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We introduce a heuristic method for finding good, feasible solutions for multiproduct lot
sizing problems with general assembly structures, multiple constrained resources, and

nonzero setup costs and setup times. We evaluate the performance of this heuristic by comparing
its solutions to optimal solutions of small randomly generated problems and to time-truncated
Optimization Subroutine Library (OSL) solutions of medium-sized randomly generated prob-
lems. In the first case, the heuristic locates solutions averaging 4 percent worse than optimal in
less than 1 percent of time required by OSL. The heuristic solutions to medium-sized problems
are approximately 26 percent better than solutions OSL finds after 10,000 CPU seconds, and the
heuristic finds these solutions in approximately 10 percent of OSL time.
(Lot Sizing; General Assembly System; Heuristics; Integer Programming)

1. Introduction
Production planning typically encompasses three time-
frames for decision-making: long-term, short-term, and
medium-term. Long-term planning focuses on antici-
pated aggregate needs and involves such strategic de-
cisions as product and process choices, resource plan-
ning, and facility location and design. Short-term plan-
ning involves day-to-day scheduling and sequencing
decisions. Operational, or medium-term, production
planning, the focus of this paper, establishes production
quantities over a time horizon of several months so as
to optimize some performance measure while satisfying
existing capacity constraints and meeting known and
forecasted demand requirements.

The medium range production planning problem, of-
ten referred to as the lot sizing problem, has received
much attention in the management science literature
(see, for example, Kuik et al. 1994, Bahl et al. 1987, Maes
et al. 1991, and Harrison and Lewis 1996). These lot siz-

ing models can be classified by the number of products,
the number of capacitated resources, the number of as-
sembly stages, and the nature of the assembly system
(linear, pure assembly, or general assembly structure).
The single-product, single-stage uncapacitated problem
with constant demand rate is easily solved to optimality
by the Economic Order Quantity (EOQ) (Harris 1913).
When the demand rate is not constant, Wagner and Whi-
tin (1958) provide an efficient dynamic programming al-
gorithm, and many efficient heuristic procedures also ex-
ist (e.g., Silver and Meal 1973, Silver and Peterson 1985).
The problem becomes difficult when capacity is con-
strained. Florian et al. (1980) show that several general
families of the single-product lot sizing problem with one
capacitated resource are NP-hard. Bitran and Yanasse
(1982) identify classes of the single-item capacitated
problem with linear production and holding costs that
are solvable in polynomial time, and those groups that
are NP-hard. They also show that the polynomial time
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single-product cases become NP-hard when only two
products with independent setups are considered. Maes
et al. (1991) prove that simply finding a feasible solution
to the multi-item problem with multiple constrained re-
sources is NP-complete when setups consume capacity.

1.1. Problem Definition
This research expands the work of Harrison and Lewis
(1996) to address the most unrestricted form of the lot
sizing problem—one involving multiple products with
nonlinear assembly structures, multiple constrained re-
sources, and nonzero setup costs and setup times. The
formulation under study is very close to that originally
introduced by Billington et al. (1983).

We use the following assumptions to define the mul-
tilevel capacitated lot sizing problem.

• Any type of bill of material (BOM) structure can be
specified. We define a set Sp for each product p that in-
cludes immediate successors of p in the BOM. Sp Å M
if p is an end item.

• The lead times are one period long, regardless of
quantity, meaning that any item p processed during
time period t cannot be used either to manufacture an
immediate successor of p or to fulfill the external de-
mand for p until period t / 1.

• We do not allow backorders in this model, al-
though they can be easily included.

• There are R resources whose binding capacity may
potentially restrict system throughput, and any product
may potentially encounter any number of those re-
sources during a single time period (simultaneous re-
source possession is allowed).

• The planning horizon is T time periods, with period
0 representing the time period immediately prior to the
beginning of the planning horizon.

Mathematically, the multilevel capacitated lot sizing
problem (MLCLSP) can be stated as follows.

1.1.1. Index Sets.
P—Products, P Å {pÉp Å 1, . . . , P}.
R—Resources, R Å {rÉr Å 1, . . . , R}.
Sp—Successors of product p in the BOM (Sp Å M if p

is an end item).
T—Time periods, T Å {tÉt Å 0, 1, . . . , T}.

1.1.2. Data.
apr—consumption of resource r to produce one unit

of product p.

crt—amount of resource r available in time t.
dpt—external demand for product p in period t.
fpr—fixed consumption of resource r to process prod-

uct p.
—initial inventory stock of product p.Php

Ĥp—ending inventory stock of product p.
kpj—number of units of product p to produce one unit

of product j, where j √ Sp.
spr—setup cost for product p on resource r.
vpr—variable cost of processing one unit of product p

on resource r.
wpt—holding cost for product p in period t.
xV pt—upper bound on production of product p in pe-

riod t.

1.1.3. Decision Variables.
hpt—inventory of product p at the end of period t ∀(p

√ P, t √ T).
xpt—production of product p during period t ∀(p

√ P, t √ T).
ypt—1 if xpt ú 0; 0 otherwise ∀(p √ P, t √ T).

1.1.4. Formulation.
(Problem MLCLSP)

min (v x / w h / s y ) (1)∑ ∑ ∑ pr pt pt pt pr pt
t√T p√P r√R

subject to

h / x 0 h Å d / k x∑p(t01) pt pt p(t/1) pj j(t/1)
j√Sp

∀ (p √ P, t Å 1, . . . , T 0 1), (2)

Ph / x Å H ∀(p √ P), (3)p(T01) pT p

(a x / f y ) ° c ∀(r √ R, t √ T), (4)∑ pr pt pr pt rt
p√P

x ° Vx y ∀(p √ P, t √ T), (5)pt pt pt

x , h ¢ 0 ∀(p √ P, t √ T), (6)pt pt

P Ph ° h ° H ∀(p √ P), (7)p p0 p

y √ {0, 1} ∀(p √ P, t √ T). (8)pt

The objective function (1) minimizes the total pro-
duction, setup, and inventory carrying cost over the
planning horizon. Constraint set (2) guarantees flow for
end items (when Sp Å M) and work in process. Con-
straint set (3) sets the minimum inventory level at the
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end of the planning horizon to support production in
periods beyond the planning horizon. Constraint set (4)
preserves capacity feasibility in each period. Constraint
set (5) links the production and setup variables.

1.2. Background Literature
The literature on lot sizing is vast, and therefore an ex-
haustive overview here is neither feasible nor desirable.
A recent overview of the lot sizing literature is given in
Kuik et al. (1994). Bahl et al. (1987) and Maes et al. sum-
marize efforts for all classes of lot sizing problems,
while Harrison and Lewis (1996) provide an extensive
review of lot sizing procedures for the multistage,
multi-item case.

In this section we discuss a limited number of articles
to allow the reader to position our work in relation to
the literature. There are two fundamentally different ap-
proaches to solving MLCLSP. The first is the optimiza-
tion approach, which seeks optimal solutions, and the
second is the heuristic approach, which seeks good so-
lutions and tests their quality empirically. Helber (1995)
separates the heuristic procedures into three classes: de-
composition approaches, stochastic local search proce-
dures, and Lagrangian-based procedures. We add a
fourth class to this list: LP-based procedures. These four
heuristic classes are not mutually exclusive, and tech-
niques can be used in concert effectively. For example,
combinations of decomposition approaches with sto-
chastic local search procedures are described in Helber
(1995), and combinations of LP-based procedures with
stochastic local search techniques are covered in Salo-
mon (1991) and Kuik et al. (1993).

The optimization approaches are valuable because
typically they involve methods for finding strong lower
bounds. The research stream initiated by Eppen and
Martin (1987) develops the shortest-route formulation
of the single-stage capacitated lot sizing problem
(CLSP), where the linear programming relaxation pro-
vides stronger lower bounds than the standard formu-
lation of Billington et al. (1983). Tempelmeier and Hel-
ber (1994) extend this shortest-route formulation to
MLCLSP. Pochet and Wolsey (1991) look at both un-
capacitated and capacitated (single resource) multi-item
problems having either a single-stage or a multistage
general structure. They find near-optimal solutions by
using the shortest-route formulation and adding valid

inequalities that, in principle, can be automatically
generated by a mathematical programming software
package.

Some optimization approaches use Lagrangian relax-
ation to generate strong lower bounds. Diaby et al.
(1992a) solve a single level problem with a single ca-
pacitated resource (labor), setup costs, and setup times.
They use Lagrangian relaxation with subgradient opti-
mization to generate lower bounds, followed by a
branch-and-bound algorithm to locate the optimal so-
lution. Their empirical tests on randomly generated
problems show that capacity constraint relaxations pro-
duce better lower bounds than do demand constraints
relaxations. Diaby et al. (1992b) use the same technique
to locate near-optimal solutions to ‘‘very large scale’’
single-stage capacitated problems with setup times.

The first group of heuristic procedures, decomposi-
tion approaches, ignore the multilevel structure of
MLCLSP and solve a sequence of CLSPs. Blackburn and
Millen (1982) develop a decomposition procedure that
accounts for the multilevel nature of the problem im-
plicitly by modifying setup and holding costs. They
consider uncapacitated pure assembly systems with
constant demand, infinite time-horizon, and setup costs,
and they solve these problems with an existing single-
level lot sizing algorithm. Heinrich and Schneeweiss
(1986) extend the method to general assembly systems,
nonconstant demand, and finite time-horizon.

Alternatively, Tempelmeier and Helber (1994) focus
on lot sizing with general assembly structures, multiple
constrained resources, and nonzero setup costs (no
setup times). They use the cost adjustment procedures
of Blackburn and Millen (1982) and Heinrich and
Schneeweiss (1986) to account for multiple production
levels implicitly, and then use the heuristic technique
first proposed by Dixon and Silver (1981) to solve a se-
quence of single-level capacitated problems. The final
stage of the algorithm uses a smoothing heuristic to re-
store feasibility. The heuristic’s performance was tested
first on four sets of small problems, where optimal so-
lutions were available, and the heuristic performed well
relative to optimal solutions (reported deviations from
optimality for the four problem sets were 4.87 percent,
3.79 percent, 2.21 percent, and 2.44 percent). The heu-
ristic was also tested on a set of large problems, where
optimal solutions were not available, and heuristic



KATOK, LEWIS, AND HARRISON
Lot Sizing in General Assembly Systems

862 MANAGEMENT SCIENCE/Vol. 44, No. 6, June 1998

3b2a 0007 Mp 862 Tuesday Jun 16 01:26 PM Man Sci (June) 0007

solutions were reported to be between 2 percent and 26
percent above strong lower bounds that were computed
using an extension of the Eppen and Martin (1987)
method.

Several heuristic approaches to lot sizing use La-
grangian relaxation. Billington et al. (1986) examine the
multi-item, general assembly structure problem with
setup costs, setup times, and a single constrained re-
source. They use a branch-and-bound strategy with La-
grangian relaxation to solve subproblems, followed by
a smoothing procedure to eliminate infeasibilities.

Trigeiro et al. (1989) consider the single-level lot siz-
ing problem with setup costs, setup times, and a single
constrained resource. They use Lagrangian relaxation of
the capacity constraints to decompose the problem into
uncapacitated single-item problems, which are then
solved by dynamic programming. A heuristic smooth-
ing procedure is used as the last stage to construct fea-
sible production plans.

Tempelmeier and Derstroff (1996) present another
approach to the MLCLSP. They use Lagrangian relax-
ation of the multilevel inventory balancing constraints
and capacity constraints, and update Lagrangian mul-
tipliers using subgradient optimization to compute
lower bounds. Feasible solutions are constructed by a
heuristic finite scheduling procedure that shifts produc-
tion away from overloaded periods. The procedure is
tested extensively using small and large problems, with
and without setup times. The presence of setup times
does not appear to affect the algorithm’s performance.
Solutions to small problems are, on average, very close
to optimal (reported deviation from optimality is 1.47
percent for problems without setup times and 1.35 per-
cent for problems with setup times), while solutions to
large problems are compared to tight lower bounds
computed by Lagrangian relaxation (reported deviation
from lower bound in percentage of upper bound is
about 17 percent for problems without setup times and
16.5 percent for problems with setup times).

Stochastic local search procedures, the third class of
heuristic solution methods, include simulated anneal-
ing, tabu search, genetic algorithms, and evolution strat-
egies. Salomon (1991) and Helber (1995) overview and
compare some of these methods, and Kuik and Salomon
(1990) provide a detailed discussion of simulated
annealing-based methods. Helber (1995) compares

methods involving decomposition, stochastic local
search, decomposition and stochastic local search, and
the Lagrangian based procedure of Tempelmeier and
Derstroff (1996). He finds that procedures using simu-
lated annealing locate solutions with the best average
quality, but require so much computational effort that
they could be tested only on problem sets containing
small-scale problems. A procedure combining evolu-
tion strategy with decomposition performed the best on
the medium-sized problems. Because of the amount of
computational effort required, the only two methods
that could be used on large-scale problems were pure
decomposition and the Tempelmeier and Derstroff heu-
ristic. The Tempelmeier and Derstroff heuristic, on av-
erage, used the least CPU time in all three problem sets
(small, medium, and large-scaled) while locating solu-
tions that were, on average, almost as good as or better
than solutions located by the pure decomposition al-
gorithm.

The fourth group of heuristic approaches involves
various LP relaxations of a mixed integer programming
formulation of the MLCLSP. Maes et al. (1991) present
three LP-based heuristics for solving multi-item, mul-
tistage lot sizing problems with multiple constrained re-
sources, setup costs, and no setup times. These three
heuristics start with a solution to the LP relaxation of
the problem and solve sequences of LP restrictions until
an integer solution is found. Heuristic performance is
tested extensively via small random test problems with
serial assembly requirements and the procedures are
found to perform quite well. There is, however, a trade-
off between the quality of solutions and the computa-
tional effort, for the best performing heuristic requires
branch-and-bound as the last step of the algorithm. Sal-
omon (1991) and Kuik et al. (1993) compare the
performance of these heuristics to methods using sim-
ulated annealing and tabu search, using randomly gen-
erated problems. They find that simulated annealing
and tabu search perform better than pure LP-based heu-
ristics, but the performance of these heuristics can be
improved by incorporating some elements of tabu-
search and simulated annealing into them.

Harrison and Lewis (1996) describe the Coefficient
Modification Heuristic (CMH), which finds excellent
solutions to multi-item, multistage lot sizing problems
with multiple constrained resources and serial assembly
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systems. The CMH is specifically designed to handle
setups that consume capacity (setup times) and as-
sumes that the setup costs are small enough to be ig-
nored. This algorithm exploits the model’s special struc-
ture by repeatedly solving small LP restrictions of the
original problem. It implicitly accounts for the capacity
consumed in setups by modifying the technological co-
efficients of certain variables in these restrictions. Solu-
tion quality is evaluated using Optimization Subroutine
Library (OSL) (IBM 1991) by first comparing heuristic
and optimal solutions for a set of small problems. The
heuristic finds solutions that are extremely close to op-
timal in small fractions of the time required by OSL. The
heuristic is also tested on sets of medium-sized prob-
lems, and it finds better quality solutions than time-
truncated OSL runs with far less computational effort.

In this paper we extend the Coefficient Modification
Heuristic of Harrison and Lewis to handle setup costs
and general assembly structures. The heuristic consists
of two stages. In a manner similar to Harrison and
Lewis, the first stage solves a sequence of related linear
programming problems, iteratively modifying techno-
logical and objective function coefficients to generate a
good initial solution. The second stage solves a se-
quence of restrictions of the linear programming relax-
ation of the MLCLSP to improve first-stage solution
quality while preserving feasibility. We outline the de-
velopment of this solution framework in §2. In §3 we
evaluate the heuristic’s performance with two sets of
randomly generated test problems. We first compare
our method’s solutions to optimal plans for small prob-
lems to gain an understanding of heuristic solution
quality relative to optimal. We also test our algorithm
on medium-scale problems to evaluate algorithm per-
formance in more realistic situations. In this latter case
we do not compare heuristic and optimal solutions,
since the medium-scale problems are too difficult to
solve to optimality. Instead, we compare heuristic plans
to time-truncated Optimization Subroutine Library
(OSL) solutions.

2. The Heuristic Algorithm
2.1. Motivation
In this section we formally describe the Coefficient
Modification Heuristic with Cost Balancing and Setup

Reduction (CMHBR). This algorithm, just as the CMH
in Harrison and Lewis, utilizes the fact that each binary
variable in MLCLSP is linked to a continuous variable
in such a way that either both must be positive or zero.
This special structure, discussed in detail in §2.2, guar-
antees that if we fix the binary variables at particular
values, the resulting restriction of MLCLSP is an LP that
has fewer variables and constraints than MLCLSP.

The first stage of the algorithm is a version of CMH,
modified to account for the objective function values of
the setup variables and to determine solutions in which
the total setup cost is close to the total inventory carrying
cost. We know that the uncapacitated single stage, single
product, constant demand rate problem has the property
that the total inventory cost equals the total setup cost at
optimality (see Silver and Peterson 1985). Although this
property does not hold in more complex cases, such as
this one, our computational experience has shown that in
many test problems the ‘‘balanced’’ solutions have lower
objective function values than ‘‘unbalanced’’ solutions.
We incorporate this observation into our algorithm.

The second stage of the algorithm improves the first
stage solution by solving a series of LP restrictions of
the original problem. If feasibility is lost at any point
during the second stage, the algorithm attempts to re-
store it, and if unable to do so, reverts to the best feasible
solution found. Therefore, once a feasible solution is
found at the end of the first stage, final solution feasi-
bility is guaranteed.

2.2. Reformulation of the Problem
The MLCLSP has two types of continuous variables—a
set with corresponding binary variables linked to them
and a set without linked binary variables—and three
types of constraints. The first constraint block contains
equations with both continuous and binary variables,
the second block contains constraints with only contin-
uous variables, and the third block contains linking con-
straints. We note that our heuristic procedure is not re-
stricted to MLCLSP, but can be applied to a wider class
of problems with this special structure. The reader
should note, however, that in the framework of the
MLCLSP, the set of continuous variables with corre-
sponding binary variables includes the production vari-
ables xpt, and the set of continuous without correspond-
ing binary variables includes the inventory variables hpt.
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Similarly, in the context of the MLCLSP, the block of
constraints with both continuous and binary variables
includes capacity constraints (4), the block of equations
with only continuous variables includes inventory re-
lated constraints (2) and (3), and the block of linking
constraints includes Equation (5).

We adopt the notation of Harrison and Lewis to rep-
resent the problem MLCLSP by the following general
formulation.

2.2.1. Index Sets.
I1—Index set of general constraints that contain both

continuous variables and binary variables I1 Å {iÉiÅ 1,
. . . , I1} (Equation (4) in MLCLSP).

I2—Index set of general constraints that contain only
continuous variables I2 Å {iÉi Å I1 / 1, . . . , I1 / I2}
(Equations (2) and (3) in MLCLSP).

I3—Index set of linking constraints between contin-
uous variables and binary variables I3 Å {iÉi Å I1 / I2

/ 1, . . . , I1 / I2 / I3} (Equation (5) in MLCLSP).
I—Index set of all constraints I Å I1 < I2 < I3.
J—Index set of all continuous variables J Å { jÉ j Å 1,

. . . , J} (production and inventory variables xpt and hpt

in MLCLSP).
Jy—Index set of continuous variables that have a cor-

responding binary (setup) variable Jy ⊆ J (production
variables xpt in MLCLSP). Note that since all binary
variables in the model are linked to continuous vari-
ables, Jy also serves as the index set for binary variables.

2.2.2. Data.
—coefficient of the ith constraint for the jth variableklaij

in block kl.
—objective function coefficient for variable j, j √ Jlcj

in block l.
—right-hand side of the ith constraint for block k.kbi

xV j—upper bound for variables j, j √ J.

2.2.3. Decision Variables.
xj—continuous variables, j √ J.
yj—binary (setup) variables, j √ Jy.

2.2.4. Formulation.

1 2min c x / c y (9)∑ ∑j j j j
j√J j√Jy

subject to

11 12 1 1a x / a y Å b , i √ I , (10)∑ ∑ij j ij j i
j√J j√Jy

21 2 2a x Å b , i √ I , (11)∑ ij j i
j√J

x 0 Vx y ° 0, j √ J , (12)j j j y

0 ° x ° Vx , j √ J, (13)j j

y √ {0, 1}, j √ J . (14)j y

This structure, represented graphically in Figure 1, is
not limited to the lot sizing problem of §1.2.

2.3. Details of the Algorithm
Harrison and Lewis (1996) note that if we fix the setup
variables at yj Å ŷj in Problem MLCLSP, we can form
the following LP restriction:

1 2min c x / c Py (15)∑ ∑j j j j
j√J j√Jy

subject to
11 12 1 1a x / a Py Å b , i √ I , (16)∑ ∑ij j ij j i

j√J j√Jy

21 2 2a x Å b , i √ I , (17)∑ ij j i
j√J

0 ° x ° Vx , j √ J. (18)j j

This restriction is much smaller than MLCLSP be-
cause it contains no binary variables or linking con-
straints, and since the second term in the objective func-
tion is constant, it can be ignored during model solu-
tion.

We implicitly approximate the impact of setups in a
method parallel to Harrison and Lewis. For any value
of xj we modify the technological coefficients to ac-11aij

count for the resource consumption during setups
(setup times) while simultaneously modifying the ob-
jective function coefficients to approximate the im-1cj

pact of the setups on the objective function (setup costs).
The next section presents the details of exactly how
these coefficients are modified. If we call the modified
technological coefficients and the modified objective11

Iaij

function coefficients the following formulation (LPR)1
Ic ,j

approximates the impact of setups in MLCLSP.
(Problem LPR)

1min Ic x (19)∑ j j
j√J

subject to
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Figure 1 Problem Structure

11 1 1
Ia x Å b , i √ I , (20)∑ ij j i

j√J

21 2 2a x Å b , i √ I , (21)∑ ij j i
j√J

0 ° x ° Vx , j √ J. (22)j j

2.3.1. The Coefficient Modification Subroutine
with Cost Balancing (CMSB). Since MLCLSP, unlike
the problem posed in Harrison and Lewis, contains co-
efficients simply solving a sequence of LPR instances2c ,j

with modified coefficients underestimates the impact of
setups and consequently yields suboptimal solutions.
Therefore, the basic modification procedure outlined in
the preceding paragraph must be adjusted to ‘‘push’’
the LPR solutions toward having the ‘‘right’’ number of
setups.

The Coefficient Modification Subroutine with Cost
Balancing (CMSB) attempts to anticipate which contin-
uous variables, and hence corresponding binary vari-
ables, should be basic in the final solution by repeatedly
solving instances of LPR, starting with an initial value
of ŷj Å 0. The algorithm assumes that the temporarily
determined level of a continuous variable is optimal,
and proportionally allocates the fixed setup times and
costs over the continuous variables. It then further mod-
ifies the objective function coefficients to generate a bal-
anced solution, as discussed in §2.1.

Each time LPR is solved, the coefficients of xj in I1

are modified to reflect the values of xj and ŷj . Each
constraint coefficient is eligible to be modified at
most once while each objective function coefficient
is eligible to be modified at most twice. These param-
eters proved to be most successful in our empirical
tests. When we allowed each objective function co-
efficient to be modified only once, the algorithm was
unable to locate a feasible solution in many of the
test cases. Conversely, allowing the coefficients to be
modified more times increased the computational
burden without consistently yielding better quality
solutions.1

We introduce additional notation to describe the
CMSB algorithm in greater detail. Let

*x1(k)

x* Å :(k) 3 4*xJ(k)

be the optimal solution to the kth subproblem. We can

1 In 11 instances of our test problems (7 instances of problem 7 and 4
instances of problem 11) the CMSB was unable to locate a feasible
solution given those default settings. After we allowed each constraint
coefficient to be modified twice and each objective function coefficient
to be modified four times, feasible solutions were located.
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determine the total setup cost and the total inventory
carrying costs2 associated with Letx* .(k)

1 *Cost H Å c x∑ j j(k)
j√J

be the total inventory carrying cost associated with
Also letx* .(k)

2Cost S Å c∑ j
*j√J ,x x0y j(k)

be the total setup cost associated with We can nowx* .(k)

define a function that captures the relationshipe(x* )(k)

between the setup cost and the inventory carrying cost
in such a way that the more unbalanced the solution,
the higher the value of For example, lete(x* ).(k)

ÉCost H 0 Cost SÉ
e Å e(x* ) Å(k) (k) Cost H / Cost S

be the solution ‘‘imbalance’’ (the numerator) as a per-
centage of the total cost.3

Algorithm 1 provides a formal description of the Co-
efficient Modification Subroutine with Cost Balancing,
using the following notation.

k: cumulative number of LPR subproblems solved.
kmax: maximum number of LPR subproblems to be

solved (fixed externally to a large number—kmax Å 1031

in our case).
mod A( j): the number of times coefficient was11aij

modified.
mod C( j): the number of times coefficient was1cj

modified.
m: number of variables that have had their coeffi-

cients modified in the current iteration.

2 To provide intuition, we refer to the portion of the objective function
associated with binary variables as the true ‘‘setup cost’’ and to the
portion associated with continuous variables as the true ‘‘holding
cost.’’ These labels are accurate in the framework of the MLCLSP, but
the reader should keep in mind that these costs have a different inter-
pretation in other applications.
3 Our experience is that the exact functional form of e is not very im-
portant, so long as e Å 0 when Cost H Å Cost S, and e¢ 1 when Cost
HÅ 0 or Cost SÅ 0. We solved our test problems with several different
functional forms of e, and there was no consistent difference in solu-
tion quality. Algorithm 1 and the results we report in §3 use the func-
tional form of e noted above.

Algorithm 1 The Coefficient Modification Subroutine
with Cost Balancing (CMSB)
1. m R 1, modA( j) R 0, ∀ j √ Jy, modC( j) R 0, ∀ j √ Jy,

e(0) R 1, k R 0.
2. while (m x 0) and (k ° kmax) do

solve LPRk

m R 0
forall i √ I1 and j √ Jy ] xj ú 0 and modA( j)
õ 1 and modC( j) õ 2

R R

11 12 1 2* *a 1` /a c 1` /cij j(k) ij j j(k) j11 1
Ia ; Icij j* *` `j(k) j(k)

if (CostH ú CostS) then Å 0 e(k))modC( j);1 1
Ic Ic (1j j

else Å / e(k))modC( j)1 1
Ic Ic (1j j

modA( j) R modA( j) / 1; modC( j) R modC( j)
/ 1; m R m / 1

endfor
forall j Jy and modC( j) õ 2√/

if (CostH ú CostS) then Å / e(k))modC( j);1 1
Ic Ic (1j j

else Å 0 e(k))modC( j)1 1
Ic Ic (1j j

modC( j) R modC( j) / 1; m R m / 1
endfor
k R k / 1

endwhile
3. forall i √ I1 and j √ J

R R 011 11 1 1 12
Ia a ; Hb b ( a Pyij ij i i j√J ij jy

if Å 0 then xV j Å 0*xj(k)

endfor
Solve LPR
if LPR is infeasible STOP

Step 1 initializes all the variables and ensures that
Step 2 is executed at least once.

Step 2 repeatedly solves the restricted version of
MLCLSP, modifying the coefficients of nonzero deci-
sion variables to account for setups and to balance setup
and holding costs. CMSB starts with a complete relax-
ation of the linking constraints. The first time LPR is
solved, the solution completely ignores the setups. Sub-
sequently, the modified coefficients and implicitly11 1

Ia Icij j

take setups into account by allocating the fixed setup
costs and times across the variable production costs and
the variable processing times. Since the implied values
of the setup variables change for each iteration of Step
2 (for each k), at the end of Step 2 a feasible solution is
likely to emerge if the adjusted setup times adequately
reflect the true loss of capacity due to setups. The mech-
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anism for locating feasible solution is the same one used
in Harrison and Lewis (1996). A feasible solution at this
point is not guaranteed. Step 2 continues until either no
coefficients are left to be modified (modA( j)Å 1 ∀ j and
modC( j) Å 2 ∀ j), or the maximum allowable number
of LPR subproblems has been solved (k Å kmax).

Step 3 checks feasibility and attempts to regain it, if
necessary. It restores the original coefficients ad-11a ,ij

justing the RHSs of Equation (20) to reflect the entire
capacity loss due to setups, fixes all the nonbasic vari-
ables at their lower bounds, and by solving LPR at-
tempts to switch production among basic variables.

Step 3 does not guarantee a feasible solution (recall
that the feasibility problem of CLSP is NP-complete). If
a feasible solution cannot be located at this point, the
algorithm terminates without a feasible solution. Nev-
ertheless, our algorithm has located a feasible solution
to each of our test problems.

2.3.2. Simple Setup Reduction Subroutine (SSR).
The purpose of CMSB is twofold. First, it attempts to
find a feasible solution to MLCLSP. Second, as ex-
plained in §2.1, it tries to find a solution where the total
setup cost and the total inventory carrying cost are
close. The second part does not guarantee a good so-
lution, however, since the optimal solution to a capaci-
tated problem may be extremely unbalanced (as was
true for several of our test problems). Since the CMSB
alone may be unable to generate high quality solutions,
our algorithm includes a second stage to refine CMSB
solutions.

The first portion of the refinement process is the Sim-
ple Setup Reduction Subroutine (SSR). This subroutine
sequentially fixes each basic variable (xk) at its lower
bound (0), thereby eliminating a setup, and solves the
resulting LP restriction. Of course, when the resulting
LP is solved, some of the nonbasic variables may be-
come basic and therefore add setups in different peri-
ods. Let us call this LP restriction Problem LPRRk. It is
identical to Problem LPR with the additional constraint
that a single variable (xk) is fixed at 0. We keep the mod-
ified coefficients and generated by CMSB, in place1 11

Ic Ia ,j ij

of the original coefficients and because SSR deter-1 11c aj ij

mines whether the CMSB solution can be improved by
eliminating a single setup and placing no further restric-
tions on the problem. Since the CMSB calculated mod-

ified coefficients and to account implicitly for set-1 11
Ic Iaj ij

ups, we preserve these coefficients in the SSR to ensure
that solutions SSR generates also account for setups.
(Problem LPRRk)

1min Ic x (23)∑ j j
j√J

subject to

11 1 1
Ia x Å b , i √ I , (24)∑ ij j i

j√J

21 2 2a x Å b , i √ I , (25)∑ ij j i
j√J

0 ° x ° Vx , j √ J, (26)j j

x Å 0. (27)(k)

Algorithm 2 Simple Setup Reduction Subroutine
(SSR)
forall k √ Jy ] xk ú 0

solve LPRRk

if better solution found save the values of the
decision variables in the new solution

endfor
Algorithm 2 summarizes the Simple Setup Reduction

subroutine. The subroutine starts with the solution gener-
ated by CMSB. It then sequentially fixes to a value of 0,
each continuous basic variable with a corresponding binary
variable, and solves the corresponding LPRRk. If the SSR
subroutine finds a solution superior to the best one it has
located so far, it saves the values of the decision variables
in that solution and uses them in subsequent subproblems.

2.3.3. Restricted Setup and Inventory Reduction
Subroutines (RSR) and (RIR). The SSR is a very sim-
ple method to eliminate setups—simply remove one
setup at a time, and see if a better solution emerges. In
problem LPRRk, only a single variable (xk) is forced to
its lower bound. The purpose of the Restricted Setup
Reduction (RSR) and the Restricted Inventory Reduc-
tion (RIR) subroutines is to fine-tune an existing solu-
tion further by switching production among several ad-
jacent variables. Both routines start by fixing all non-
basic variables at their lower bounds. Then, the RSR
subroutine sequentially forces each basic variable (xk) to
its lower bound (0), eliminating a setup, while releasing
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the variables on both sides of xk
4 (even nonbasic vari-

ables). Solving the resulting LP restriction determines
whether switching the production represented by the
variable xk to one of the earlier or later periods yields a
better solution. The RIR subroutine sequentially re-
leases each nonbasic variable (xk) and the variables on
both sides of it and solves the resulting LP restriction.
This procedure permits xk to become basic, in case doing
so will yield a better solution.

The RSR and RIR are similar to SSR, except that many
more variables are fixed at their lower bounds in each
subproblem. The only nonbasic variables in the current
solution not fixed at their lower bounds are the vari-
ables adjacent to xk (and xk itself in RIR). This set of fixed
variables almost determines the basis and makes it pos-
sible to restore the original coefficients and Since1 11c a .j ij

these original coefficients represent the true costs and
the true resource consumption, we expect restoring
them to yield superior solutions. In order to account for
the capacity consumed by the setups we modify the
right-hand sides to account for them explicitly by letting

1 1 12
Hb Å b 0 a Py .∑i i ij j

j√Jy

For every k, we define a new set,5

M Å {mÉm √ J ] x Å 0} 0 {k 0 a, k 0 a / 1, . . . ,k y m

k 0 1, k, k / 1, . . . , k / a},

containing all nonbasic variables, except those within a

range to xk. In the RSR subroutine, where xk is basic, we
also add xk to MK. In solving the test problems we used
a Å 3, but solution quality does not seem to be very
sensitive to the value of a, as long as a is small. In fact,
using a Å 2 or a Å 4 did not affect the solution quality
in our test problems. It is important, however, for a to

4 The phrase ‘‘on both sides of xk’’ assumes an order in the set J. What
constitutes a reasonable order may differ in different applications. Our
test problems are in the context of MLCLSP, and here adjacent vari-
ables are variables related to the same product in adjacent periods.
Intuitively, this order should be important to the effectiveness of RSR
and RIR subroutines.
5 For k õ a, Mk Å {mÉm √ Jy ] xm Å 0} 0 {1, 2, . . . , k 0 1, k, k / 1,
. . . , k / a}. For k ú Jy 0 a, Mk Å {mÉm √ Jy ] xm Å 0} 0 {k 0 a, k
0 a / 1, . . . , k 0 1, k, k / 1 ···, Jy}, where Jy is the cardinality of Jy.

be small, even in large problems.6 Largea releases many
variables, making problem LPRR(MK) very similar to
problem LPRRk and making RSR very similar to SSR.

The model solved in the RSR and RIR subroutine is:
(Problem LPRR(MK)

1min Ic x∑ j j
j√J

subject to

11 1 1a x Å Hb , i √ I ,∑ ij j i
j√J

21 2 2a x Å b , i √ I ,∑ ij j i
j√J

0 ° x ° Vx , j √ J,j j

x Å 0, m √ M .k k

LPRR(MK) differs from LPRRk in three ways. First, the
modified coefficients are restored to their original val-
ues. Second, the right-hand sides are modified to ac-
count for setups explicitly. Finally, more variables are
fixed at their lower bounds. Algorithms 3 and 4 for-
mally present the RSR and the RIR subroutines.
Algorithm 3 Restricted Setup Reduction (RSR)
forall k √ Jy ] xk ú 0

Mk Å Mk < k
solve LPRR(Mk)
if better solution found save the values of the
decision variables in the new solution
Mk Å Mk 0 k

endfor
Algorithm 4 Restricted Inventory Reduction (RIR)
forall k √ Jy ] xk Å 0

solve LPRR(Mk)
if better solution found save the values of the
decision variables in the new solution

endfor
2.3.4. Restoring Feasibility.

Algorithm 5 Restoring Feasibility Subroutine (RF)
forall j √ Jy ] xk Å 0

xV j Å 0
endfor
solve LPR

6 We used the same value of a in our small test problems and our
medium-sized test problems.
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Figure 2 Flow Chart

The final part of the algorithm’s second stage is very
similar to Step 3 of Algorithm 1. It works to restore fea-
sibility if lost during the SSR, RIR, or RSR subroutines,
and Algorithm 5 describes these steps. This procedure
restores the technological coefficients to their original
values, adjusts the RHSs to account to setups, fixes all
the nonbasic variables at 0, and solves LPR. If this strat-
egy fails to restore feasibility, the routine terminates
with the best feasible solution found so far.

2.3.5. Summary: The Entire Algorithm. Figure 2
summarizes the entire algorithm—the Coefficient Mod-
ification Heuristic with Cost Balancing and Setup Re-
ductions (CMHBR). The CMSB subroutine provides an
initial feasible solution. After the CMSB subroutine, the
algorithm performs the SSR subroutine, checks feasibil-
ity, and restores feasibility if necessary. The last part of
the algorithm fine-tunes the solution with a sequence of
RSR and RIR subroutines.

3. Computational Results
In this section we test the performance of CMHBR rel-
ative to OSL Version 1.2 (IBM 1991). OSL is a commer-
cially available code, and examining our algorithm’s ef-
fectiveness relative to OSL provides good benchmarks.
First, we compare CMHBR and OSL performance via a
series of small-scale random problems, which are
solved to optimality using OSL with default settings, to
see how CMHBR performs in a variety of environments.
We then focus on medium-scale random instances to
assess CMHBR performance in more realistically sized
cases. All runs were executed on an IBM RS/6000 under
IBM AIX FORTRAN Version 2.3.0 Compiler/6000 with
compiler optimization level 3. We used OSL for solving
all LP restrictions in the CMHBR algorithm.

3.1. Small-Scale Random Test Problems
We designed the first group of test problems to provide
known benchmarks for evaluating CMHBR perfor-
mance in a variety of environments. Twelve basic pro-
duction planning problems were generated. In each case
two end-products must be assembled from various
groupings of intermediate items with part commonality
over a four- to six-period planning horizon. Figure 3
summarizes the randomly generated bills of material
(BOMs) for these problems. One unit of any product is
required to manufacture this product’s successor. De-
mand for the end-items varies uniformly from 1 to 10
units per period while external demand for subassem-
blies is prohibited. Initial finished goods and work-in-
process inventories range from 1 to 10 units and from 5
to 15 units, respectively, and ending stock positions are
required to match the initial ones to support production
requirements in periods beyond the planning horizon.
No backorders are allowed. Inventory holding costs
range from 1 to 100 per unit for all items. Two resources
limit system throughput. We show the assignments of
resources to products in the last two columns of Table
1. Note that both resources are needed to process at least
1 product in 8 of the 12 problems.

Generally, three parameters affect the difficulty of a
production planning problem: cumulative capacity us-
age, the ratio of setup times to processing times, and the
ratio of setup costs to inventory carrying costs. In this
experiment we systematically vary these three problem
characteristics for the twelve groups of test cases to
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Figure 3 BOM Structures: Small Problems

Table 1 Small Random Test Problems Characteristics: Products and Resources

Problem
Number

Number
of

Periods

Per Unit
Average

End
Item

Demand

Per Unit
Average

Intermediate
Item

Demand

Assignment of Resources to
Products

Resource 1 Resource 2

S1 4 5.2 13.1 6, 7, 9, 12 1, 4, 8, 12
S2 4 5.4 14.4 1, 3, 6, 10 2, 8, 9
S3 4 5.2 12.6 4, 5, 7, 14 2, 4, 6, 9, 12
S4 5 5.2 10.3 1, 3, 5, 8 3, 9
S5 6 6.0 14.0 2, 3, 6 3, 7, 10
S6 4 4.6 6.7 6, 16 2, 3, 8, 10, 11, 14
S7 6 5.6 13.2 2, 3, 10 3, 5, 7
S8 5 5.2 15.5 1, 6 1, 3, 6, 8
S9 4 4.6 8.7 9, 11, 15 2, 4, 5, 7, 10, 14, 15
S10 5 5.8 9.5 3, 5, 7, 11 2, 9
S11 4 5.2 12.6 1, 11, 14 3, 5, 8, 9
S12 5 5.7 15.1 8 2, 3, 6, 8, 10
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Table 2 Highly Capacitated Small Problems Characteristics

Problem Number

Capacity
Needed for

Setups
(Percentage)

10 50

Capacity
Needed for
Production

(Percentage)

10 50

Lot for
Lot

Solution
Feasible?

10 50

S1 48.36 79.58 46.64 15.42 N Y
S2 66.87 87.53 28.13 7.47 N N
S3 50.88 80.69 44.12 14.31 N Y
S4 59.96 84.99 35.04 10.01 N Y
S5 54.73 81.65 40.27 13.35 N N
S6 63.25 86.23 31.75 8.77 N Y
S7 50.53 80.76 44.47 14.24 N N
S8 57.38 83.94 37.62 11.06 N Y
S9 60.90 85.43 34.10 9.57 N Y
S10 60.34 85.10 34.66 9.90 N N
S11 47.39 78.42 47.61 16.58 N N
S12 40.19 73.16 54.81 21.84 N N

Average 55.06 82.29 39.94 12.71

Table 3 Small Random Test Problems Model Characteristics

Problem
Number

Number of
Rows

Number of
Columns

Number of
Binary Variables

Density
(Percent)

S1 112 138 28 2.16
S2 99 121 28 2.43
S3 129 159 32 1.90
S4 108 140 25 2.18
S5 125 163 26 1.88
S6 142 176 32 1.65
S7 125 167 30 1.91
S8 88 114 20 2.76
S9 146 180 36 1.66
S10 128 166 30 1.80
S11 125 155 28 1.97
S12 108 140 25 2.18

create specific instances for analysis. First, the under-
lying production system is either capacitated (with the
cumulative capacity usage of 95 percent) or uncapaci-
tated (with the cumulative capacity usage of 50 per-
cent). We define cumulative capacity usage as in Trigeiro
et al. (1989), by dividing the sum of the cumulative pro-
duction requirements and the cumulative lot-for-lot
setup requirements by the cumulative capacity.7 Al-
though the cumulative capacity usage of 95 percent may
not fit everyone’s definition of ‘‘highly capacitated,’’ our
results do provide a useful benchmark.

Second, the range for the randomly determined setup
times is 10 times the processing time range in the short
setup treatments (10), while the setup times in the long
setup treatments (50) are 5 times longer than the short
setup treatments’ setup times. Finally, the ratio of setup
costs to holding costs is either low or high, where the
range of setup costs in the high setting is 10 times that
in the low setting. Setup costs range from 500 to 1000

7 Trigeiro et al. (1989) show that ‘‘even if the cumulative lot-for-lot
capacity usage (including setup time) does not exceed the cumulative
capacity available, a feasible solution may not exist,’’ and therefore the
lot-for-lot solution may not be feasible. For example, the lot for lot
solutions are feasible in only 25 percent of our capacitated test prob-
lems (see Table 2).

under low setup cost specifications and from 5000 to
10000 in high setup costs treatments. Given these char-
acteristics, 8 specific treatments are defined for each of
the 12 basic production planning cases, for a total of 96
individual lot sizing problems.

To complement the information in Figure 3, we sum-
marize the relevant characteristics for the twelve basic test
cases under analysis in Table 1. We provide some basic
information about the problem structures by noting the
number of time periods, the per-unit average end-item
demand per period, and per unit average intermediate
item demand per period. We also show the assignment of
resources to products. Table 2 provides additional infor-
mation about highly capacitated problems. It separates the
problems into treatments with short setup times (10) and
long setup times (50), and shows the percentage of capac-
ity needed for setups in every period with demand, the
percentage of capacity needed to satisfy demand, and
whether the lot-for-lot solution is feasible. Note that the
lot-for-lot solution is only feasible in 25 percent of the
problems. Table 3 summarizes characteristics of the re-
sulting mixed integer models.

These 12 basic problem instances represent the first
12 test cases for which the MIP formulation in §1.1 could
be solved to optimality in no more than 5000 CPU sec-
onds, for all 8 treatments, using OSL with default set-
tings. Each of the 96 problems was solved with the
CMHBR and with OSL. We report capacity usage infor-
mation for the capacitated problems (separated by the
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Table 4 Capacitated Small Problems—Capacity Usage

Problem
Number

Effective Utilization
Mean

(Percentage)

10 50

Average
Number of

Setups
(Percentage)

Percentage
of Periods
With Full
Capacity
Usage

UB 0 LB
UB

(Percentage)

Mean Time
Between
Orders

(In Periods)

S1 47.27 42.39 42.2 0.00 63.8 2.6
S2 48.31 43.30 42.7 9.38 57.4 2.8
S3 51.11 46.49 37.2 3.13 64.4 2.7
S4 44.48 31.94 41.4 10.00 46.4 3.6
S5 49.76 43.60 37.5 14.58 51.2 3.6
S6 49.60 52.25 54.2 21.88 58.7 2.4
S7 49.93 36.27 35.4 27.08 30.1 3.9
S8 42.68 32.31 31.3 17.50 48.3 3.6
S9 40.63 36.49 46.3 0.00 59.8 2.9
S10 58.29 39.90 49.4 25.00 47.4 3.2
S11 36.26 31.26 34.4 9.38 48.3 3.6
S12 51.99 42.37 36.2 30.00 29.1 3.5

Average: 47.53 39.88 40.7 13.99 50.5 3.2

setup time length, as in Table 2) in Table 4. We note the
effective mean utilization of the resources, the percent-
age of setups that occurred in the best solution (as a
fraction of the total potential number of setups) and the
fraction of the periods with at least one resource with
fully utilized capacity. We say that the capacity of a re-
source is fully utilized if any slack capacity of that re-
source is insufficient for a single setup. In 29 of the 48
capacitated test problems, both resources are bottle-
necks at some point in time. On average, only about 41
percent of the maximum potential number of setups are
actually taken. Since about 23 percent of the maximum
number of setups are inevitable (at least one set-up over
the planning horizon is required for every product if
any production is to take place), some batching is def-
initely occurring. We also report the percent difference
between the lower bound (LP relaxation of MLCLSP)
and the upper bound (the optimal solution) as a per-
centage of the upper bound ((UB 0 LB)/UB)—
MLCLSP has weak lower bound. The last column in
Table 4 shows the mean time between orders, measured
in time periods.

We compare the CMHBR and optimal solutions in
Table 5, where we report the average CPU time of the
first integer solution located by OSL, the average CPU
time of the optimal solution, and the average total time

required by OSL to prove optimality. All figures in Ta-
ble 5 are average values for the twelve basic cases.8 We
also note the average CPU time of the CMSB solution
(the first integer solution found by the heuristic), the
average CPU time of the best heuristic solution, and the
average total CPU time required by the heuristic. All
CPU times are expressed in seconds. Additionally, Ta-
ble 5 presents the average percent differences between
the objective values of the CMSB (the first heuristic fea-
sible solution) and the optimal integer solutions, de-
fined as 100 1 (CMSB Value—Optimal Integer)/Opti-
mal Integer, and the average percent differences be-
tween the objective values of the best heuristic solutions
and the optimal integer solutions, defined as 1001 (Best
Heuristic Value—Optimal Integer)/Optimal Integer.

These results suggest that CMHBR is a very good so-
lution method, for it finds good feasible solutions very
quickly. On average, heuristic solutions are about 4 per-
cent above optimal plans, but they are located in less than
one percent of the CPU time OSL needs to find the op-
timal solution. The CMHBR found optimal solutions for
6 percent of the cases. The relative difference between

8 Detailed information for all 96 individual test problems, as well as
the test problem data and the algorithm code, can be obtained directly
from the authors.
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Table 5 Small Random Test Problems: OSL and Heuristic Solutions Comparison

Problem Number
OSL First

Time
Optimal

Time
OSL Total

Time CMSB Time

CMSB Percent
Difference

with Optimal
CMHBR Best

Time
CMHBR Total

Time

Best Percent
Difference

with Optimal

S1 0.37 17.9 282.4 0.36 12.9 0.92 1.26 /2.2
S2 0.34 11.3 213.0 0.20 22.5 0.70 0.89 /7.1
S3 0.55 10.1 4205.0 0.41 13.0 1.33 1.58 /1.3
S4 0.31 5.8 62.6 0.31 23.2 0.66 1.04 /5.2
S5 0.48 744.2 2885.0 0.48 13.2 0.93 1.38 /2.5
S6 0.57 26.9 2412.7 0.33 21.7 1.31 1.90 /6.5
S7 0.47 61.9 521.4 0.55 14.8 1.03 1.35 /9.6
S8 0.24 3.7 18.2 0.30 20.4 0.70 0.91 /3.5
S9 0.56 366.7 6043.3 0.51 14.1 1.43 1.82 /3.6
S10 0.44 100.5 1867.8 0.49 22.3 0.99 1.53 /3.6
S11 0.36 17.2 82.2 0.37 20.9 0.86 1.17 /1.0
S12 0.29 5.9 25.0 0.38 11.8 0.72 1.16 /2.6

Average 0.41 114.3 1551.5 0.39 17.6 0.96 1.33 /4.1

CMHBR and optimal solutions was below 2.5 percent in
34 percent of the cases, between 2.5 percent and 5 percent
in 38 percent of the cases, between 5 percent and 10 per-
cent in 24 percent of the cases, and above 10 percent in 9
percent of the cases. We will briefly discuss cases where
the heuristic performed poorly in §4. The CMHBR found
an integer feasible solution in 100 percent of the cases.
So although occasionally the heuristic solutions are not
very good, they usually are quite close to optimal.

The CMHBR subroutines improve heuristic solution
quality with modest computational effort. CMSB plans
averaged 17.6 percent above optimal, but required
only 0.34 percent of OSL’s time to locate the optimal
integer solution. During the second phase of the heu-
ristic procedure, the SSR subroutine, decreased the rel-
ative difference with optimal by 40.1 percent, on av-
erage, after expending an additional 0.14 CPU seconds
(34.9 percent more time). These heuristic solutions av-
eraged 10.4 percent above optimal, but were located in
only 0.46 percent of OSL’s time. The final heuristic sub-
routines, the RSR and RIR, yielded the best heuristic
solutions (4.1 percent above optimal on average), de-
creasing the relative difference with optimal by 60.6
percent and using 0.44 additional CPU seconds (82.7
percent more time).

The experiment’s design allows us to examine the
impact of controlled problem characteristics on heuris-
tic performance. We use a matched pair t-test to control

for dependence of data within each problem set (see
Bickel and Doksum 1977). The number of matched
pairs for each hypothesis test is 48, which allows us to
invoke the Central Limit Theorem. We test the follow-
ing three hypotheses.

To assess the impact of cumulative capacity usage on
heuristic effectiveness, we test Hypotheses Ho against Ha.

HYPOTHESIS Ho. Capacity considerations for the range of
utilizations tested have no bearing on the performance of
CMHBR.

HYPOTHESIS Ha. CMHBR performs relatively better on
less capacitated problems.

We find no evidence to reject Ho, for the test statistic is
0.54 with a p-value of 0.2900; therefore, capacity utilization
does not seem to have an influence on the heuristic’s per-
formance for the range of utilizations tested in the paper.

We evaluate the importance of the magnitude of
setup times relative to processing times by testing null
hypothesis Ho against the two-sided alternative Ha.

HYPOTHESIS Ho. The ratio of setup times to processing
times has no bearing on the performance of CMHBR.

HYPOTHESIS Ha. The ratio of setup to processing times
impacts CMHBR performance.

Once again, we find no evidence to reject Ho with a test
statistic of 0.91 and a p-value of 0.3640. Therefore, the
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Table 6 Medium Random Test Problems Characteristics—Products

Problem
Number

Number of
Periods BOM Type

Number of
End Items

Number of
Interm.
Items

Number of
Levels

Per Unit End
Item

Average
Demand

Per Unit
Interm.

Item
Average
Demand

Average Per
Unit Setup

to Proc.
Time

Average Setup to
per Unit

Inventory
Carrying

M1 14 E 2 60 7 5.7 12.9 52.2 133.1
M2 19 E 2 56 6 5.6 12.2 51.9 108.1
M3 19 A 2 66 5 6.7 11.1 43.0 125.7
M4 14 A 2 74 5 5.4 10.5 51.2 102.3
M5 14 V 2 106 6 6.1 12.4 62.6 93.6
M6 14 H 2 80 6 4.8 10.6 53.5 88.4
M7 18 H 2 86 6 5.2 12.8 48.8 110.9
M8 15 V 2 44 4 5.9 7.8 46.3 99.2
M9 21 V 4 88 11 5.4 39.5 48.4 115.6
M10 22 E 5 78 11 5.6 21.8 53.1 107.6
M11 21 A 3 34 3 5.4 7.6 52.3 91.5
M12 13 V 4 38 3 4.7 10.2 44.7 107.1
M13 21 E 9 32 5 4.9 22.3 55.2 109.9
M14 16 E 3 52 3 13.9 19.1 51.5 84.0
M15 25 H 12 60 5 5.2 57.5 52.5 111.7

magnitude of setup times relative to processing times
does not impact heuristic effectiveness.

Finally, to explore the impact of setup costs, we test
Hypothesis Ho against the two-sided alternative Ha.

HYPOTHESIS Ho. The ratio of setup costs to inventory
carrying costs has no bearing on the performance of CMHBR.

HYPOTHESIS Ha. The ratio of setup costs to inventory
carrying costs impacts CMHBR performance.

Once again, we find no evidence to reject Ho with a test
statistic of 1.40 and a p-value of 0.1638. Therefore, the
magnitude of setup costs relative to inventory carrying
costs has no bearing on heuristic performance.

We are unable to find any evidence that the perfor-
mance that CMHBR is significantly affected either by the
tightness of capacity constraints or by the magnitude of
setup times and setup costs. Therefore, we conclude that
CMHBR performs consistently well in a variety of appli-
cations.

3.2. Medium-Scale Random Test Problems
Our second set of problems consists of 15 randomly
generated problems that possess characteristics of more
realistic production planning situations. Table 6 sum-
marizes the problem characteristics from the product

perspective, and Table 7 summarizes the problem char-
acteristics from the resource perspective. These lot siz-
ing problems schedule production for a random num-
ber of products across a 13- to 26-period planning ho-
rizon. The BOMs are randomly created to represent a
variety of different product structures. BOM height, as
suggested by the number of levels, is varied to create
short, medium, and tall assembly structures. Four types
of basic BOM forms are considered: ones with relatively
even numbers of components on each BOM level (E),
ones with increasing numbers of components on higher
BOM levels (A), ones with decreasing numbers of com-
ponents on higher BOM levels (V), and ones with hour-
glass shapes (H). In addition, each item has a small
chance (one or two percent) of being a predecessor for
items on more than one level. As in the small test prob-
lem set, end-item demand ranges from 1 to 10 units per
period, and intermediate components possess no exter-
nal demand. Initial finished goods inventory levels vary
from 1 to 10 units, and initial WIP ranges from 5 to 15
units. Ending stock positions are required to match ini-
tial ones, and backorders are prohibited. Between three
and six resources constrain production, and a resource’s
capacity is selected based on a randomly determined
cumulative capacity usage ranging from 60 percent to
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Table 7 Medium Random Test Problems Model Characteristics

Problem
Number

Number of
Rows

Number of
Columns

Number
of Binary
Variables

Density
(Percent)

Number of
Resources

Average Number
of Products per

Resource

Average Total
Requirements

to Capacity
(Percentage)

M1 1622 2355 546 0.16 3 15.0 80
M2 2149 3126 817 0.13 4 15.3 73
M3 2379 3530 855 0.11 3 18.0 73
M4 2067 2964 742 0.13 4 19.0 77
M5 3019 4296 1148 0.10 5 26.2 78
M6 2303 3275 868 0.13 5 20.8 76
M7 3012 4400 1116 0.09 4 21.0 83
M8 1435 2033 555 0.20 5 11.4 73
M9 3528 5297 1239 0.08 3 25.3 79
M10 2674 5389 1474 0.07 4 22.8 80
M11 1671 2392 651 0.17 6 8.5 77
M12 1169 1647 429 0.24 4 11.8 80
M13 2060 2964 819 0.13 5 10.6 84
M14 1875 2652 736 0.16 6 14.2 85
M15 3653 5516 1300 0.07 3 23.3 84

Table 8 Medium Random Test Problems: OSL Solutions

Problem Number Lower Bound First Integer First Time Best Integer
(UB 0 LB)/UB
(Percentage) Best Time

M1 247,729 1367570.2 80.2 1299198.0 80.9 2560.7
M2 295,681 3646860.0 452.9 1548585.2 80.9 1485.6
M3 299,460 3511077.6 426.3 1481260.6 79.8 1555.7
M4 321,324 1482754.0 64.1 1474077.0 78.2 4028.8
M5 530,928 1085260.4 36.1 2502534.5 78.8 467.2
M6 400,561 2280383.8 127.1 1800878.7 77.8 1118.7
M7 433,101 1923374.6 108.4 2295521.6 81.1 3516.0
M8 242,055 4687544.5 631.5 1177825.2 79.4 2011.6
M9 587,016 1737494.7 179.1 2744408.4 78.6 4426.7
M10 523,076 1721549.1 135.6 3304218.6 84.1 4937.3
M11 212,098 1654595.3 129.9 1463063.6 85.5 217.4
M12 219,557 2583952.1 315.6 1021070.9 78.5 1680.0
M13 329,975 2119602.4 177.2 1808520.0 81.8 4232.6
M14 351,784 2485547.4 341.1 1923374.6 81.8 108.4
M15 598,682 1194781.0 49.8 4313165.6 86.2 4248.3

Average 217.0 80.9 2439.7

99 percent as described in §3.1. Each subassembly re-
quires between 1 and 5 time units for processing and
between 50 and 250 time units for resource setup. Since
the setup times are very long relative to the processing
times (more than 50 times longer, on average) and since

the average requirements to capacity are not very high
(78.8 percent, on average, compared to 95 percent in the
small test problems), the effective mean utilization for
the medium-sized problems is fairly low (23 percent on
average). Per-unit holding costs range from 1 to 100,
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Table 9 Medium Random Test Problems: Heuristic Solutions

Problem Number CMSB Solution CMSB Time Best Solution Best Time Total Time
Percent Difference

with OSL Best

M1 1294392.8 16.6 1051239.1 95.2 128.2 019.09
M2 2772093.0 199.5 1224759.7 183.2 241.0 020.91
M3 2740588.5 108.6 1101008.7 294.8 346.2 025.67
M4 735731.1 72.2 1179498.6 168.2 234.0 019.98
M5 750134.0 7.8 2041465.7 411.4 562.0 018.42
M6 1744444.1 35.8 1442894.5 202.5 278.0 019.88
M7 1852907.9 22.4 1740976.3 363.2 487.4 024.16
M8 2967814.4 277.5 819767.1 43.5 66.5 030.40
M9 1504991.8 28.8 2482023.6 464.8 464.8 09.56
M10 1161825.9 113.3 2340854.6 422.3 656.4 029.16
M11 1471913.8 33.0 709518.9 82.8 139.3 051.51
M12 2630238.8 65.3 638357.1 46.3 60.6 037.48
M13 1872835.8 97.3 1510155.6 193.3 260.3 016.50
M14 2120261.7 68.2 1428792.2 163.9 216.1 025.71
M15 1024098.3 11.8 2772527.4 699.4 699.4 035.72

Average 77.2 255.6 322.7 025.61

while setup costs vary from 5000 to 10000. Table 7 pre-
sents the resulting mixed integer model characteristics.

As in our previous analysis, we compare the perfor-
mance of CMHBR to default OSL; however, optimal so-
lutions for these problems could not be located and ver-
ified within reasonable amounts of time. As a result, we
focus on the best solutions found by OSL within 10,000
CPU seconds. The cited instances are the first 15 prob-
lems for which OSL was able to locate at least one in-
teger solution within the allotted time. Tables 8 and 9
summarize the results of these test runs. As with the
small problems, the lower bound is weak, explaining
the poor OSL performance. For each of these problems
the CMHBR located a better integer feasible solution
with far less computational effort.

The CMHBR solutions average 25.6 percent better
than OSL plans and were located in about 10 percent
of OSL’s time to find its best solution. An integer fea-
sible solution was found by the heuristic in only 35.6
percent of the time needed by OSL to determine a fea-
sible plan, and the first heuristic plans (the CMSB so-
lution) averaged 19.5 percent better than the first OSL
solutions and 11.1 percent better than the best OSL
ones. The relative difference between the best OSL so-
lution and the heuristic solution is increased, on av-
erage, by 47.4 percent through the SSR subroutine af-

ter an additional 54.5-second search (70 percent more
time) and by 18.8 percent through the RSR and RIR
subroutines after an additional 124-second search
(94.2 percent more time).

4. Conclusions
We have presented a new heuristic (CMHBR) for
finding good solutions for lot sizing problems with
general assembly structures, setup costs, setup
times, and multiple constrained resources. Our al-
gorithm simply exploits the special structure of the
underlying mathematical programming model, the
one-to-one links between a subset of the continuous
variables and the set of binary variables. Therefore,
our method could be used to solve a large class of
problems possessing this structure (for example, sto-
chastic mixed integer problems or facility location
problems).

We have compared the CMHBR with OSL on two
problem sets. The first was a set of randomly generated,
optimally solved small-scale problems, and the second
was a set of randomly generated, more realistically
sized problems. For the first group, the CMHBR per-
forms well relative to OSL, in most cases locating good
solutions in very small fractions of OSL’s computational



KATOK, LEWIS, AND HARRISON
Lot Sizing in General Assembly Systems

MANAGEMENT SCIENCE/Vol. 44, No. 6, June 1998 877

3b2a 0007 Mp 877 Tuesday Jun 16 01:27 PM Man Sci (June) 0007

times. There were nine cases9 out of our 96 small test
problems where the heuristic performed relatively
poorly, locating solutions 10.2 percent to 13.3 percent
above optimal. In all those cases at least one of the SSR,
RSR, and RIR procedures found a solution that was su-
peroptimal but slightly infeasible, while the other rou-
tines were able to improve the CMSB solution only
slightly. In a real manufacturing setting where some
overtime is permitted, however, those superoptimal
and slightly infeasible solutions could be quite useful.

For the second problem set, the CMHBR finds solu-
tions which average 25.6 percent better than time-
truncated OSL solutions. Again, the CMHBR uses much
less CPU time to find those solutions. These results hold
empirically across a wide range of problem instances.
Overall, the CMHBR is a practical, fast and efficient
technique for solving the general assembly structure lot
sizing problem with multiple constrained resources. It
requires only the use of an LP routine and therefore can
be easily implemented on a large variety of platforms.

9 Two cases of problem 2, one case of problems 4, 5, and 6, and four
cases of problem 7.
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