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Abstract 
 
In this paper, a case study is carried out concerning the lot-sizing problem involving a single item production 
planning in several production centers that do not present capacity constraints. Demand can be met 
with backlogging or not. This problem results from simplifying practical problems, such as the material 
requirement planning (MRP) system and also lot-sizing problems with multiple items and limited 
production capacity. First we propose an efficient implementation of a forward dynamic programming 
algorithm for problems with one single production center. Although this does not reduce its complexity, 
it has shown to be rather effective, according to computational tests. Next, we studied the problem with 
a production environment composed of several production centers. For this problem two algorithms are 
implemented, the first one is an extension of the dynamic programming algorithm for one production 
center and the second one is an efficient implementation of the first algorithm. Their efficiency are 
shown by computational testing of the algorithms and proposals for future research are presented. 
 
Keywords:  production planning; lot-sizing; dynamic programming; backlogging. 
 
 

Resumo 
 
Neste trabalho, estudamos um caso particular do problema de dimensionamento de lotes, envolvendo o 
planejamento da produção de um único item em vários centros produtivos que não apresentam 
restrições de capacidade. A demanda pode ser atendida com ou sem atraso. Este problema surge da 
decomposição de problemas práticos, como o sistema de requerimento de materiais (MRP), e também 
de problemas de dimensionamento de lotes com múltiplos itens e capacidade de produção limitada. 
Primeiramente, apresentamos uma implementação eficiente de um algoritmo de programação dinâmica 
progressiva proposto para a solução do problema com um único centro produtivo. Embora, essa 
implementação não reduza a complexidade do algoritmo, experimentos computacionais mostraram que 
ela é significativamente mais rápida. Em seguida, estudamos o problema com vários centros, para o 
qual são implementados dois algoritmos, o primeiro é uma extensão do algoritmo original e o segundo 
incorpora as idéias que tornam essa implementação mais eficiente. O desempenho computacional dos 
algoritmos é analisado e propostas para futuras pesquisas são apresentadas. 
 
Palavras-chave:  planejamento da produção; dimensionamento de lotes; programação 
dinâmica; demanda com atraso. 
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1. Introduction 

The single-item lot-sizing problem without capacity constraints has been studied since 1958 
and a wide array of new results have been presented in recent years. Good reviews have been 
presented by Wolsey (1995) and Brahimi et al. (2006). This problem often arises in practice 
as a sub-problem derived from the relaxation of capacity constraints of one of the most 
important problems of production planning: the multi-item lot-sizing problem with capacity 
constraints. Some of the methods proposed using this relaxation for such problems have been 
presented by Trigeiro et al. (1989), Lozano et al. (1991) and Diaby et al. (1992a, 1992b), 
among others. 

Bahl et al. (1987) classified the various types of lot-sizing problems: single-stage (with one 
planning stage) or multi-stage (with several planning stages). A system has one single stage 
when the items to be produced are independent, that means, one does not depend on another 
to be produced. In multi-stage systems, the final item has component items, whose 
production or purchase should also be planned. According to the authors, another important 
criteria for classifying problems is the available production capacity, which can be 
constrained or not. Several research studies on this topic have been published in the literature 
and good reviews have been presented by Bahl et al. (1987), Drexl & Kimms (1997) and 
Kuik et al. (1994). Wolsey (2002) proposes a new problem classification and reformulation. 
Recently, Karimi et al. (2003) have presented a good review of models and algorithms. In 
this review, the authors consider single-level lot-sizing problems. 

In this paper, a problem involving single-item, single-stage production planning, with no 
capacity constraint where backlogging is permitted in a production environment composed of 
several production centers is addressed. Today it is common to find companies where several 
plants, or production centers or assembly lines are available for the production of items. A 
production environment with several production centers can be generally found in food, 
beverage and steel industries, for example, see Sambasivan & Yahya (2005). Solving non-
constraint problems enables us to solve lot-sizing problems with capacity constraints. When 
backlogging is possible, problems become more similar to actual situations since in practice 
deadlines can generally be negotiated, whether they add costs to companies or not. 

In the literature, only few studies considering several production centers. Carreno (1990) 
proposed a heuristic to solve the economic lot-sizing problem with identical parallel 
machines. Sabbag (1993) and Toledo (1998) proposed algorithms for the solution of lot-
sizing problems with distinct parallel machines with limit capacity. Sung (1986) proposed an 
optimal algorithm to solve a single product parallel facility production planning model where 
demands must be met and where there are no capacity constraints. Armentano & Toledo 
(1997) adapted an efficient implementation of Evans (1985) and a lower complexity 
algorithm proposed by Wagelmans et al. (1992). The effect of the lower complexity 
algorithm can be noticed just for a number of planning periods greater than 250. 

In the other hand, the problem with a single production center has been studied for many years. 
The first optimal method to solve the problem where backlogging is not possible was proposed 
by Wagner and Whitin (1958), who presented a dynamic programming algorithm. It computes 
the minimum cost path in a directed graph and has polynomial complexity O(T2), where T is 
the number of periods over the planning horizon. Evans (1985) proposed an efficient 
implementation of the Wagner-Whitin algorithm, which, although not reducing its complexity, 
has shown to be rather effective, according to computational tests. In Bahl & Taj (1991), this 
code was adapted for the case where unit production costs do not decrease over time. 
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Almost ten years ago, several independent developments in the area – Aggarwal & Park 
(1993), Ferdergruen & Tzur (1991), Wagelmans et al. (1992) – led to exact algorithms which 
are solved in O(T log T) operations. Complexity can be reduced to O(T) when unit 
production costs do not decrease during the planning horizon. 

Zangwill (1969) considers the problem where backlogging is possible. This author was the 
first to highlight the importance of using networks to represent some production planning 
problems. The problem was represented as a minimum cost flow problem, in a network with 
concave costs on arcs and one single source. The proposed algorithm has O(T2) time 
complexity. Pochet & Wolsey (1988) proposed its reformulation and solution through the use 
of cutting planes. Aggarwal & Park (1993) developed an algorithm with complexity 
O(T log T). This algorithm solves a problem with T periods, recursively, by a procedure that 
solves two sub-problems with T/2 periods, successively. Finally, a problem involving the 
solution of the sub-problems is solved in linear time using array-searching techniques. 
According to Ferdergruen & Tzur (1993), the constant factor in the time bound is therefore 
quite large for a similar recursive procedure in Wilber (1988) (see Galil & Giancarlo, 1989). 
Ferdergruen & Tzur (1993) also proposed an algorithm with O(T log T) time complexity. 
Their algorithm consists of iterative updates of a list of candidate last order periods, as the 
planning horizon t is incremented to t+1. The T log T complexity term in the most general 
procedure is obtained from effort to insert or delete an element in the list which in the worst 
case may be of size T, but in practice is very small indeed. Golany et al. (1992) propose a 
decomposition technique which splits the problem of the production quantity decision over a 
larger number of (discrete) periods into a sequence of smaller problems, each dealing with a 
small set of consecutive periods. 

This paper is organized as follows: in the next section the mathematical model for a single 
production center is presented and an efficient implementation of a forward dynamic 
programming algorithm as well as the computational results achieved by comparing these 
implementations are discussed. The extension of this algorithm to several production centers 
and its efficient implementation are proposed in Section 3. Computational results comparing 
both implementations presented in Section 3 are analyzed in Section 4. Finally, in Section 5 
the results obtained and suggestions for future applications of this problem are discussed. 

 

2. Lot-sizing Problems with Backlogging 

The lot-sizing problem considered in this section consists of planning the production of one 
single item over a planning horizon subdivided in T periods. The demand of the item is 
known and backlogging may exist. The purpose is to minimize the sum of fixed setup costs 
of the production center, variable production costs, and inventory carrying cost, as well as 
the backorder cost of the item. 

Zangwill (1969) extended the Wagner & Whitin model (1958) to allow the inventory to be 
negative. The following notations are utilized: 

st – setup costs in period t; 
ct – unit production costs in period t; 
ht – unit inventory carrying cost in period t; 
hbt – unit backorder cost of item in period t; 
dt – item demand in period t. 
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In order to formulate a lot-sizing problem with mixed integer programming, the following 
variables are considered: 

xt – number of units produced in period t; 
It – inventory level at the end of period t. 

Production costs of xt are given by: 

;
( )

;
t t t t

t t
t

s c x if x 0
g x

0 if x 0
+ >
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and inventory costs of It are given by: 
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Lot-sizing problems can be written as follows (Zangwill, 1969): 
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The objective function (1) describes the sum of production and inventory costs. In (2), 
inventory balance constraints are presented. Without losing generality, constraint (3) ensures 
that the initial inventory is zero. Non-negative production levels are ensured by 
constraints (4). 

When backlogging is allowed, inventory in period t can be negative. To represent the 
problem as a network, Zangwill (1969) defined tI +  as the inventory at the end of period t and 

tI −  as the accumulated demand that has not been met at the end of period t. Thus, 
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where tI 0+ ≥  and tI 0− ≥ . Therefore the model (1-4) can be reformulated as a function of 

variables tI +  and tI − , as shown below, and can be represented by a network (Zangwill, 
1969), see Figure 1. 
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The author proved that in a minimum cost network flow problem where the objective 
function is a concave function of the arc flows and the network has only one source, there is 
an optimal solution having the property that each node has at most one positive input. That 
is, no more than one variables t 1I +− , tI − , and tx  can be positive. This problem can be solved 
by backward dynamic programming using recursive equations proposed by Zangwill (1969) 
or by equivalent forward dynamic programming presented in Johnson & Montgomery (1974) 
describe below. 

 
 

…

x1 

1 2 3 T

x2 

d1 d2 d3 dT 

∑
=

T

1t
td

I1 
+ I2 

+ I3 
+ IT-1

+

IT-1
-I3 

-I2 
-I1 

 - 

x3 
xT 

 
Figure 1 – The network for the single production center problem. 

 
Let Ft denote the minimum production cost from period k up to period t, then Ft can be 
determined recursively as 
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where Mkt is define as the cost of producing in period i (k+1 ≤ i ≤ t), in order to meet the 
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= ∑  is cumulative demand from period k+1 to t. 
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The Mkt values can be calculated in efficient away if we applied the computational 
modifications suggested by Evans (1985) for Wagner & Whitin case (1958). The idea 
consists in calculating first Mk1 and then for t > 1, we can calculate Mk t by: 

Mk, t+1 = Mk t + dt+1 (ck + sumhk) 

where sumhk represents the cumulative inventory costs and it is calculated by 

sumhk = 
t 1

l
l k 1

h
−

= +
∑ . 

By adapting the computational modifications suggested by Evans (1985) we obtain the 
efficient implementation shown in Figure 2. The complexity of this algorithm is O(T2). The 
adaptations of the original algorithm are in steps 2-6, 10-12, 14 and 18 of the algorithm of 
Figure 2. In steps 2-6 we initialize the value of Mk and we calculate the cumulative demand 
from period 1 to period t. The cumulative inventory cost and the value of Mk are actualized in 
efficient way in steps 10-12, we can use the old values to obtain new values. This idea is also 
applied in step 18. 
 

[1] Read data (s, c, h, hb, d) 
[2*] D0 = 0 
[3*] For t = 1 to T do 
[4*]   Mt = st + ct dt 
[5*]   Dt = Dt-1 +dt 
[6*]   Sumht = 0; 
 End For 
[7*] F0 = 0 F1 = M1 
[8] For t = 2 to T do 
[9]   Ft = 999999.0; 
[10*]   For k = 1 to t-1 do 
[11*]     Sumhk =  Sumhk + ht-1 
[12*]     Mk = Mk + dt (ck + Sumhk) 
   End For 
[13]   For k = t-1 down to 0 do  
[14*]     if (k+1 = t) then Aux = Mt 
[15]     Else Begin 
[16]       Aux = 999999.0; 
[17]       For i = k+1 to t do 
[18*]         Temp = Mi + ci (Di-1 – dk) 
[19]         For l = i -1 down to k+1 do  
[20]           Temp = Temp + hbl (Dl – dk) 
[21]         if (Temp < Aux) then Aux = Temp; 
       End For 
     End Else 
[22]     If (Aux + Fk < Ft) then Ft = Aux + Fk 
   End For 
 End For 

Figure 2 – An efficient implementation of algorithm. 
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Computational tests have been run which are described below, in order to evaluate the 
performance of the original algorithm and the efficient implementation proposed in this 
section. The code was implemented in C++ language and tests were run on a 1.5GHz 
Pentium IV microcomputer (256MB RAM, Intel processor and LINUX operational system). 

For a given number of T planning periods, we randomly generate 10 instances. We 
considered T = 50, 100, 250 and 500 and the parameters for each period were generated as in 
Armentano & Toledo (1987) from the following uniform distributions (U): 

• Demand – U[0, 100]; 
• Setup costs – U[80, 120]; 
• Unit production costs – U[1, 5]; 
• Unit inventory costs – U[1, 4]; 
• Unit backlogging costs – U[1, 4]. 

In Table 1, the average running time for both algorithms is presented. As shown in the table, 
the algorithm implemented in an efficient manner is generally 50% faster than the original 
one. However, it should be stressed that, although the algorithm is computationally more 
efficient, its complexity was not reduced. 

 
Table 1 – Results of the computational tests. 

Period Original algorithm Efficient implementation 

50 0.03s 0.01s 

100 0.45s 0.26s 

250 16.29s 9.53s 

500 4m16s 2m29s 

 

3. Lot-sizing Problem for Several Production Centers 

In this step, the lot-sizing problem described in the previous section is considered. However, 
in each of the T planning periods, the production environment is composed of m production 
centers (manufacturing cells, production lines or machines). In order to formulate the 
problem for multiple centers, the variable of production xjt represents the number of units 
produced in production center j in period t and the lot-sizing problem can be written as 
follows: 
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Similarly to the single production center problem, this problem can be represented by a 
minimum cost network flow problem with only one source, see Figure 3. Then, there is an 
optimal solution having the property that each node has at most one positive input, that is, no 
more than one of the variables t 1I +− , tI −  and xjt (for j = 1, …, m) can be nonzero. Therefore, 
this problem can be solved by an adaptation of the algorithm presented in Section 2 or by an 
extension of the lower complexity algorithm proposed by Ferdergruen & Tzur (1993). In 
Armentano & Toledo (1997) the similar problem without backlogging is solved for two 
approaches and the authors concluded that the effect of the lower complexity algorithm can 
be noticed just for a number of planning periods greater than 250. In this work, we just 
extended the algorithm proposed in Section 2. 
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Figure 3 – The network for several production centers. 

 
Let Ft denote the minimum production cost from period k up to period t, then Ft can be 
determined recursively as 

min [ ]t k ktj0 k t 1
1 j m

F F M
≤ ≤ −
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= + , t =1, 2, ........, T (7) 

 F0 = 0 

where Mktj is define as the cost of producing in period i (k+1 ≤ i ≤ t) in the production center 
j (1 ≤ j ≤ m), in order to meet the demands from period k+ 1 to period t,  
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where 
t

i r
r i 1

D d
= +

= ∑  is cumulative demand from period k+1 to t. 

By applying the recursive formula (7), the algorithm of Figure 4 can be written. The 
complexity of this algorithm is O(mT2). 

 
[1] Read data (s, c, h, hb, d) 
[2] D0 = 0 
[3] For t = 1 to T do Dt = Dt-1 + dt 
[4] F0 = 0; F1 = 999999.0; 
[5] For j = 1 to m do 
[6]    Mtj = s1 j + c1 j d1 
[7]    if (Mtj < F1) then F1 = Mtj 
 EndFor 
[8] For t = 2 to T do 
[9]    Ft = 999999.0 
[10]    For j = 1 to m do 
[11]      For k = 0 to t-1 do 
[12]         If (k+1=t) then aux = Mtj 
[13]         Else Begin 
[14]               aux = 999999.0; 
[15]               For i = k+1 to t do 
[16]                  EB = 0 
[17]                  For l = k+1 to i-1 do EB = EB + hbl  (Dl – Dk) 
[18]                  EF = 0 
[19]                  For l = i to t do EF = EF + hl (Dt –Dl) 
[20]                  Temp = st j + ct j (Dl – Dk) + EF + EB; 
[21]                  If (Temp < aux) then aux = Temp; 
               EndFor 
         EndElse 
[22]         If (aux + Fk < Ft) then Ft = aux + Fk 
      EndFor 
    EndFor 
 EndFor 

Figure 4 – Parallel production centers algorithm (PPCA). 

 
As we can see in the algorithm presented above, several operations are repeated and 
therefore, similarly to the case of one production center, the algorithm for parallel production 
centers can also be implemented in an efficient manner. The adaptations of the original 
algorithm are in steps 5-6, 8,10, 13-15, 19 and 23 of the algorithm of Figure 5. In steps 5-6 
we initialized the value of Mk and the cumulative inventory cost. In steps 8 and 10 we 
evaluated M11. The cumulative inventory cost and the value of Mkj are actualized in efficient 
way in steps 13-15, we can used the old values to obtain new values. This idea is also apply 
in steps 19 and 23. 
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[1] Read data (s, c, h, hb, d) 
[2] D0 = 0 
[3] For t = 1 to T do  
[4]  Dt = Dt-1 + dt 
[5*]  For j = 1 to m do Mtj = stj + ctj dt 
[6*]    Sumht = 0; 
 EndFor 
[7] F0 = 0 
[8*] F1= M11 
[9] For j = 1 to m do 
[10*]    If (M1j< F1) then F1 = M1j 
 EndFor 
[11] For t = 2 to T do 
[12]    Ft = 999999.0 
[13*]    For k = 1 to t-1 do 
[14*]       Sumhk = Sumhk + hk-1 
[15*]       For j = 1 to m do Mkj = Mkj + dt (cjk + Sumhk) 
    EndFor 
[17]    For j = 1 to m do 
[18]      For k = t-1 down to 0 do 
[19*]         If (k+1= t) then Aux = Mtj 
[20]         Else 
[21]               Aux = 999999.0 
[22]               For i = k+1 to t do 
[23*]                  Temp = Mij + cij (Di-1 – dk) 
[24]                  For l = i-1 down to k+1 do  
[25]                     Temp = Temp + hbl-1 (Dl – dk) 
[26]                  If (Temp < Aux) then Aux = Temp 
               EndFor 
         EndElse 
[27]         If (Aux + Fk < Ft) then Ft  = Aux + Fk 
      EndFor 
    EndFor 
 EndFor 

Figure 5 –  An efficient implementation of the PPCA (EIPPCA). 
* – adaptations of the original algorithm. 

 
4. Computational Results 

Computational tests were run to evaluate the performance of implementations PPCA and 
EIPPCA comparatively. The code was implemented in C++ language and run on the 
microcomputer described in Section 2. 

For a given number of planning periods n and a given number of production centers m, 10 
instances were randomly generated, considering T = 50, 100, 250 and 500 and m = 2, 4, 6. 
Parameters were generated as described in Section 2. 
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Table 2 – Results of the computational tests. 

Periods Production Centers PPCA EIPPCA 

 2 0.06s 0.03s 

50 4 0.13s 0.07s 

 6 0.18s 0.11s 

 2 0.89s 0.52s 

100 4 1.79s 1.05s 

 6 2.69s 1.57s 

 2 32.78s 19.06s 

250 4 1m06s 38.11s 

 6 1m39s 57.20s 

 2 8m35s 5m05s 

500 4 17m08s 10m10s 

 6 25m39s 15m15s 

 

Table 2 shows the average running time for the implementations of the proposed algorithm. 
Results show that IEAMP presents better computational times. The efficient implementation 
of the algorithm, although not reducing its complexity, reduces the computational time 
approximately by 40%. 

As shown above in the results, the longer the planning horizon is, the harder the problem 
solution becomes. For example, take problems with 1,000 binary variables, or in other 
words, problems with 250 periods and 4 production centers and problems with 500 periods 
and 2 production centers. On average, the first set of problems is solved in 38 seconds, while 
the second set of problems takes, on average, 5 minutes. The same is true for other sets of 
problems; thus, we can conclude that the planning horizon has a stronger influence on the 
problem solution. 

 

5. Conclusions and Future Research 

This paper studies the lot-sizing problem with one single item where backlogging is allowed. 
An efficient implementation of forward dynamic programming algorithm was proposed to 
solve the problem with only one production center, while a dynamic programming algorithm 
was developed for several production centers. 

Results have shown that the efficient implementation of the dynamic programming algorithm 
has reduced computational time by 50%, although it has not reduced its complexity. The 
algorithm developed for problems with several production centers produced results in less 
than one minute for problems with 1500 binary variables. It could also be observed that the 
efficient implementation reduces computational time by 40% in this case, and that an 
increase in the number of periods over the planning horizon is more significant than an 
increase in the number of production centers. 
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Above we have only considered the adaptation of the algorithm presented in Section 2. 
Although, in Armentano & Toledo (1997) the authors concluded that the effect of the lower 
complexity algorithm can be noticed just for a number of planning periods greater than 250, 
we suggest an extension of Ferdergruen & Tzur (1993) and the results will be compared with 
the results obtained in this article. 

The solution to the problem studied will allow the development of exact and heuristic 
algorithms for lot-sizing problems with several items, several production centers and 
capacity constraints, where backlogging may exist. The possibility of backlogging makes 
problems more similar to actual production conditions, where generally deadlines can be 
negotiated, whether they add costs to companies or not. 
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