/7 biorthogonal transform, while the spectral KLT

is a traditional irreversible floating-point implementation. We

measure performance in terms of signal-to-noise ratio (SNR)5,

average spectral angle mapper (SAM), and preservation of

classification (POC). SAM is the angle between original and

reconstructed hyperspectral pixel vectors as averaged over the

dataset. POC [11] results from the application of unsupervised

classification6 on the original hyperspectral image as well as

on the reconstructed image; specifically, POC is the number

of pixels that do not change assigned class as a result of

the compression, expressed as a percentage. Table II indicates

that KLT+3D-TCE and KLT+JP2K obtain virtually identical

performance—in terms of SNR, average SAM, and POC—for

all the datasets at a fixed bitrate.

Table III duplicates the results of Table II only this time

using the coders with reversible transforms as in Sec. IV-A;

in this case, the lossless bitstreams are truncated to achieve

a lossy representation at a rate of 1.0 bpppb. Again, we see

that KLT+3D-TCE achieves performance very close to that of

KLT+JP2K for all three measures.

V. CONCLUSIONS

In this paper, we proposed an algorithm for the lossy-to-

lossless compression of hyperspectral imagery that couples

a KLT for spectral decorrelation with a 3D extension of

TCE, an image coder originally developed for lossy coding

of 2D images. When used with a reversible, integer KLT and

reversible wavelet transforms, the resulting coder, 3D-TCE,

achieves lossy-to-lossless operation while outperforming the

widely-used JPEG2000 standard at the lossless compression of

several hyperspectral images. To the best of our knowledge, the

results presented here—on the order of 3% better compression

than JPEG2000 with the same integer KLT—represent the

best lossy-to-lossless coding results for hyperspectral imagery

to appear in the literature. Although generally acknowledged

that the lossy-to-lossless capability comes at a cost to loss-

less compression performance, the 3D-TCE coder that we

developed here offers performance closer to that of purely

lossless techniques as compared to other lossy-to-lossless

coders, and, in fact, outperforms the prominent lossless LUT

and M-CALIC coders for several datasets considered. On

the other hand, in terms of lossy compression, rate-distortion

performance of 3D-TCE is very close to that of the state-of-

the-art JPEG2000.

For lossy compression, it is well known that the calculation

of the data covariance matrix as needed to create the KLT

transform matrix represents the majority of computation asso-

ciated with techniques employing KLT spectral decorrelation

such as those we consider here; see [16, 17] for example.

For lossless compression, factorization and nonlinear trans-

form application are added to this KLT-training to produce a

5log ratio of signal variance to mean squared error
6ENVI Ver. 4.3 implementation of k-means with a maximum of 10 classes

and a change threshold of 5.00

reversible transform. In our empirical observations, the three

stages of this reversible transform dominate the computation

within the lossy-to-lossless coders considered here such that

our implementations of KLT+3D-tarp, KLT+3D-TCE, and

KLT+JP2K have roughly equal execution times. The M-

CALIC implementation we use is about 5 times faster, while

LUT, on the other hand, is an order of magnitude faster than

M-CALIC. LUT would therefore most likely be preferred

in applications strictly needing only lossless compression. If,

however, lossy-to-lossless operation is desired, the proposed

KLT+3D-TCE coder offers not only lossy coding to match

that of JPEG2000 but also lossless coding that rivals state-of-

the-art purely lossless coders such as M-CALIC and LUT.
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TABLE I

RATE IN BPPPB FOR LOSSLESS COMPRESSION

AVIRIS TRWIS CASI

Jasper Lunar

Algorithm Cuprite Ridge Lake Moffett Average DREC CASI

lo
ss
y
-t
o
-l
o
ss
le
ss

DWT+3D-tarp 5.58 5.88 5.60 5.95 5.75 7.02 9.70

DWT+JP2K 5.28 5.54 5.30 5.65 5.45 6.68 9.47

DWT+3D-TCE 5.18 5.44 5.19 5.52 5.33 6.53 9.12

KLT+3D-tarp 5.13 5.11 5.24 5.22 5.17 6.71 9.71

KLT+JP2K 4.88 4.87 4.98 4.97 4.92 6.42 9.43

KLT+3D-TCE 4.72 4.71 4.82 4.80 4.76 6.22 9.01

lo
ss
le
ss M-CALIC 4.86 4.96 4.96 5.05 4.96 6.13 n/a∗

LUT 4.61 4.92 4.77 5.13 4.86 7.19 10.23

∗Result not available due to the dynamic range of the dataset exceeding that supported by the M-CALIC implementation.

TABLE II

PERFORMANCE FOR LOSSY COMPRESSION AT 1.0 BPPPB USING

IRREVERSIBLE TRANSFORMS

SNR (dB), Average SAM (degrees), and POC (%)

DWT+ DWT+ DWT+ KLT+ KLT+ KLT+
3D-tarp JP2K 3D-TCE 3D-tarp JP2K 3D-TCE

Cuprite
50.43 51.00 50.80 53.62 54.13 54.08
0.12◦ 0.12◦ 0.12◦ 0.09◦ 0.08◦ 0.08◦

99.7% 99.8% 99.8% 99.7% 99.8% 99.7%

Jasper
Ridge

43.68 44.85 44.65 49.64 50.33 50.33
0.29◦ 0.26◦ 0.26◦ 0.15◦ 0.14◦ 0.14◦

99.3% 99.1% 99.4% 99.6% 99.8% 99.6%

Lunar
Lake

52.17 52.73 52.53 54.43 55.21 55.22
0.10◦ 0.10◦ 0.10◦ 0.08◦ 0.07◦ 0.07◦

99.6% 99.5% 99.4% 99.5% 99.6% 99.7%

Moffett
44.60 45.49 45.43 50.21 50.92 50.97
0.25◦ 0.22◦ 0.22◦ 0.13◦ 0.12◦ 0.12◦

99.8% 99.7% 99.8% 99.9% 99.8% 99.9%

DREC
42.17 42.98 42.75 44.50 45.21 45.06
0.40◦ 0.36◦ 0.37◦ 0.30◦ 0.28◦ 0.28◦

99.0% 99.5% 99.5% 99.3% 99.2% 99.2%

CASI
33.35 33.76 33.73 34.63 34.84 34.92
0.62◦ 0.59◦ 0.60◦ 0.54◦ 0.52◦ 0.52◦

99.3% 99.2% 99.3% 99.4% 99.2% 99.4%

TABLE III

PERFORMANCE FOR LOSSY COMPRESSION AT 1.0 BPPPB USING

REVERSIBLE TRANSFORMS

SNR (dB), Average SAM (degrees), and POC (%)

DWT+ DWT+ DWT+ KLT+ KLT+ KLT+
3D-tarp JP2K 3D-TCE 3D-tarp JP2K 3D-TCE

Cuprite
49.26 50.03 49.70 51.55 53.05 52.68
0.14 0.13 0.13 0.11 0.09 0.10
99.7% 99.5% 99.7% 99.7% 99.8% 99.7%

Jasper
Ridge

42.85 44.09 43.56 47.86 49.22 48.89
0.32 0.28 0.29 0.18 0.16 0.16
98.3% 99.0% 97.9% 99.5% 98.3% 99.3%

Lunar
Lake

50.99 51.76 51.36 52.65 54.21 54.08
0.12 0.11 0.11 0.10 0.08 0.08

99.6% 99.6% 99.6% 99.3% 99.4% 99.5%

Moffett
43.78 44.74 44.35 48.52 49.88 49.77
0.27 0.24 0.25 0.16 0.14 0.14
99.5% 99.5% 99.6% 99.7% 99.6% 99.8%

DREC
40.85 42.30 41.88 43.76 44.65 44.13
0.46 0.39 0.41 0.33 0.30 0.31
99.0% 98.9% 98.9% 99.6% 99.8% 99.6%

CASI
32.76 33.35 33.12 34.19 34.28 34.33
0.65 0.61 0.63 0.56 0.56 0.55
99.2% 98.9% 99.3% 99.4% 99.4% 99.4%

Fig. 1. Neighbors of the current coefficient (a) in 2D, (b) in 3D.

spectral

spatial−

column

spatial−row

(a) (b)

Fig. 2. Subband arrangement for (a) DWT spectral transform, (b) KLT
spectral transform

(a) (b)

Fig. 3. Parent-child relationship for (a) DWT+3D-TCE, spectral subbands
are indicated by different shades of gray; (b) KLT+3D-TCE.
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