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Abstract

Background: Host-parasite coevolution is generally believed to follow Red Queen dynamics consisting of ongoing

oscillations in the frequencies of interacting host and parasite alleles. This belief is founded on previous theoretical

work, which assumes infinite or constant population size. To what extent are such sustained oscillations realistic?

Results: Here, we use a related mathematical modeling approach to demonstrate that ongoing Red Queen

dynamics is unlikely. In fact, they collapse rapidly when two critical pieces of realism are acknowledged: (i) population

size fluctuations, caused by the antagonism of the interaction in concordance with the Lotka-Volterra relationship;

and (ii) stochasticity, acting in any finite population. Together, these two factors cause fast allele fixation. Fixation is not

restricted to common alleles, as expected from drift, but also seen for originally rare alleles under a wide parameter

space, potentially facilitating spread of novel variants.

Conclusion: Our results call for a paradigm shift in our understanding of host-parasite coevolution, strongly

suggesting that these are driven by recurrent selective sweeps rather than continuous allele oscillations.

Keywords: Host-parasite coevolution, Red Queen hypothesis, Lotka-Volterra dynamics, Genetic drift,

Population bottleneck

Background

The Red Queen from Lewis Carroll’s tale ‘Through the

looking glass’ is commonly used as a metaphor for

selection-induced rapid evolution [1-3]. It is based on

the observation that persistence in an environment with

changing selective constraints requires ongoing adapta-

tions to the encountered challenges [4]. Host-parasite

coevolution with antagonistic and inter-dependent inter-

actions represents one of the role models for such rapid

evolutionary change [5,6]. For instance, an increase in

host resistance reduces parasite fitness, thus immediately

favoring parasite varieties with altered virulence and/or
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immune-evasion mechanisms. In turn, a novel parasite

attack mechanism decreases host fitness, thus favoring

host varieties with new counter-defenses. If the inter-

action persists, then it will lead to continuous parasite

adaptations and host counter-adaptations. The rapid evo-

lutionary dynamics associated with these interactions is

very well documented in the literature, ranging from

field studies on rabbits and their myxoma viruses [7],

snails and their trematode parasites [8], Daphnia magna

waterfleas and their bacterial parasites [9] to laboratory-

based coevolution experiments between bacteria and

their phages [10-12], the nematode Caenorhabditis ele-

gans and bacterial parasites [13,14], or the red flour bee-

tle Tribolium castaneum and its microsporidian parasite

[15,16].

It is thus widely accepted that these interactions evolve

fast and continuously. Yet, to date, the exact underly-

ing selection dynamics are not always well understood.
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These dynamics can generally be influenced by metapop-

ulation structure and environmental variation [17,18].

Within a particular population and specific environ-

mental context, two main alternatives are thought to

be of prime importance: recurrent selective sweeps and

negative frequency-dependent selection [5,6,19-21]. Both

alternatives are consistent with the above original defi-

nition of the Red Queen hypothesis by Van Valen [4],

whereas, curiously, only the second alternative is referred

to as Red Queen dynamics [5,6,20] . The two alternatives

are closely related because both assume a selective advan-

tage of a rare genotype, for example a novel host resistance

variant. However, they differ fundamentally in the way

in which the new variant originates and spreads within

the population. The concept of recurrent selective sweeps

(often termed arms race dynamics) consists of two steps:

the de novo appearance of a beneficial allele (e.g., by muta-

tion or immigration) and its subsequent spread through

the population to fixation (i.e., the selective sweep). These

sweeps occur repeatedly in host and parasite popula-

tions, usually each time with a new beneficial allele. They

may only lead to fast changes in absolute time if at least

one of the following factors applies: new alleles arise fre-

quently, new alleles become immediately visible and thus

selectable at the phenotypic level, the new alleles provide a

high selective advantage, and/or the organisms have short

generation times. This situation is best met in bacteria-

phage interactions, which are usually characterized by

large population sizes (i.e., high likelihood of the occur-

rence of favorable mutations), short generation times, and

haploid genomes (i.e., new mutations are immediately

expressed phenotypically) [11,22-24] (but see also [25]).

In contrast, the dynamics for multicellular host sys-

tems are traditionally viewed to be determined by negative

frequency-dependent selection leading to sustained oscil-

lations of the same alleles (i.e., Red Queen dynamics

[6,20]), but not to the fixation of single alleles. In this

case, standing genetic variation is required, because the

population sizes for these hosts are usually comparatively

small, their generation times comparatively long, and their

genomes diploid. As a consequence, recurrent selective

sweeps are commonly thought to be rather slow in these

systems. Instead, if standing genetic variation is available,

then negative frequency-dependent selection can pro-

duce fast and continuous allele frequency changes even in

these host systems. Such negative frequency-dependent

dynamics seem to be present in some multicellular host

systems, including the freshwater snail Potamopyrgus

antipodarum [8,26] and the waterfleaDaphniamagna [9].

Numerous theoretical models have been developed to

study the underlying selection dynamics. Interestingly, the

current models typically focus on evolutionary change

(i.e., the rate of change in host and parasite allele fre-

quencies in response to the type of interaction). These

approaches have thus largely neglected ecological dynam-

ics, which can have a huge impact on the evolutionary

process. Population size fluctuations deserve particular

attention in this context, because they are induced by

reciprocal selection among the antagonists and, therefore,

represent an inherent property of host-parasite coevo-

lution - irrespective of additional environmental varia-

tion [7,10,27-30]. Since selection is reciprocal, population

size fluctuations should be coupled between the antag-

onists, and generally follow Lotka-Volterra dynamics

[31,32]. Such demographic variations have the potential

to affect the dynamics of host-parasite allele frequency

changes by introducing two important effects. Firstly,

the rising and falling population sizes produce bottle-

necks where selection favours a particular allele. The

favored allele may thus reach comparatively high frequen-

cies during the bottleneck, possibly enhancing its spread

in the subsequently expanding population. Secondly, the

elevated stochasticity during the bottleneck may lead

to a further increase and thus spread of the favored

allele.

In this manuscript, we aim at understanding in how

far Lotka-Volterra population size fluctuations and the

associated stochastic effects influence the dynamics of

allele frequency changes during host-parasite coevolution.

While several previous theoretical models have applied

the Lotka-Volterra dynamics to host-parasite coevolu-

tion (e.g., [33-37]), their influence on the evolutionary

dynamics has not yet been systematically explored by

comparison with a model with constant population size.

Similarly, stochastic effects during host-parasite coevo-

lution have only been considered in a few theoretical

studies (e.g., [38,39]), yet, to our knowledge, with a sin-

gle exception [40] under constant population size and

not in combination with Lotka-Volterra dynamics. Hence,

while the previous studies have independently utilised

stochastic effects or Lotka-Volterra dynamics, a system-

atic analysis of the consequences of each of these factors,

either alone or in combination, is as yet missing - in

spite of their potential importance. The novelty of our

study lies in bringing together these two aspects and

comparing their influence to the traditional model, in

which Lotka-Volterra dynamics and stochastic effects are

excluded. More specifically, we here use the standard

matching-alleles host-parasite interaction model to assess

allele frequency dynamics in the presence versus absence

of Lotka-Volterra oscillations for a stochastic versus an

analogous deterministic model.

Methods

Based on the Lotka-Volterra equations [31,32], we address

the population dynamics of interacting hosts and par-

asites. The host corresponds to the prey in the origi-

nal model, and the parasite to the predator. The host
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consumes a (constant) food supply F and reproduces at

rate c1. Parasites infect hosts at rate c2, leading to elimi-

nation of a host and generation of an additional parasite.

Parasites die at rate c3. The number of host and parasite

individuals are given by H and P. In a stochastic sys-

tem these interactions can be defined by the following

reactions [41,42],

F + H
c1
→ H + H

H + P
c2
→ P + P (1)

P
c3
→ 0.

Usage of these specific reactions facilitates tracking of

each unit of the interacting antagonists and, thus, it allows

a more precise characterization of the resulting dynam-

ics. These reactions can also be used directly for exact

stochastic simulations based on the Gillespie algorithm.

They further provide a microscopic dynamics from which

the deterministic Lotka-Volterra equations emerge in the

limit of infinite population size [42],

Ḣ = c1F H − c2H P

Ṗ = c2H P − c3P. (2)

Host-parasite coevolution is modeled using the stan-

dard matching alleles model [6]. For this, we define two

host and two parasite types, H1 and H2 for the host and

P1 and P2 for the parasite. This is equivalent to a haploid

system with two antagonists, each of which possesses two

alleles at a single locus. The interaction according to the

matching alleles model is described with the following six

reactions,

H1
ã

→ H1 + H1

H2
ã

→ H2 + H2

H1 + P1
b̃

→ P1 + P1

H2 + P2
b̃

→ P2 + P2

P1
c̃

→ 0

P2
c̃

→ 0. (3)

In the matching alleles model, the interactions between

alternate hosts and parasites (H1, P2 and H2, P1) are with-

out consequence and thus do not appear here. While the

absence of these interactions is the standard assumption

in the matching alleles model, allowing a small amount

of these interactions does not change our results qualita-

tively (see Appendix). In the limit of infinite population

size [42], we obtain a set of four coupled nonlinear differ-

ential equations,

ḣ1 = h1(a − bp1)

ḣ2 = h2(a − bp2)

ṗ1 = p1(bh1 − c)

ṗ2 = p2(bh2 − c), (4)

where the frequencies of Hi and Pi are given by hi and

pi. The above equations consider interdependence of host

and parasite demographies, allowing population sizes to

vary in response to the interaction with the antagonist,

consistent with the Lotka-Volterra model. The precise

nature of the resulting oscillations in population size is

determined by the parameters, most importantly by b.

As we are interested in the effects of population size

variation induced by the Lotka-Volterra equations, we

have to compare this to a scenario in which the popula-

tion size is constant. Such constant population sizemodels

are common, e.g. the Wright-Fisher model or the Moran

process. However, microscopically these models are dis-

tinct from the Lotka-Volterra equations considered above.

Therefore, we used the above approach and enforced

constant population size by resetting host and parasite

population sizes to their initial values after every genera-

tion (Navg transition events, see Appendix), while relative

allele frequencies were maintained. The dynamics were

subsequently assessed for different average population

sizes. To ensure comparability of allele frequency fluctu-

ations across population sizes and evolutionary models,

we rescaled the interaction parameters with Navg for the

deterministic analogues of the considered stochastic sce-

narios (Appendix).

Results

Host-parasite coevolutionary dynamics are analyzed in

the presence and absence of Lotka-Volterra dynamics.

Figure 1 illustrates an exemplary result. All models ini-

tially produce oscillatory allele frequency changes, but

only with Lotka-Volterra dynamics are these accompanied

by changes of population size. As a consequence, changes

in allele numbers are also more pronounced (top versus

bottom in Figure 1). As the deterministic model allows for

arbitrary small frequencies of each type, it formally never

leads to allele fixation and thus produces continuous oscil-

lations. In contrast, the corresponding stochastic models

have absorbing states, making fixation possible. Interest-

ingly, allele fixation appears to be substantially faster in

the stochastic model that includes Lotka-Volterra fluctu-

ations (top versus bottom panels, Figure 1). As such, it

seems that these conditions favor rapid termination of the

Red Queen oscillations.

We next analyze the impact of the average population

size on this pattern. In the following, we focus on the time
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Figure 1 Example of allele frequency dynamics with and without Lotka-Volterra population size fluctuations. Top: Lines show the

deterministic Lotka-Volterra dynamics, as often considered in theoretical studies, cf. Eqs. (4). Middle: When stochasticity is included (thin lines show

the results of 50 individual stochastic Gillespie simulations), then simulations may initially produce allele oscillations as above and below. However,

alleles usually spread to fixation (or go extinct) at a much faster rate. Bottom: Dynamics without Lotka-Volterra cycles, fixing the average population

size of both species to Navg = 1000 by resetting it after every Navg reactions, while maintaining the ratio between the alleles. The 50 individual

stochastic simulations now only rarely reach fixation. The figure illustrates the scenario where the rare host allele (H1) is more likely to reach fixation

than the frequent host allele (see Figure 3). This fixation probability decreases with increasing initial frequency (cf. Figure 3). The simulation

parameters are a = 5, c = 2.5, b = 10/Navg = 0.01 with H1 = 5%, H2 = 95%, P1 = 20%, P2 = 80% as initial condition.

until one of the alleles from either of the antagonists has

reached fixation in order to compare evolutionary rates

across population sizes and models. In general, Lotka-

Volterra dynamics cause a substantial increase in allele

fixation rate (Figure 2). Interestingly, in this case, allele

fixation rates depend only weakly on average population

size. Figure 1 suggests that this is because allele frequen-

cies can become very small during the Lotka-Volterra

demographic fluctuations. In contrast, average popula-

tion size has a much stronger effect when it is artificially

kept constant. Here, the time until allele fixation increases

exponentially with increasing population size (Figure 2).

Figure 2 explores the time to fixation of any of the alleles

in either the host or the parasite using a specific com-

bination of initial allele frequencies (i.e., the rare host

allele is present at 5%, the common at 95%, whereas the

parasite alleles are at 20% and 80% respectively). How

does this depend on the initial allele frequencies in both

antagonists? For instance, the selective advantage of a

rare allele is not only the result of its own frequency, but

also determined by the abundance of the corresponding

allele in the antagonist. Allele fixation rates were thus

explored as a function of initial allele frequencies in the
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Figure 2 The time until fixation of one allele, either host or

parasite, is shown in dependence of the initial population size

Navg. Including Lotka-Volterra fluctuations, the fixation time is only

weakly affected by increases in Navg . Excluding Lotka-Volterra cycles

maintains allele frequency oscillations, leading to an exponential

increase in fixation time as Navg increases. For all simulations the initial

condition were H1 = 5%, H2 = 95%, P1 = 20%, P2 = 80% of the Navg ,

and the parameters µ = 5, c = 2.5, b = 10/Navg with averages over

106 realizations). The vertical dotted line shows the population size

employed in Figure 3.
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two antagonists. Most impressively, Lotka-Volterra fluc-

tuations cause much faster allele fixation under almost all

initial conditions (Figure 3, left column, top versus bot-

tom panel). The detailed analysis then suggests that, in

case of Lotka-Volterra fluctuations, host alleles can have

a high fixation probability even if initially rare (Figure 3,

middle panel in top row). This is true across a relatively

wide distribution of initial frequencies for the correspond-

ing parasite allele. Interestingly, it even applies when the

corresponding parasite allele has high initial frequencies

(Figure 3, top left corner in top middle panel). This coun-

terintuitive result can be explained by consideration of

the dynamics that ensue from these initial conditions.

In this particular case, the low initial frequency of host

allele 1 means that host allele 2 is initially common,

whereas the high initial frequency of parasite allele 1

means that parasite allele 2 is rare. High host allele 2

abundance then specifically favors parasite allele 2, which

rapidly increases in frequency. The unexpected conse-

quence of these starting conditions is that these two inter-

acting alleles subsequently engage in highly pronounced

frequency oscillations that show larger amplitudes than

those observed for host and parasite alleles 1 (Figure 4). If

during these oscillations low allele 2 frequencies coincide

with a Lotka-Volterra bottleneck and associated stochas-

tic effects, then host allele 2 has a very high likelihood

of going extinct, resulting in fixation of host allele 1

(see Figure 4).

The results also highlight that the dynamics are usu-

ally determined by fixation of one of the host alleles (red

colour is mainly found in middle rather than right panel

of the top row of Figure 3). Note that the simulations

are stopped as soon as either one of the host or one of

the parasite alleles reaches fixation and, thus, the fixation

probabilities of both host as well as both parasite alle-

les sum up to one. In our case, fixation of the host allele

is more likely than fixation of the parasite allele because

for our parameter combination and initial condition, it

is usually the host that first experiences a Lotka-Volterra

bottleneck and consequentially a drop in the frequency of

one of the alleles (see also Figure 4). Nevertheless, if both

the parasite and corresponding host allele are common,

then it is the parasite allele that has a high probability of

fixation (Figure 3, top right).

The overall pattern looks different in the absence of

Lotka-Volterra fluctuations (Figure 3, bottom row). Host

allele fixation probability increases with its own high ini-

tial frequency and, at the same time, low initial abundance

of the corresponding parasite allele (Figure 3 middle panel

in bottom row). Parasite allele fixation is enhanced when

both parasite and corresponding host alleles are initially

common (Figure 3 bottom right). Under these conditions,

fixation probabilities of both host and parasite alleles are

almost identical at initially intermediate frequencies, most

likely due to negative frequency dependent selection, as

illustrated in Figure 1.
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Figure 3 The influence of initial allele frequency on fixation time and probability for the stochastic models. For an Navg = 200, we plot the

time until any of the four alleles goes to fixation (left column) and the probability of fixation of one of the host and parasite alleles for all possible

initial conditions (middle and right columns) (averages over 106 realizations). Lotka-Volterra fluctuations lead to substantially faster allele fixations

(top left panel) and high fixation probability for the host allele across a wide range of initial conditions (top middle panel). The simulations were

always stopped when either one of the host or one of the parasite alleles reached fixation. Thus, the sum of the fixation probabilities of all alleles

sums up to 1. The specific initial conditions used in Figure 2 are indicated.
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Figure 4 Detailed dynamics explaining the seemingly counterintuitive result of the high fixation probability of Host allele 1 in spite of

the high prevalence of Parasite allele 1 (in Figure 3 topmiddle panel) due to the inclusion of Lotka-Volterra dynamics. In this figure we

depict the dynamics that occur at the initial conditions with a low H1 frequency and a high P1 frequency. In this particular case, the low initial

frequency of H1 means that H2 is initially common, which in turn favours P2 . This parasite allele thus rapidly increases in frequency, subsequently

causing highly pronounced H2 and P2 frequency oscillations that show larger amplitudes than the interacting H1 and P1 alleles. If low H2

frequencies coincide with a Lotka-Volterra bottleneck in the hosts, then the associated stochastic effects lead to a higher likelihood of H2 going

extinct, resulting in an overall higher fixation probability of H1 . The top panel shows the average population dynamics, whereas the bottom panel

shows the frequency changes for the indicated host and parasite alleles across the ten independent simulations. The vertical lines in the bottom

panel denote the time points where the simulation is terminated due to a loss of an allele. Out of the 10 simulation runs 9 are stopped due to the

allele H2 going extinct and only one due to H1 going extinct. The interaction parameters are a = 5, c = 2.5, b = 10/Navg = 0.01.

Discussion

Population size fluctuations represent an inherent prop-

erty of host-parasite interactions. Unequivocal evidence

for such interaction-dependent demographic variations

was obtained from controlled host-parasite mesocosm

experiments, for example with E. coli and its phage

[10,30], Hydra hosts and its Hydramoeba parasite [43],

house fly and its parasitic wasps [44,45], or azuki bean

weevil Callosobruchus chinensis and its parasitoid Het-

eropilus prosopidis [46]. Similar observations were made

under field conditions, for example for rabbits and their

myxoma viruses [7], or red grouse and its nematode par-

asite [47]. Additional examples are summarized by [28]

and [29]. As population size fluctuations produce regu-

lar bottlenecks, random genetic drift is likely to influence

allele frequencies. Previous theoretical models, developed

in a different context, strongly suggest that even large

populations are influenced by such stochastic processes

[48,49]. More generally, under natural conditions in a

finite population, it is difficult to imagine that changes

in population size do not affect evolutionary dynamics.

Consequently, an in-depth understanding of the evolution

of host-parasite interactions should take account of the

associated ecological processes based on Lotka-Volterra

fluctuations.

Very few previous theoretical models on host-parasite

interactions have considered Lotka-Volterra fluctuations

[33-37]. These studies usually used a deterministic app-

roach and thus excluded stochastic effects, which aremost

prominent during bottlenecks. Similarly, only few theo-

retical studies considered stochastic effects in this context

[38,39], yet under constant population size, but not in

combination with Lotka-Volterra dynamics. We are aware

of only one study that looked at host-parasite coevolu-

tion in consideration of Lotka-Volterra interactions and

stochasticity [40]. However, this study had a different

focus, and thus, it did not include a systematic compar-

ison to models without Lotka-Volterra cycles or without

stochasticity. Consequently, the interaction of these two

aspects for host-parasite coevolution is so far unexplored.

At the same time, their relevance was demonstrated for

evolution of only one of the antagonists, namely the par-

asite. For example, the probability of fixation of a ben-

eficial mutation in a bacterial population was shown to

be enhanced by periodical bottlenecks [50-52]. Similar

results were obtained in amodel that explored the effect of

bottlenecks during pathogen transmission [53]. Our study

explicitly evaluates the influence of both Lotka-Volterra

fluctuations and stochastic effects on the dynamics of

host-parasite interactions using a comparison to a model

with constant population size and/or absence of stochas-

ticity. As the demographic variations are an inherent

property of such antagonistic interactions, their influ-

ence should apply across a wide range of environmental
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conditions and thus be of general relevance for our under-

standing of host-parasite coevolution.

Based on our approach, we obtained evidence that

both Lotka-Volterra fluctuations and associated stochas-

tic effects significantly affect the course and pace of coevo-

lutionary adaptations. In particular, both factors facilitate

selective sweeps (i.e., the spread and fixation of an allele).

Most impressively, this effect appears to be indepen-

dent of average population size (Figure 2) and occur at

a substantially faster rate (Figure 3, left column). More-

over, allele frequency changes are not exclusively due

to drift, which should favor fixation of initially frequent

alleles and loss of initially rare alleles. In contrast, our

results indicate that initially rare host alleles can spread

to fixation across a relatively wide range of conditions

(Figure 3, top middle panel). Rare parasite alleles may

not necessarily go extinct, but have a certain likelihood

of spreading contingent on the frequency of the corre-

sponding host allele (Figure 3, top right panel). Based

on these results we propose that selective sweeps rather

than oscillatory negative frequency-dependent selection

may represent the main driving force during host-parasite

coevolution.

Recurrent selective sweeps have been repeatedly sug-

gested to determine coevolutionary dynamics for para-

site or host systems with large population sizes such as

bacterial hosts or microbial parasites, where novel muta-

tions are frequent and often directly exposed to selection

because of a haploid genetic system. If these selective

dynamics also apply to multicellular host and parasite

systems, then two contrasting effects may be expected

on the coevolutionary process. On the one hand, these

systems usually have much smaller population sizes, facil-

itating spread of alleles in spite of the often diploid

genetic system. On the other hand, continuous coevolu-

tion may become difficult because it is usually assumed

that small population size results in a reduced likeli-

hood of the occurrence of advantageous novel muta-

tions [6]. However, the latter assumption may not always

be true. It is possible that new alleles become available

for example by frequent immigration or a high rate of

gene duplication. These processes may further favor the

formation of novel genotypes if they act in combina-

tion with recombination and/or mutation. Interestingly,

the possible impact of gene duplications is usually not

addressed in theoretical work on host-parasite coevolu-

tion, even though such duplications are known to be

common in almost all organisms [54-56] and often affect

genes of relevance for the interaction such as virulence

genes in parasites [57,58] or immunity genes in animal

hosts [54,59,60].

Several additional factors may favor ongoing coevolu-

tion. One of these is founded on a more complex genetic

architecture underlying host-parasite co-adaptation that

consists of several interacting loci across the genome

(e.g., [61-64]). In this case, allele fixation at one locus may

still permit maintenance of variation at other loci, which

could then mediate evolutionary responses to the antago-

nist. Yet another possibility may depend on metapopula-

tion structure, consisting of coevolutionary hot and cold

spots and migration among demes, as evidenced for flax

and its parasitic rust fungus [65] or the above mentioned

snail-trematode interaction [17]. Such an interconnected

network could then maintain allelic diversity across the

entire metapopulation, even if alleles become temporar-

ily fixed within single demes. Moreover, environmental

gradients or perturbations are known to influence host-

parasite coevolutionary dynamics [66]. They could sim-

ilarly prevent loss of alleles, even if the coevolutionary

interaction itself would specifically favour only one of the

alleles. Obviously, the above processes act in combination

with each other in natural systems. Therefore, it is indeed

conceivable that recurrent selective sweeps shape long-

lasting coevolutionary dynamics even inmulticellular host

systems.

Conclusion

In conclusion, decades of empirical efforts have tried to

demonstrate the presence of Red Queen dynamics dur-

ing host-parasite coevolution. This has led to most inge-

nious experiments which repeatedly and independently

confirmed negative frequency dependence as a driving

force [8,9,26,67,68] and such a trend continues to date

[21,69]. These studies yielded impressive evidence that

parasite abundance typically increases first and, once the

host evolves a defense mechanism, it decreases again.

However, sustained allele frequency oscillations of a par-

ticular allele, as predicted by numerous theoretical mod-

els assuming constant population size in the absence of

any stochastic effects, have not been reported. We here

propose that Lotka-Volterra population size fluctuations

and the associated stochastic effects represent an inher-

ent property of host-parasite interactions that can lead

to rapid fixation of alleles, even those initially rare, thus

preventing sustained oscillations. Consequently, Lotka-

Volterra population size fluctuations have the potential

to stop the Red Queen - unless novel variants are intro-

duced into the population and/or additional selective

constraints maintain allelic diversity. In retrospect, our

findingsmay not be entirely unexpected. However, to date,

they have not yet been directly demonstrated using a sys-

tematic analysis approach, as implemented here. More

importantly, they are generally neglected in the numer-

ous current empirical studies on the topic, in spite of

their potential importance. They clearly deserve spe-

cific attention in future theoretical and empirical work

aimed at an improved understanding of host-parasite

coevolutionary dynamics.
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Appendix

Relating stochastic and deterministic dynamics

Stochastic models are often developed starting from

deterministic formulations [42]. Since the same deter-

ministic formulation can be the limiting case of many

individual based models, this procedure may be problem-

atic. Instead, beginning from a stochastic, individual based

description and then calculating the deterministic ana-

logue will provide only a single direct link between the two

approaches and allows for their direct comparison.

We consider a haploid system involving two antagonis-

tic pairs, two alleles in hosts and parasites each. Firstly, all

possible changes are written in the form of simple chem-

ical reactions. In our particular case we have eight such

possible reactions. We denote the two hosts and the two

parasites by H1 and H2 and P1 and P2 respectively. Thus

we have,

H1
µ̃
→ H1 + H1

H2
µ̃
→ H2 + H2

H1 + P1
b̃

→ P1 + P1 (5)

H2 + P2
b̃

→ P2 + P2

P1
c̃

→ 0

P2
c̃

→ 0.

For instance, a parasite 2 individual dies with the rate c̃.

From these rate reactions, we obtain the transition rates

of the system. Depending on the number of individuals

of the different types namely n = {nH1 , nH2 , nP1 , nP2}, we

write the rates as,

T(nH1 + 1, nH2 , nP1 , nP2 |n) = µ̃
nH1

Navg

T(nH1 , nH2 + 1, nP1 , nP2 |n) = µ̃
nH2

Navg

T(nH1 − 1, nH2 , nP1 + 1, nP2 |n) = 2b̃
nH1

Navg

nP1
Navg

(6)

T(nH1 , nH2 − 1, nP1 , nP2 + 1|n) = 2b̃
nH2

Navg

nP2
Navg

T(nH1 , nH2 , nP1 − 1, nP2 |n) = c̃
nP1
Navg

T(nH1 , nH2 , nP1 , nP2 − 1|n) = c̃
nP2
Navg

where the reaction rates, have been corrected by each

reactions combinatorial possibility [70,71] and Navg is the

average population size which we consider to be the same

for the hosts as well as the parasites (the difference in

the average population size can be interpreted as the ratio

between the growth rate of hosts and the death rate of

parasites). Using these rates, we can write down determin-

istic differential equations for the change in the average

number of a certain type, e.g.

d〈nH1〉

dt
= µ̃

nH1

Navg
− 2b̃

nH1

Navg

nP1
Navg

. (7)

Introducing rescaled reaction rates, µ =
µ̃

Navg
, b = 2 b̃

Navg

and c = c̃
Navg

, we obtain

d〈nH1〉

dtNavg
= µ

〈

nH1

Navg

〉

− b

〈

nH1

Navg

nP1
Navg

〉

. (8)

In the limit of a large population size we recover the mean

field approximation or the population level model [71],

ḣ1 = h1(µ − bp1) (9)

where ḣ1 =
d〈nH1 〉

dtNavg
and the frequencies of Hi and Pi are

given by hi and pi. In the same way, we can derive deter-

ministic differential equations for the frequencies of the

other types,

ḣ1 = h1(µ − bp1) (10)

ḣ2 = h2(µ − bp2) (11)

ṗ1 = p1(bh1 − c) (12)

ṗ2 = p2(bh2 − c) (13)

Stochastic simulations

The Gillespie algorithm gives an exact numerical solu-

tion of the Master equation of the system [41,70,71].

Our stochastic simulations are implementations of this

With Lotka Volterra

Without Lotka Volterra
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Figure 5Allele fixation/extinction times for any of the interacting

types when we do include a slight interaction between the

otherwise independent Lotka-Volterra cycles. As compared to

Figure 2 the fixation times in the case without Lotka-Volterra

oscillations reduce with slight interaction between independent

cycles. However for the case with Lotka-Volterra oscillations the

fixation times are practically unchanged. For all simulations the initial

condition were H1 = H2 = Navg/2, P1 = 90Navg/100,

P2 = 10Navg/100, and the parameters µ = 5, c = 2.5, b = 10/Navg

and ε = 0.1b with averages over 106 realizations).
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algorithm with the transition rates as defined in Eqs. 6.

Since the population size is not constrained, this sim-

ulation method includes a stochastic analogue of the

Lotka-Volterra cycles.

We computationally remove the Lotka-Volterra cycles

by culling the population of each species after Navg tran-

sitions have taken place. During the Navg transitions the

types within a species can evolve to different frequencies.

But in the end they are reset to sum up toNavg while main-

taining the relative abundances. The Gillespie method is

discrete in the number of individuals but continuous in

time. The unit of time is the same as in the deterministic

system.

Alternatively we can consider a small amount ε of

interactions between the otherwise independent Lotka-

Volterra interactions. This is then represented by the

following set of differential equations,

ḣ1 = h1(µ − bp1 − εp2) (14)

ḣ2 = h2(µ − bp2 − εp1) (15)

ṗ1 = p1(bh1 + εh2 − c) (16)

ṗ2 = p2(εh1 + bh2 − c). (17)

Even for this case, including Lotka-Volterra interactions

causes a faster extinction of the Red Queen cycles involv-

ing all four types. As an example we provide simulation

results where in addition to similar parameters as in

Figure 2 we add a ε = 0.1b (Figure 5). Although the

fixation time is elevated as compared to the case with

no interactions (Figure 2), they are still not compara-

ble to the extremely high fixations times observed when

Lotka-Volterra dynamics is excluded.
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