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ABSTRACT

MicroRNAs (miRNAs) are a class of short endogenously expressed
RNA molecules that regulate gene expression by binding directly
to the messenger RNA of protein coding genes. They have been
found to confer a novel layer of genetic regulation in a wide range
of biological processes. Computational miRNA target prediction
remains one of the key means used to decipher the role of miRNAs in
development and disease. Here we introduce the basic idea behind
the experimental identification of miRNA targets and present some
of the most widely used computational miRNA target identification
programs. The review includes an assessment of the prediction
quality of these programs and their combinations.

Contact: p.alexiou@fleming.gr

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

It was only recently that the term microRNA (miRNA) was
introduced to describe short RNA molecules that regulate gene
expression by binding preferably to the 3’ untranslated region
(3'UTR) of protein coding genes (Bartel, 2004). Although miRNAs
were first identified in 1993 (Lee ef al., 1993) via classical genetic
techniques in Caenorhabditis elegans, in 2001 it was suggested that
they are widespread and abundant in cells (Lagos-Quintana et al.,
2001; Lau et al., 2001; Lee and Ambros, 2001). Each miRNA
is 19-24 nucleotides in length and is processed from a longer
transcript, referred to as the primary transcript (pri-miRNA), which
can be up to thousands of nucleotides long. Primary transcripts are
processed in the cell nucleus to short, ~70 nucleotide long stem-
loop structures known as pre-miRNAs. In animals, this processing
is performed by a protein complex known as the Microprocessor
complex, consisting of the nuclease Drosha and the double-stranded
RNA binding protein Pasha (Denli er al., 2004). Pre-miRNAs
are processed to mature miRNAs in the cytoplasm by interaction
with the endonuclease Dicer which cleaves the pre-miRNA stem-
loop into two complementary short RNA molecules. One of these
molecules is integrated into the RNA-induced silencing complex
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(RISC) and guides it to the mRNA where it can inhibit translation
or induce mRNA degradation (Fig. 1) (Liu et al., 2004). Generally,
miRNA transcripts may be located within the introns of protein-
coding genes, entirely outside of protein-coding genes (‘intergenic’)
or more rarely in coding exons, untranslated regions (UTRs) or
exons of non-coding transcripts. Frequently, pri-miRNA transcripts
code for more than one miRNAs which are transcribed together and
are referred to as a miRNA cluster.

Since their initial identification, miRNAs have been found to
confer a novel layer of genetic regulation in a wide range of
biological processes. Their involvement in cellular commitment
and cell cycle regulation gives an important role to the miRNA
class of regulatory modules in animal development and human
diseases. Specifically, miRNAs have been found to regulate various
developmental stages in animals such as C.elegans (Lau et al., 2001;
Lee and Ambros, 2001; Lee et al., 1993; Reinhart et al., 2000), Danio
Rerio (Wienholds et al., 2005), Drosophila melanogaster (Aravin
et al., 2003), Mus musculus (Baroukh et al., 2007), Homo sapiens
(Chen et al., 2004; Lu et al., 2007; Yi et al., 2006) and in plants
(Kidner and Martienssen, 2005). miRNA-mediated regulation of
pathways involved in human disease is currently a very active field
and miRNAs have been linked to several human pathologies such
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Fig. 1. The binding of a miRNA to a miTG. Multiple miRNAs may bind on
the 3'UTR of a miTG. The seed sequence corresponds to six nucleotides at
positions 2—7 of the miRNA sequence. The position where a miRNA binds
to a miTG is called the MRE. miRNAs are transcribed mostly through Pol
II from DNA. Protein coding genes are transcribed into mRNA molecules
which then are translated to proteins. miRNAs integrate into the RISC
complex and by binding to mRNA molecules they inhibit translation or
induce mRNA degradation.
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as cardiovascular and neurodegenerative diseases (Hebert and De
Strooper, 2007; Hebert et al., 2008; Zhang, 2008) as well as in
human malignancies (Croce and Calin, 2005; Esquela-Kerscher and
Slack, 2006; Fabbri et al., 2007; Gartel and Kandel, 2008; Garzon
et al., 2006; Slack and Weidhaas, 2006). In particular, miRNAs are
believed to be involved in many stages of cancer progression by
both promoting and/or suppressing oncogenesis (He et al., 2005;
Ivanovska et al., 2008; Lee and Dutta, 2007; Tagawa et al., 2007),
tumor growth (Johnson et al., 2007; Si et al., 2007), invasion and
metastasis (Asangani et al., 2008; Huang et al., 2008; Ma et al.,
2007; Tavazoie et al., 2008; Zhu et al., 2008).

For many years, researchers have been analyzing microarray
expression data of protein coding genes in different cancer types
in order to identify specific expression signatures. The limited
number of miRNAs, makes them an ideal candidate for this type
of analysis. Currently, there are ~700 human miRNAs registered in
miRBase (Griffiths-Jones et al., 2008), and according to estimates
their number may reach 1000 (Fig. 2). Analyzing their expression,
several miRNA signatures have already been successfully associated
with human cancers (Calin and Croce, 2006) such as leukemias
(Calin and Croce, 2007; Landais et al., 2007), thyroid carcinomas
(He et al., 2005), breast (Iorio et al., 2005), lung (Yanaihara et al.,
2006) and pancreatic cancer (Lee et al., 2007).

2 EXPERIMENTAL IDENTIFICATION OF miRNA
TARGETS

In order to analyze miRNA function, a large number of studies have
been published that attempt to validate miRNA:mRNA interactions,
using direct and indirect experimental methods. Direct methods
allow the validation of specific miIRNA:mRNA interactions, while
indirect methods, based on high-throughput experiments such as
microarrays and protein quantification experiments, provide an
overview of changes in a larger number of gene products.

Direct validation of miRNA target genes is often based on the
quantification of a reporter construct [e.g. Luciferase or Green
Fluorescent Protein (GFP)] carrying the 3'UTR of the putative target
gene after the introduction of a miRNA to the cell (Kiriakidou et al.,
2004). Alternatively, quantitative RT-PCR can be used to monitor
changes in mRNA levels after a miRNA has been introduced in a
cell. Even though such methods can validate the miRNA:mRNA
interaction, they fail to identify the specific miRNA recognition
elements (MREs) responsible for the interaction. Such MREs can
be identified using an integration of the reporter gene assay with
site directed mutagenesis and/or by restoring the complementarity
by mutating the miRNA sequence.

High-throughput techniques can provide information about global
miRNA effects in cells and are based on measuring differential gene
expression in the presence or absence of a miRNA in the cell. For the
overexpression of a miRNA (Lim ez al., 2005), expression constructs
can be engineered using the mature miRNA, the precursor (hairpin)
miRNA, or the pre-miRNA sequence for transfection in vitro or
in vivo. Silencing of a miRNA can be accomplished by introducing
chemically modified oligonucleotides perfectly complementary to
the mature miRNA (Krutzfeldt er al., 2005) or by knocking
down a miRNA gene. Until recently such gene expression levels
changes have been monitored through gene expression microarrays
(Krutzfeldt et al., 2005; Lim et al., 2005). These methods give
significant information for miRNA targets where gene expression

repression is caused by mRNA degradation (see also Supplementary
Material), but is missing the targets where expression repression is
caused by translation repression. Such targets were only recently
identified using high-throughput proteomics methods (Baek et al.,
2008; Selbach et al., 2008). In these studies, stable isotope labeling
with amino acids in cell culture (SILAC) was applied and the
protein expression levels for thousands of genes were measured.
It should be noted that both methods provide indirect validation
of targets. Recently, immunoprecipitation of RISC components has
been used to identify mRNAs targeted by miRNAs (Beitzinger
et al., 2007; Easow et al., 2007; Zhang et al., 2007). Moreover,
high-throughput sequencing of RNAs isolated by crosslinking
immunoprecipitation (HITS-CLIP) has been used (Chi et al., 2009)
in order to identify and sequence specific miRNA binding sites on
targeted mRNAs. Methods based on the measurement of differential
expression of genes (microarrays, pSILAC), may contain many
secondary and nonspecific effects and therefore the identified group
of target genes does not constitute a comprehensive list of miRNA
targets. Such results should be rather treated as enriched in direct
miRNA targets of a specific miRNA. HITS-CLIP on the other
hand might also identify non-functional binding sites of RISC.
Summarizing, high-throughput methods can provide a broad set
of miRNA targets in a cell that are hard to identify using direct
verification methods but are not as specific as direct validation
methods.

The rapid development in the methods of the experimental
validation of miRNA targets and the increased interest of many
labs for the function of miRNAs has caused a dramatic increase of
miRNA target genes (miTGs) with experimental evidence (Fig. 2).
An up to date collection of such targets including information
for both the validated interaction and the methods used can be
found in TarBase (Papadopoulos et al., 2009), a manually curated
database with currently more than 1300 miRNA:mRNA interactions
in several species.
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Fig. 2. The growth of known miRNA genes in miRBase database (black
bars), the growth of miRNA related publications in PubMed (dark-gray
bars) and the growth of the human experimentally determined miRNA target
interactions in TarBase (light-gray bars).
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3 OVERVIEW OF miRNA TARGET PREDICTION
PROGRAMS

Despite the significant increase of experimentally validated miTGs
the majority of miRNA targeted genes still remains unknown and
computational target prediction programs remain the only source
for a rapid identification of a putative miRNA target. Therefore,
the development of computational target prediction programs goes
hand in hand with the understanding of miRNA function. The first
programs were developed back in 2003 shortly after it became
evident that miRNAs are abundant in cells. Although a typical
miRNA is ~22 nucleotides (nt) long, several groups (Doench and
Sharp, 2004; Kiriakidou et al., 2004) have shown experimentally
that the nucleotides close to the 5’end of the miRNA are the
most crucial for recognizing and binding to a target sequence.
Additionally, a statistical analysis by Lewis et al. (2005) revealed
that motifs in the 3’UTR of protein coding genes corresponding
to nucleotides 2-7 of the miRNA are preferentially conserved in
several species. These six nucleotides have been denoted as the
‘seed’ sequence of the miRNA (Fig. 1). However, later Krek et al.
(2005) used seven nucleotides starting at position 1 or 2 of a miRNA
to locate potential targets on the 3'UTR.

In the last years, several miRNA target prediction programs
have been published (Sethupathy et al., 2006). The main prediction
feature used in most of these programs is the sequence alignment
of the miRNA seed to the 3’UTR of candidate target genes.
Their specificity is usually increased by exploiting the evolutionary
conservation of binding sites or by using additional features such
as structural accessibility (Kertesz et al., 2007; Long et al., 2007),
nucleotide composition (Grimson ez al., 2007) or location of the
binding sites within the 3'UTR (Baek et al., 2008; Gaidatzis et al.,
2007; Grimson et al., 2007).

Here we summarize, in alphabetical order, eight of the most
commonly used algorithms for miRNA target prediction for the
human and mouse genome.

3.1 DIANA-microT 3.0

The DIANA-microT 3.0 (Maragkakis et al., 2009) algorithm is
based on parameters calculated individually for each miRNA and
each MRE depending on binding and conservation features. The
prediction score of a miTG interaction is the weighted sum of the
scores of conserved and non-conserved MREs on a gene. A signal
to noise ratio (SNR) and a precision score are calculated for each
interaction to provide an estimate of the false positive rate of each
predicted miTG. Prediction data is available at http://microrna.gt/
microT.

3.2 EIMMo

EIMMo (Gaidatzis et al., 2007) uses a general Bayesian
method that scores the conservation of miRNA binding
sites according to an evolutionary model that utilizes the
assumed phylogenetic relationship among several species. Flat
files of EIMMo target prediction data (v2, January 2008)
are downloaded from http://www.mirz.unibas.ch/Computational
_prediction_of_microRNA_targets_ BULK.shtml. As suggested by
the authors, a score threshold of 0.8 is used for high confidence in
the comparisons.

3.3 miRanda

miRanda (John et al., 2004) uses a two-step approach for the
identification of miRNA targets. First, the whole length of the
miRNA is aligned against the 3'UTR sequence. Alignments that
contain G:U wobble pairs are down-weighted accordingly. Second,
for the highest scoring alignments, the thermodynamic stability of
the complex is calculated and reported. Flat files of miRanda target
prediction data are downloaded (January 2008) from: http:/www.
microrna.org/microrna/getDownloads.do.

3.4 miRBase

miRBase (Griffiths-Jones et al., 2008) uses the miRanda algorithm
to identify potential binding sites for a given miRNA. Dynamic
programming alignment is used to identify highly complementary
sites. Strict complementarity at the 5’ seed region is demanded.
Thermodynamic stability is estimated for each target site. For
inclusion in the database, conservation of the target site at the exact
same position in at least two species is needed. miRBase target
prediction data is downloaded from http://microrna.sanger.ac.uk/
cgi-bin/targets/v4/download.pl.

3.5 Pictar

Pictar (Lall et al., 2006) identifies two types of miRNA:target
interactions: (i) those with perfect complementarity between the
seed region of the miRNA (7 nt starting at position 1 or 2 of the
miRNA’s 5’end) and the 3’UTR target site and (ii) those for which
the perfect complementarity is interrupted by at most one nucleotide
bulge, mismatch, or G:U wobble. In both instances, the algorithm
requires that the binding stability of the putative miRNA:target
interaction, as measured by thermodynamic binding energy, exceeds
a specified threshold. Once individual miRNA:target interactions
are identified, the algorithm labels highly conserved (among 4 or 5
species) target sites as ‘anchors’ and filters out those 3’UTRs that do
not harbor a specified number of anchors. A hidden Markov model
is then used to score the likelihood of a 3'UTR being targeted by
miRNAs in a combinatorial manner. These scores are computed for
a set of species and combined to compute the final score. Since
the bulk download files for Pictar on the UCSC Genome Browser
are outdated, the target results are downloaded from the Pictar
web page (http://pictar.org/) following the link for ‘Predictions in
vertebrates, flies and nematodes’ (Lall et al., 2006). The four species
conservation is used.

3.6 PITA

PITA (Kertesz et al., 2007) considers the effect of target site
accessibility on the strength of miRNA repression. Essentially,
for each target site, an energy-based measure that represents
the difference between the free energy gained by the binding of the
miRNA to the target and the free energy lost by unpairing the
nucleotides within the target site itself is calculated. The energy used
to unpair additional nucleotides flanking the target sites is also taken
into account. A flat file with target prediction data is downloaded
from http://genie.weizmann.ac.il/pubs/mirQ7/mir07_data.html. The
‘no 3_15 option in the PITA Targets Catalog version 5 (November
20, 2007) is used with the top targets identified as those with a score
lower than —5.
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Fig. 3. Comparison of nine miRNA target prediction programs and the seed measure on the results provided by Selbach ez al. (http://psilac.mdc-berlin.de).
(A) The gray columns indicate precision (correctly predicted/total predicted) while the black columns show sensitivity (correctly predicted/total correct). The
graph shows all targets above the score threshold of each program. A scatterplot of the same results is available in the Supplementary Materials. (B) A precision-
receiver operating characteristic pROC (curve) showing the precision against the sensitivity of the miRNA target prediction programs. The seed measure has
distinct values denoted as purple squares connected by a dotted line, where the numbers on the squares denote the minimum number of seeds per gene at each

threshold. We annotate the four points having one to four seed matches.

3.7 RNA22

RNA22 (Miranda et al., 2006) is a miRNA target prediction
program that incorporates identifying redundant patterns in
mature miRNA sequences. A second-order Markov chain is
implemented to estimate the statistical significance of the identified
patterns. The reverse complement of all miRNA patterns are
then identified within 3'UTR sequences. A ‘Target Island’ is
an area where many such reverse complement hits accumulate.
miRNAs are paired to target islands and the strength of the
pairing is calculated based on the free energy and the number
of nucleotides involved. The target prediction data is downloaded
from http://cbcsrv.watson.ibm.com/rna22_download_content.html.
The date of the precompiled predictions is November 11, 2006.

3.8 TargetScan 5.0

TargetScan (Friedman et al., 2009) predicts miRNA targets based on
the identification of aligned seed matches and their conservation in
several species. The overall scoring of a miRNA target site depends
on the level of conservation, whether it binds to the miRNA on
position 8 and/or whether it has an A at position 1, the distance of the
target from the 3'UTR end and the AU composition of the flanking
area. Data was downloaded from http://www.targetscan.org/cgi-
bin/targetscan/data_download.cgi?db=vert_50.

3.9 Simple seed measure

In this approach, genes are identified and sorted according to the
number of occurrences of the hexamer complementary to the seed
(nucleotides 2—7) of the miRNA in the 3'UTR sequence. Unless
stated otherwise, all genes containing at least one instance of the
seed were used in comparisons. When multiple annotated 3'UTR
sequences were available for a gene, the longest one was used.
The user interfaces of the miRNA target prediction programs
described above offer a variety of options to the user and are

summarized in the Supplementary Material. We would like to
mention here that only a few programs (DIANA-microT 3.0,
TargetScan 5.0) offer the option to predict targets for user
defined novel miRNAs, and some programs offer the option of a
meta analysis through information regarding miRNA and mRNA
expression or/and Gene Ontology (EIMMo, miRBase). At this point,
we would like to point out that programs are not always up-to-date
regarding the number of miRNAs and genes used. This number
ranges currently from 178 to 675. A table with the number of
miRNAs for which each program gives predictions can be found
in the Supplementary Materials.

4 COMPARISON OF miRNA TARGET
PREDICTION PROGRAMS

In the two recently published works (Baek et al., 2008; Selbach et al.,
2008) that measured changes of protein levels after overexpression
or underexpression of a miRNA, several miRNA target prediction
programs are evaluated. Similarly, we tested here all miRNA
target prediction programs mentioned above against genes proposed
as targeted in Selbach et al. (Material and Methods section in
Supplementary Material) In Figure 3, the results for 5 miRNAs are
summarized. Nearly half of the down-regulated genes contain at
least one occurrence of a miRNA specific seed sequence (Fig. 3A).
We notice that a group of five programs (DIANA-microT 3.0,
TargetScan 5.0, TargetScanS, Pictar and EIMMo) has a precision
of ~50% with a sensitivity that ranges from 6 to 12%. All these
programs rely heavily on the evolutionary conservation of the seed
region or some small extensions of this region, and combine this
information with other features that characterize miTGs.

Such features are detailed phylogenetic models to assess
conservation, a miRNA specific SNR or a hidden Markov model
to combine different MRE scores into a total miTG score (Fig. 1).
Other programs include promising features like accessibility of the
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Fig. 4. Comparison of the miRNA target prediction programs on an
experimentally supported miRNA target dataset. The number of correctly
predicted targets is shown by different scores for increasing numbers of
predicted targets per miRNA.

binding site region, local concentration of redundant patterns of
miRNA sequences, or thermodynamic stability but at the current
stage they show lower predictive power. It has to be explored if
these features in combination with other predictive methods can
enhance target prediction.

We also investigate the very simple measure of counting the
number of seed regions per gene. Nearly half of the down-
regulated genes contain at least one occurrence of a miRNA specific
seed sequence (Fig. 3A). Comparing the more sensitive prediction
methods it can be noticed that the simple seed measure [Seed(1+) and
Seed(2+)] outperforms other more complex computational methods,
but fail when higher specificity is required [Seed(3+) and Seed(4+)].
Figure 3B presents the sensitivity and precision using different
score cutoffs for all programs and the simple seed measure (see
Supplementary Methods). The performance of the seed measure
divides consistently the programs in two groups.

Further, we test the same programs with results obtained from
overepxression of 2 miRNAs (hsa-mir-1 and hsa-mir-124) in HeLa
cells and the subsequent measurement of mRNA levels using
microarrays (Lim et al., 2005) (see Supplementary Figs S3 and S4).
For these data we compute the sensitivity measure at different levels
for all programs. The results give a similar picture as discussed above
(Supplementary Figs S3a and b, S4a and b).

A different test was performed for the same programs on a
dataset of experimentally supported targets derived from TarBase
(Papadopoulos et al., 2009). This set includes 150 targets of
61 different miRNAs that were verified with direct experimental
methods (available as Supplementary Material). The ranking of
the prediction power of the tested programs shows the same order
(Fig. 4).

To the non-expert, the choice of miRNA targets based on
predictions by algorithms may seem like a daunting task. A natural
inclination of a researcher is to assume that targets predicted by more
than one algorithm are more accurate than other targets and thus
leading to higher prediction precision. In a similar fashion, the union

50.00%
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20.00%
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o 100 200 300 400 500 600 700 800
Average Predicted Targets / miRMA,

Fig. 5. Comparison of the combinations of several miRNA target prediction
programs on the results provided by Selbach et al. The sensitivity of the
prediction versus the number of predicted targets per miRNA is plotted.
A larger version of this figure and an excel file with all sensitivity and
specificity numbers can be found in the Supplementary Material.

of different programs might improve the sensitivity. We test this by
calculating all possible union and intersection combinations of the
programs mentioned above (Fig. 5) for the high-throughput data
provided for five miRNAs by Selbach et al. It can be observed that
in most cases an accurate algorithm is better than a combination
of predictions. Many of the combinations perform worse than
the prediction of a single algorithm. The reason is that better
specificity of a combination is achieved by a higher price for the
sensitivity. Similar results are obtained using pairwise combinations
of programs on the expression array data set (see Supplementary
Fig. S3c).

5 FUTURE CHALLENGES OF miRNA TARGET
IDENTIFICATION

The arrival of high-throughput proteomics analysis allows
researchers to obtain a wider view of miRNA function in cells.
Such data may help in the identification of new rules that govern
miRNA function and also serve as training sets for applications
based on machine learning approaches. As expression data is
becoming increasingly available, it will be soon possible to train
adaptive algorithms that will highlight additional rules for miRNA
interactions with targeted genes. This notion is in line with the
results provided in a recent publication that describes a miRNA
target prediction method in C.elegans, mirWIP (Hammell et al.,
2008), which uses experimental data to define miTG prediction rules.
Specifically, data from an immunoprecipitation experiment which
identifies mRNAs targeted by the RISC were used and filters based
on the structural accessibility of the target site, total energy of the
miRNA-target hybridization as well as base pairing of the driver
sequence were combined for the prediction of miTGs.

Another interesting field opening in miRNA target prediction,
is the elucidation of the combinatorial effect of miRNAs. It is
widely accepted that several miRNAs are co-regulated in miRNA
gene clusters and are transcribed together. Additionally, levels of
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several miRNAs may be correlated as markers for disease, indicating
a co-regulation by more than one miRNAs. Therefore, two main
questions may be asked: how do multiple miRNAs affect a single
gene, and how do multiple miRNAs regulate a biological pathway
or disease. High-throughput experiments involving the knock-out
or overexpression of several miRNAs simultaneously as well as
independently, could produce the data needed in order to tackle
the first question. The second question requires more complex
computational approaches that will precisely identify and predict
miRNA regulatory networks and will model the interplay between
miRNAs (Ivanovska and Cleary, 2008).

Traditionally, the 3'UTR has been thought of as the main region
of miRNA binding. However, from as early as 2004 (Kloosterman
et al., 2004), there have been reports that miRNA-binding sites
could be functional even when artificially placed inside coding
regions. In an important article laying basic rules for miRNA
binding (Lewis et al., 2005), miRNA targeting was also detected
in open reading frames of protein coding genes. More recently,
the effect of introducing miRNA target sites into the 5UTR of
luciferase reporter mRNAs was extensively studied (Lytle et al.,
2007) and naturally occurring miRNA targets in the amino acid
coding sequence of mouse genes were experimentally identified
(Tay et al., 2008). These findings indicate that miRNAs could target
mRNAs by binding to positions outside the 3'UTR but it is still
believed that these binding sites are scarce (Baek et al., 2008).
However, it is possible that miRNAs act in these regions by different
mechanisms and/or binding rules and therefore are hard to identify.
Specifically, miRNA target prediction in coding regions would pose
the difficulty of high background conservation and biased nucleotide
composition.

6 CONCLUSION

Results produced by recently developed high throughput
experimental techniques suggest that miRNAs have a broad
impact on cellular processes. Moreover, the availability of such data
allows for extensive benchmarking of existing target prediction
algorithms. These benchmarks reveal that even the most sensitive
programs fail to identify a large part of the targeted genes.

We believe that the dramatic progress in high throughput
experimental methods will soon lead to significant qualitative
and quantitative improvements in the characterization of miRNA
regulation.

This will allow the development of more powerful algorithms
from the statistical or machine learning field trained on such high
throughput data. These methods will likely identify novel prediction
rules and optimize those currently used, to create more accurate
models of the underlying biological phenomena.

Closing we would like to apologize to the large number of groups
working in this field whose work is not included in this review due
to size limitations.

Conflict of Interest: none declared.
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