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Resumo

Na década de 1970 John M. Smith e George R. Price [22] começaram a
usar a teoria de jogos estratégicos desenvolvida por John von Neumann e
Oskar Morgenstern [42] nos anos 1940 para investigar os processos dinâmicos
de populações, dando assim origem à Teoria de Jogos Evolutivos (TJE).

Algumas classes de equações diferenciais ordinárias (e.d.o.s) que têm um
papel central na TJE são os sistemas Lotka-Volterra (LV), a equação do
replicador, o replicador bimatricial e o replicador polimatricial.

Muitas propriedades dos sistemas LV podem ser expressas geometrica-
mente em termos do seu grafo associado, construido a partir da matriz de
interacção do sistema. Para a classe dos sistemas LV estavelmente dissi-
pativos provamos que a caracteŕıstica da sua matriz de interação, que é a
dimensão da folheação invariante associada, é completamente determinada
pelo grafo do sistema.

Nesta tese estudamos também fluxos anaĺıticos definidos em politopos.
Apresentamos uma teoria que nos permite analisar a dinâmica assintótica do
fluxo ao longo da rede heterocĺınica formada pelas arestas e vértices do poli-
topo onde os fluxos estão definidos. Neste contexto, dado um fluxo definido
num politopo, damos condições suficientes para a existência de variedades
normalmente hiperbólicas estáveis e instáveis para ciclos heterocĺınicos.

Nos jogos polimatriciais a população é dividida num número finito de
grupos, cada um com um número finito de estratégias. As interacções en-
tre indiv́ıduos de quaisquer dois grupos podem ocorrer, inclusive do mesmo
grupo. A equação diferencial associada a um jogo polimatricial, que desig-
namos por replicador polimatricial, está definida num politopo dado por um
produto finito de simplexos.

Karl Sigmund e Josef Hofbauer [16] e Wolfgang Jansen [18] apresentam
condições suficientes para a permanência nos replicadores usuais. Nesta tese
generalizamos esses resultados para os jogos polimatriciais.

Também para os replicadores polimatriciais estendemos o conceito de es-
tabilidade dissipativa desenvolvido por Ray Redheffer et al. [25–29]. Neste
contexto generalizamos um teorema de Waldyr Oliva et al. [6] sobre a na-
tureza Hamiltoniana da dinâmica limite em replicadores polimatriciais “es-
tavelmente dissipativos”.

Apresentamos ainda alguns exemplos para ilustrar resultados e conceitos
fundamentais desenvolvidos ao longo da tese.

Palavras-chave: Sistemas Lotka-Volterra, equação do replicador, jogo poli-
matricial, sistemas estavelmente dissipativos, ciclos heteroclinicos.
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Abstract

In the 1970’s John M. Smith and George R. Price [22] applied the theory of
strategic games developed by John von Neumann and Oskar Morgenstern [42]
in the 1940’s to investigate the dynamical processes of biological populations,
giving rise to the field of the Evolutionary Game Theory (EGT).

Some classes of ordinary differential equations (o.d.e.s) which plays a cen-
tral role in EGT are the Lotka-Volterra systems (LV), the replicator equation,
the bimatrix replicator and the polymatrix replicator.

Many properties of the LV systems can be geometrically expressed in
terms of its associated graph, constructed from the system’s interaction ma-
trix. For the class of stably dissipative LV systems we prove that the rank
of its defining matrix, which is the dimension of the associated invariant
foliation, is completely determined by the system’s graph.

In this thesis we also study analytic flows defined on polytopes. We
present a theory that allows us to analyze the asymptotic dynamics of the
flow along the heteroclinic network composed by the flowing-edges and the
vertices of the polytope where the flow is defined. In this context, given a
flow defined on a polytope, we give sufficient conditions for the existence of
normally hyperbolic stable and unstable manifolds for heteroclinic cycles.

In polymatrix games population is divided in a finite number of groups,
each one with a finite number of strategies. Interactions between individuals
of any two groups are allowed, including the same group. The differential
equation associated to a polymatrix game, that we designate as polymatrix
replicator, is defined in a polytope given by a finite product of simplices.

Karl Sigmund and Josef Hofbauer [16] and Wolfgang Jansen [18] give
sufficient conditions for permanence in the usual replicators. We generalize
these results for polymatrix replicators.

Also for polymatrix replicators we extend the concept of stably dissi-
pativeness developed by Ray Redheffer et al. [25–29]. In this context we
generalize a theorem of Waldyr Oliva et al. [6] about the Hamiltonian nature
of the limit dynamics in “stably dissipative” polymatrix replicators.

We present also some examples to illustrate fundamental results and con-
cepts developed along the thesis.

Key-words: Lotka-Volterra systems, replicator equation, polymatrix game,
stably dissipative systems, heteroclinic cycles.
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Resumo Alargado

O livro “Theory of Games and Economic Behavior” [42], publicado em
1944 pelo matemático John von Neumann e o economista Oskar Morgenstern,
marca o ińıcio do estudo matemático da tomada de decisões estratégicas,
dando assim origem à area cient́ıfica conhecida como Teoria de Jogos.

Passados cerca de 30 anos John Maynard Smith e George R. Price [22]
usaram a teoria de jogos estratégicos desenvolvida por Neumann e Morgen-
stern para estudar os processos dinâmicos de populações, dando assim origem
à Teoria de Jogos Evolutivos (TJE).

Existem algumas classes de equações diferenciais ordinárias (e.d.o.s) que
têm um papel muito importante na TJE, nomeadamente os sistemas Lotka-
Volterra (LV), a equação do replicador, o replicador bimatricial e o replicador
polimatricial.

Nos anos 1920 os sistemas LV começaram a ser desenvolvidos por Alfred
J. Lotka [21] e Vito Volterra [41], de forma independente um do outro, para
modelar o processo evolutivo de sistemas qúımicos e de populações, respecti-
vamente. Estes sistemas foram então designados por sistemas Lotka-Volterra
em sua homenagem.

Normalmente os sistemas LV são classificados em termos das propriedades
algébricas da sua matriz de interacção, propriedades estas que nos permitem
uma análise qualitativa da dinâmica do sistema. Associado a um sistema LV
dado, e a partir da sua matriz de interacção, podemos construir um grafo
que representa as interacções entre os vários elementos da população. As
propriedades deste grafo são muito úteis no estudo da dinâmica do sistema
associado.

Ainda que possamos analisar completamente a dinâmica dos sistemas LV
em baixa dimensão, para sistemas em dimensões superiores, o estudo da
sua dinâmica está longe de ser completamente determinado, embora algumas
classes particulares destes sistemas tenham sido amplamente estudadas.

Nas suas investigações V. Volterra [41] deu especial atenção aos sistemas
predador-presa e à sua generalização para sistemas de cadeias alimentares
para n espécies, que se enquadram na classe dos sistemas LV conservativos e
dissipativos. O sistema LV para n populações está definido no subconjunto
de R

n onde todas as coordenadas são não-negativas, i.e., Rn
+.

A classe dos sistemas conservativos foi inicialmente estudada por
V. Volterra de tal forma que ele fez uma caracterização Hamiltoniana no caso
em que a matriz de interacção do sistema é anti-simétrica. Em 1998 Waldyr
M. Oliva et al. [6] fizeram uma reinterpretação para o carácter Hamiltoniano
da dinâmica dos sistemas conservativos.

Relativamente à classe dos sistemas LV dissipativos, nos anos 1980, Ray-
mond M. Redheffer et al. [25–29] desenvolveram a teoria dos sistemas estavel-
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mente dissipativos, i.e., sistemas que são dissipativos e que sofrendo pequenas
perturbações permanecem dissipativos.

Outra classe de sistemas que tem um papel muito importante na TJE é
a classe dos sistemas definidos pela denominada equação do replicador. Em
1978 Peter D. Taylor e Leo B. Jonker [39] iniciaram o estudo destas equações
diferenciais no sentido de investigar a evolução das estratégias comportamen-
tais.

A equação do replicador tem uma relação muito importante com os sis-
temas LV. Em 1981 Josef Hofbauer [15] provou que a equação do replicador
para n estratégias é equivalente ao sistema LV para n − 1 populações. A
equação do replicador para n estratégias está definida no simplexo ∆n−1.

No contexto da Teoria de Jogos, a equação do replicador tem sido estu-
dada essencialmente no sentido de investigar a dinâmica deste tipo de sis-
temas.

O replicador bimatricial, associado aos jogos bimatriciais, também desig-
nados por assimétricos, foi inicialmente estudado por Peter Schuster e Karl
Sigmund [32] e por P. Schuster, K. Sigmund, J. Hofbauer, e Robert Wolff [34].
Neste tipo de sistemas a “população” divide-se em dois grupos, por exemplo,
machos e fêmeas, e cada grupo tem dispońıvel um conjunto diferente de es-
tratégias, digamos n estratégias para o primeiro grupo e m estratégias para
o segundo. Um estado deste sistema é um par de vectores de probabilidade
no prisma (n+m− 2)-dimensional Γn,m := ∆n−1 ×∆m−1. Neste contexto as
interacções apenas ocorrem entre indiv́ıduos de grupos diferentes.

O estudo dos equiĺıbrios em jogos de n-jogadores foi iniciado nos anos
1950 por John Nash [23]. Uma classe de jogos de n-jogadores, designados
por jogos polimatriciais, onde o payoff de cada jogador é a soma dos payoffs
correspondentes a confrontos simultâneos com os adversários, foi estudada
na década de 1970 por Joseph Howson [17] com o objectivo de investigar a
existência de pontos de equiĺıbrio para este tipo de jogos. J. Howson [17]
atribui o conceito de jogo polimatricial a E. Yanovskaya [43] em 1968.

Nos jogos polimatriciais, a população está dividida num número finito
de grupos, cada um com um número finito de estratégias. São permitidas
interacções entre indiv́ıduos de quaisquer dois grupos, inclusive do mesmo
grupo. No entanto, ocorre competição dentro de cada grupo, i.e., o sucesso
relativo de cada estratégia é avaliado dentro do grupo correspondente.

Em [3] os autores introduzem a classe de e.d.o.s, designada por repli-
cador polimatricial, que generaliza para os jogos polimatriciais a equação do
replicador associada aos jogos simétricos e assimétricos.

O replicador polimatricial está definido num politopo dado por um pro-
duto finito de simplexos. A equação do replicador em dimensão n é o caso
do replicador polimatricial definido no simplexo ∆n−1. O jogo assimétrico
para duas “populações”, uma com n estratégias e a outra com m, é o caso do
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replicador polimatricial definido no prisma Γn,m, onde as submatrizes corres-
pondentes às interacções dentro de cada grupo são nulas.

Damos em seguida uma breve visão geral dos nossos reultados. Para os
sistemas LV em geral, apresentamos um resultado sobre a existência de fol-
heações invariantes pelo campo vectorial associado, e neste contexto, para
os sistemas LV dissipativos, apresentamos um resultado que estabelece uma
relação entre estas folheações e o conjunto dos pontos de equiĺıbrio do sis-
tema [7].

Muitas propriedades dos sistemas LV podem ser expressas geometrica-
mente em termos do seu grafo associado, construido a partir da matriz de
interacção do sistema. Para a classe dos sistemas LV estavelmente dissi-
pativos provamos que a caracteŕıstica da sua matriz de interação, que é a
dimensão da folheação invariante associada, é completamente determinada
pelo grafo do sistema [7].

Nesta tese estudamos também fluxos anaĺıticos definidos em politopos.
Apresentamos uma teoria introduzida por Pedro Duarte [5] que nos permite
analisar a dinâmica assintótica do fluxo ao longo da rede heterocĺınica for-
mada pelas arestas e vértices do politopo onde os fluxos estão definidos. Neste
contexto, dado um fluxo definido num politopo, apresentamos um resultado
que dá condições suficientes para a existência de variedades normalmente
hiperbólicas estáveis e instáveis para ciclos heterocĺınicos [2].

Um caso particular de fluxos anaĺıticos definidos em politopos, são os
fluxos associados aos replicadores polimatriciais. K. Sigmund e J. Hofbauer
[16] e W. Jansen [18] apresentam condições suficientes para a permanência
nos replicadores usuais. Neste contexto, generalizamos esses resultados para
os replicadores polimatriciais [2]. Também para os replicadores polimatriciais
estendemos o conceito de estabilidade dissipativa desenvolvido por Redheffer
et al. [25–29]. Neste contexto generalizamos um teorema de W. Oliva et
al. [6] sobre a natureza Hamiltoniana da dinâmica limite em replicadores
polimatriciais “estavelmente dissipativos” [1].

Alguns exemplos são apresentados para ilustrar resultados e conceitos
fundamentais desenvolvidos ao longo da tese.
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3.5 Asymptotic Poincaré Maps . . . . . . . . . . . . . . . . . . . 51
3.6 Invariant Manifolds . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Polymatrix Replicators 59

4.1 Definitions and Properties . . . . . . . . . . . . . . . . . . . . 60
4.2 Polymatrix Skeleton . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Permanence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Conservative Polymatrix . . . . . . . . . . . . . . . . . . . . . 70
4.5 Dissipative Polymatrix . . . . . . . . . . . . . . . . . . . . . . 73
4.6 Examples and Applications . . . . . . . . . . . . . . . . . . . 87

4.6.1 Reduction Algorithm . . . . . . . . . . . . . . . . . . . 87

xi



4.6.2 Dissipative Polymatrix . . . . . . . . . . . . . . . . . . 92
4.6.3 Conservative Polymatrix . . . . . . . . . . . . . . . . . 99

Bibliography 106

Index 109

xii



Introduction

The book “Theory of Games and Economic Behavior” [42], published in 1944
by the mathematician John von Neumann and the economist Oskar Morgen-
stern, is considered the beginning of the study of strategic decision making,
giving rise to the field designated as Game Theory. Thirty years later John
Maynard Smith and George R. Price [22] applied the theory of strategic
games developed by Neumann and Morgenstern to investigate the dynamical
processes of biological populations, giving rise to the field of the Evolutionary
Game Theory (EGT).

Some classes of ordinary differential equations (o.d.e.s) which plays a cen-
tral role in EGT are the Lotka-Volterra (LV) systems, the replicator equation,
the bimatrix replicator, and the polymatrix replicator.

In the 1920s Lotka-Volterra systems were independently introduced by
A. J. Lotka [21] and V. Volterra [41] to model the evolution of chemical and
biological ecosystems, respectively. The LV systems have become a mathe-
matical model widely used by many scientific fields such as physics, chemistry,
biology, and economy.

In 1978 Peter Taylor and Leo Jonker [39] introduced the replicator equa-
tion which is now central to EGT. These systems have been developed es-
sentially on the context of game theory in terms of studying their dynamics.

There is an important relation between the replicator equation and the
LV systems. In 1981 Josef Hofbauer [15] shows that the replicator equation
corresponds - up to a change in velocity - to the generalized LV equation.

There are other types of replicator-like evolutionary systems, of which we
single out the bimatrix replicator, and more generally the polymatrix replica-
tor.

The bimatrix replicator was firstly introduced by Peter Schuster and
K. Sigmund [32] and P. Schuster, K. Sigmund, J. Hofbauer, and Robert
Wolff [34] to study the dynamics of bimatrix games. In these games, also
called asymmetric games, two groups of individuals within a population (e.g.
males and females), interact using different sets of strategies, say n strategies
for the first group and m strategies for the second. In bimatrix games there
are no interactions within each group.

In polymatrix games, the population is divided in a finite number of

1



groups, each one with a finite number of strategies. Interactions between
individuals of any two groups are allowed, including the same group.

In [3] the authors introduce a class of o.d.e.s, referred as polymatrix repli-
cator, that generalizes to polymatrix games the replicator equations associ-
ated to symmetric and asymmetric games.

The polymatrix replicator, is defined in a polytope given by a finite prod-
uct of simplexes. The replicator equation in dimension n is the case of the
polymatrix replicator defined in the simplex ∆n−1. The asymmetric games
for two “populations”, one with n strategies and the other with m, is the case
of the polymatrix replicator defined on the prism ∆n−1 × ∆m−1, where the
submatrices corresponding to interactions within each group are null.

I provide now a short overview of the organization of this thesis. In
chapter 1 we present the definitions and basic properties of the LV systems
giving particular attention to the classes of conservative and dissipative LV
systems. For LV systems in general, we present a result about the existence
of invariant foliations for the associated vector field. In this context, for
dissipative LV systems, we state a relation between these foliations and the
set of equilibria. We present also in this chapter a brief recall of the basic
properties of the replicator equation, its relation with the LV systems and
the notion of permanence.

Chapter 2 addresses essentially a particular class of dissipative LV sys-
tems, the stably dissipative LV systems. Namely, the Redheffer reduction
algorithm that runs on the associated graph of the interaction matrix of the
system. The main result of this chapter is the proof that the rank of the
defining matrix of a stably dissipative LV system, which is the dimension of
the associated invariant foliation, is completely determined by the system’s
graph.

In chapter 3 we address the study of analytic flows on polytopes, i.e.,
flows that leave invariant all faces of the polytope where they are defined. We
pretend to analyze the asymptotic dynamics of the flow along the heteroclinic
network formed by the flowing-edges and the vertices of the polytope. In
this context, given a flow defined on a polytope, we give sufficient conditions
for the existence of normally hyperbolic stable and unstable manifolds for
heteroclinic cycles. This chapter gives the necessary theoretical background
for the study of polymatrix games that are the main focus of chapter 4.

In the last chapter, 4, we give the definitions and basic properties of the
polymatrix replicators associated to polymatrix games. Next we describe the
skeleton character of the vector field defined by the polymatrix replicator
equation. K. Sigmund and J. Hofbauer [16] and W. Jansen [18] give suffi-
cient conditions for permanence in the usual replicators. We generalize these
results to polymatrix replicators. We define also the classes of the conserva-
tive and dissipative polymatrix games. For the dissipative polymatrix games
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we extend the concept of stably dissipativeness introduced by R. Redheffer
et al. [25–29]. In this context we generalize a theorem of W. Oliva et al. [6]
about the Hamiltonian nature of the limit dynamics in “stably dissipative”
polymatrix replicators. Finally we present some examples to illustrate fun-
damental results and concepts developed along the thesis.

All computations, formulas and pictures presented in sections 2.6, 4.6.1,
4.6.2, and 4.6.3 were done with Wolfram Mathematica software.
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Chapter 1

Lotka-Volterra Systems

By the 1920s, A. J. Lotka [21] and V. Volterra [41], independently of each
other, began to publish their studies in different scientific fields, respectively
in autocatalytic reactions and in the evolution of biological populations, using
the same differential equations. These systems were designated as Lotka-
Volterra (LV) systems in their honour.

The LV systems have become a mathematical model widely used by many
scientific fields such as physics, chemistry, biology, economy as well as other
social sciences. In particular, these systems play an important role in the
study of neural networks, biochemical reactions, cell change, resource man-
agement, epidemiology or evolution game theory, for instance.

Although we can fully analyse the dynamics of the LV systems in low
dimension, for systems in higher dimensions, the study of the dynamics is
far from fully understood, although some special classes have been widely
studied.

Usually the LV systems are classified in terms of algebraic properties of
its interaction matrix, such as cooperative (or competitive), conservative and
dissipative. Cooperative and competitive systems have been widely studied
by many authors like Smale [37], Hirsch [10–12], Zeeman [46, 47], Van Den
Driessche et al. [40], Hofbauer et al. [14], Smith [38] and Karakostas et al. [19].
Typically these systems have a global attractor consisting of fixed points and
connections between them.

In his work “Leçons sur la Théorie Mathématique de la Lutte pour la
Vie” [41] Volterra gave special attention to predator-prey systems and their
generalizations to food chain systems in n species, which fall in the class of
dissipative and conservative LV systems.

Although dissipative systems have been addressed in the pioneering work
of Volterra, this class has been the least studied. Volterra defined this sys-
tems looking for a generalization of the predator-prey model. Key references
in this field are the book of Volterra [41] and the work of Redheffer and col-
laborators [25–29]. Especially in [25] Redheffer establishes the conditions for

5



a matrix to be dissipative, and in [27] Redheffer et al. make a description
of the attractor of these systems. Guo et al. [8] studied the necessary and
sufficient conditions for which the real matrices of order 3 are dissipative.
Rocha Filho et al. [30] have a numerical algorithm, and a package for Maple
to obtain the positive diagonal matrix D, designated as Volterra multiplier,
such that QAD ≤ 0.

Redheffer et al. developed further the theory of dissipative LV systems,
introducing and studying the class of stably dissipative systems [27–29]. No-
tice that we call dissipative and stably dissipative to systems that Redheffer
et al. designated as admissible and stably admissible, respectively.

Conservative systems were first studied by Volterra in such a way that he
made a Hamiltonian characterization in the case where the interaction matrix
is skew-symmetric. Volterra proved that the dynamics of any n species con-
servative LV system can be embedded in a Hamiltonian system of dimension
2n.

In 1998 Waldyr M. Oliva et al. [6] give a re-interpretation for the Hamil-
tonian character of the dynamics of any conservative LV system in terms of
the existence of a Poisson structure on R

n
+ which makes the system Hamilto-

nian. Another interesting fact from [6], which emphasizes the importance of
studying Hamiltonian LV systems, is that the limit dynamics of any stably
dissipative LV system is described by a conservative LV system.

To study the evolution of behavioural strategies, the so-called replicator
equation introduced in 1978 by Taylor and Jonker [39], among others has
been studied by Hofbauer et al. [13], Schuster et al. [32], and Zeeman [44,45].

In 1981 J. Hofbauer [15] proved that the replicator equation for n strate-
gies corresponds to the LV equation for n− 1 populations.

This chapter is organized as follows. In section 1.1, we give the basic
definitions and properties of the LV systems. In section 1.2, we character-
ize the conservative LV systems and in section 1.3 the dissipative ones. In
section 1.4, for LV systems in general, we present a result about the exis-
tence of invariant foliations for the associated vector field. In this context,
for dissipative LV systems, we state a relation between these foliations and
the set of equilibria. Finally, in section 1.5, we recall some basic properties
of the replicator equation, its relation with the LV systems and the notion of
permanence.
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1.1 Definitions and Properties

We call LV equation to the following system of differential equations

dxi
dt

(t) = xi(t)

(
ri +

n∑

j=1

aijxj(t)

)
, i = 1, . . . , n, (1.1)

where xi(t) ≥ 0 represents the density of population i in time t and ri its
intrinsic rate of decay or growth. Each coefficient aij represents the effect
of population j over population i. If aij > 0 it means that population j
benefits population i. The square matrix A = (aij) ∈ Mn(R) is said to be
the interaction matrix of system (1.1).

The set

R
n
+ = {(x1, . . . , xn) ∈ R

n : xi ≥ 0, i = 1, . . . , n}.

is the phase space of (1.1).
There is a close relation between the study of the dynamical properties

of a LV system and the algebraic properties of its interaction matrix.
Given a matrix A ∈ Mn(R), we have the quadratic form QA : Rn → R

defined by QA(x) := xT Ax. For simplicity, when its clear from the context,
we simply write QA ≤ 0, meaning that QA(x) ≤ 0 for all x ∈ R

n.
Usually the LV systems (1.1) are classified in terms of its interaction

matrix.

Definition 1.1.1. We say that a LV system (1.1) with interaction matrix
A = (aij) ∈Mn(R) is:

a) conservative if there exists a positive diagonal matrix D such that AD
is skew-symmetric;

b) dissipative if there is a positive diagonal matrix D such that QAD ≤ 0.

Many properties of the LV systems can be geometrically expressed in
terms of its associated graph, constructed from the system’s interaction ma-
trix.

Definition 1.1.2. Given a matrix A = (aij) ∈ Mn(R) of a LV system, we
define its associated graph G(A) to have vertex set {1, . . . , n}, and to contain
an edge connecting vertex i to vertex j if and only if aij 6= 0 or aji 6= 0.

For example, given the matrix

A =




0 ∗ 0 0
∗ 0 ∗ ∗
0 ∗ 0 ∗
0 ∗ ∗ 0


 ,
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where ∗ represents non-zero real numbers, its associated graph is represented
in figure 1.1.

Figure 1.1: The associated graph G(A) of a LV system with interaction matrix A.

Conservative systems can be characterized in terms of its associated graph
as we can see by the next proposition due to Volterra [41].

Proposition 1.1.3. A LV system with interaction matrix A = (aij) ∈Mn(R)
is conservative if and only if

aii = 0, for all i ∈ {1, . . . , n},

aij 6= 0 ⇒ aijaji < 0, for all i 6= j,

and
ai1i2ai2i3 · · · aisi1 = (−1)saisis−1 · · · ai2i1ai1is , (1.2)

for all finite sequence (i1, . . . , is), with ir ∈ {1, . . . , n} for r = 1, . . . , s.

We can observe that condition (1.2) means that for each closed path in
the graph with an even (resp. odd) number of vertices, the product of the
corresponding coefficients to each edge when we follow the path in one way
is equal to the product (resp. minus the product) of these coefficients when
we follow the path on the other way.

For example, a system whose associated graph is the represented in fig-
ure 1.1 is conservative if and only if

a23a34a42 = −a24a43a32 ,

and conditions aii = 0 and aij 6= 0 ⇒ aijaji < 0 are satisfied for every
i, j ∈ {1, . . . , 4}.

Equilibrium points q ∈ R
n
+ of system (1.1) are the solutions of the linear

system

ri +
n∑

j=1

aijqj = 0, i = 1, . . . , n. (1.3)
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The existence of an equilibrium point in R
n
+ is related with the orbit’s

behaviour in R
n
+, as we can see by the following proposition (see [16] or [6],

for instance).

Proposition 1.1.4. System (1.1) admits an interior equilibrium point if and
only if int(Rn

+) contains α or ω-limit points.

We can then observe that the limit behaviour of the orbits is related
with the existence of equilibrium points. On the other hand, the following
result shows that the time average of the orbits is related to the values that
the coordinate functions take on the equilibrium points. In fact, if there
exists a unique interior equilibrium point and if the solution do not converge
to the boundary neither to infinity, then its time average converges to the
equilibrium point.

Proposition 1.1.5. Suppose that x(t) is an orbit in R
n
+ of the system (1.1)

such that 0 < m ≤ xi(t) ≤ L, for all i ∈ {1, . . . , n}. Then, there exists a
sequence (Tk)k∈N such that Tk → +∞ and an equilibrium point q ∈ R

n
+ such

that

lim
k→+∞

1

Tk

∫ Tk

0

x(t) dt = q.

Moreover, if system (1.1) has only one equilibrium point q ∈ R
n
+, then

lim
T→+∞

1

T

∫ T

0

x(t) dt = q.

Proof. A proof of this proposition can be seen in [6].

Observe that in cases where the interaction matrix of the system is singu-
lar, the equilibrium points for which the time average of the orbits converges
depend of the initial condition.

1.2 Conservative Systems

One of the main goals of Volterra in studying the class of conservative systems
was the “mechanization” of biology. Looking for a variational principle of the
system, Volterra developed a Hamiltonian formulation in the case where the
interaction matrix is skew-symmetric, although this procedure has the cost
of doubling the dimension of the system.

Conservative systems of classical mechanics can be seen in the context of
Hamiltonian formulation, whose abstract version is based on the concept of
simplectic structure, i.e., a closed nondegenerate differential 2-form.
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A simplectic structure ω defined in an open set M ⊆ R
n can be repre-

sented in the form

ω =
n∑

i,j=1

aij(x) dxi ∧ dxj , (1.4)

satisfying

(i) function x 7→ A(x) = (aij(x)) is smooth with values in the space of
matrices;

(ii) A(x)T = −A(x);

(iii) A(x) is nonsingular (ω is nondegenerate);

(iv)
∂aij
∂xk

+
∂ajk
∂xi

+ ∂aki
∂xj

= 0 , for all i < j < k (ω is closed, dω = 0).

Given u, v ∈ R
n and x ∈ M , the 2-form (1.4) induces the bilinear skew-

symmetric form
ωx(u, v) = uTA(x) v .

From the nondegeneracy of ω, we can state the following proposition.

Proposition 1.2.1. Given a function H : M → R, there exists a unique
vector field X on M such that

ωx (X(x), v) = DHx(v) ,

for all x ∈M and v ∈ R
n .

In these conditions XH := X is said to be the simplectic gradient of H or
the Hamiltonian vector field.

Observe that for the simplectic structure (1.4)

XH(x)
TA(x) v = ∇H(x) v

⇔ ∇H(x) = −A(x)XH(x)

⇔ XH(x) = −A−1(x)∇H(x) .

In these conditions, the next proposition follows.

Proposition 1.2.2. H is constant along the orbits of XH .

Proof. Since A(x) is skew-symmetric, follows that

DHx (XH(x)) = ωx (XH(x), XH(x))

= XH(x)
TA(x)XH(x) .

= 0 .
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Note that if matrixA(x) is constant and nonsingular (and skew-symmetric),
then

ωx(u, v) = uTAv (1.5)

is a simplectic structure in R
n.

For example, if A =

[
0 −In
In 0

]
∈ M2n(R) and (x, y) ∈ R

n × R
n, then

the Hamiltonian vector field of the simplectic structure (1.5) associated to
H(x, y) is

XH(x, y) =

(
−
∂H

∂y
(x, y),

∂H

∂x
(x, y)

)

=

(
−
∂H

∂y1
, . . . ,−

∂H

∂yn
,
∂H

∂x1
, . . . ,

∂H

∂xn

)
∣∣
(x,y)

,

whence we get the classical Hamiltonian system

{ dx
dt

= −∂H
∂y

dy
dt

= ∂H
∂x

.

A generalization of the Hamiltonian system’s theory is based on the notion
of Poisson brackets.

Definition 1.2.3. A Poisson bracket in a smooth manifold M is given by
a bilinear application {. , .} : C∞(M)× C∞(M) −→ C∞(M) in the space of
smooth functions that satisfies:

i) {f1, f2} = −{f2, f1} (skew-symmetry),

ii) {f1f2, g} = f1{f2, g}+ {f1, g}f2 (Leibnitz identity),

iii) {f1, {f2, f3}}+ {f2, {f3, f1}}+ {f3, {f1, f2}} = 0 (Jacobi identity).

Definition 1.2.4. Given a function h ∈ C∞(M) we define the vector field
Xh by

Xh(f) = {f, h} , for all f ∈ C∞(M) . (1.6)

In that conditions Xh is said to be the Poisson gradient of h.

We call Hamiltonian system defined in a Poisson manifold M to the flow
associated to the equation

dx

dt
= Xh(x) .

For example, if A is a skew-symmetric (constant) matrix,

{f, g} =
n∑

i,j=1

aij
∂f

∂xi

∂g

∂xj
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defines a Poisson structure in R
n.

Suppose ω is a simplectic structure in M . Defining

{f, g}(x) = ωx(Xf (x), Xg(x)) ,

with Xf (x) and Xg(x) simplectic gradients, we have that {. , .} is a Pois-
son structure. Moreover, the simplectic gradient coincides with the Poisson
gradient since

{f, h}(x) = ωx(Xf (x), Xh(x)) = Df(Xh) = Xh(f) .

In this sense, the concept of Poisson structure generalizes the concept of
simplectic structure.

If ωx(u, v) = uTA(x) v, then

{f, g}(x) =
n∑

i,j=1

a−1
ij (x)

∂f

∂xi

∂g

∂xj
,

where a−1
ij (x) is the (i, j) entry of the inverse matrix of A(x).

Given a LV system (1.1) with an equilibrium point q ∈
∫
(Rn

+) and inter-
action matrix A ∈Mn(R), we can write the LV system (1.1) as

dx

dt
= XA,q(x) , (1.7)

where XA,q(x) = x ∗ A (x − q) and ∗ denotes point-wise multiplication of
vectors in R

n. We designate by XA,q the LV vector field defined by the
o.d.e. (1.7).

Theorem 1.2.5. Let A ∈ Mn(R) be a skew-symmetric nonsingular matrix.
Then A−1 is skew-symmetric,

ω =
n∑

i,j=1

−
a−1
ij

xixj
dxi ∧ dxj

defines a simplectic structure in
∫
(Rn

+) and the simplectic gradient of

h =
n∑

i=1

(xi − qi log xi)

is the LV vector field XA,q.

Proof. A proof of this theorem can be seen in [24].
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Theorem 1.2.6. Let A ∈Mn(R) be a skew-symmetric matrix. Then

{f, g}(x) =
n∑

i,j=1

aij xixj
∂f

∂xi

∂g

∂xj
,

defines a Poisson structure in R
n
+ and the Poisson gradient of

h =
n∑

i=1

(xi − qi log xi)

is the LV vector field XA,q.

Proof. A proof of this theorem can be seen in [6].

Observe that if A is nonsingular, the Poisson structure of Theorem 1.2.6
corresponds to the simplectic structure of Theorem 1.2.5 .

Definition 1.2.7. We say that a graph G is a forest if G = G1 ∪ · · · ∪ Gr

(disjoint union), where each subgraph Gi is a tree, i.e, has no cycles.

Combining these concepts with Volterra criteria for a system to be con-
servative (see Proposition 1.1.3), Oliva et al. [6] state the following corollary.

Corollary 1.2.8. Suppose LV system (1.7) has an equilibrium in
∫
(Rn

+). If
the system’s interaction matrix A = (aij) ∈Mn(R) satisfies

aii = 0, for all i ∈ {1, . . . , n},

aij 6= 0 ⇒ aijaji < 0, for all i 6= j ,

and its associated graph is a forest, i.e., has no cycles, then the system is
conservative.

1.3 Dissipative Systems

Definition 1.3.1. We say that the LV system (1.7), the matrix A, or the
vector field XA,q , is dissipative if and only if there exists a positive diagonal
matrix D such that QAD(x) = xTADx ≤ 0 for every x ∈ R

n.

Remark 1.3.2. Notice that QAD(x) = xTADx ≤ 0 for every x ∈ R
n is

equivalent to
QD−1A(x) = xTD−1Ax ≤ 0 ,

because

QD−1A(x) = xTD−1Ax = (D−1x)TAD (D−1x) = QAD(D
−1x) ≤ 0 .
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Proposition 1.3.3. When XA,q is dissipative, for any positive diagonal ma-
trix D = diag(d1, . . . , dn) such that QAD ≤ 0, (1.7) admits the Lyapunov
function h : Rn

+ −→ R defined by

h(x) =
n∑

i=1

xi − qi log xi
di

, (1.8)

which decreases along orbits of XA,q .

Proof. Let D = diag(d1, . . . , dn) be a positive diagonal matrix such that
QAD ≤ 0. The derivative of h along orbits of XA,q is given by

dh

dt
=

n∑

i,j=1

aij
di

(xi − qi)(xj − qj) = (x− q)TD−1A (x− q) ≤ 0.

The last inequality follows by Remark 1.3.2.

Given a matrix A, we can define the symmetric and skew-symmetric parts
of A by

Asym =
A+ AT

2
and Askew =

A− AT

2
,

and the following decompositions hold,

A = Asym + Askew and AT = Asym − Askew .

The following theorem is a characterization of dissipative matrices.

Theorem 1.3.4. Let A ∈ Mn(R) be a dissipative matrix and D a positive
diagonal matrix such that QAD ≤ 0. Suppose aii = 0 for all i ∈ {1, . . . , k}
and aii < 0 for all i ∈ {k+1, . . . , n}. Then there exists matrices R ∈Mk(R)
skew-symmetric and U ∈Mn−k(R) such that QU ≤ 0 and

AD =

[
R S

−ST U

]
,

Notice that

(AD)sim =

[
0 0
0 U sim

]
.

Proof. A proof of this theorem can be seen in [24].

Observe that the reciprocal of this Theorem 1.3.4 is also valid. If there
exists a positive diagonal matrix D such that

AD =

[
R S

−ST U

]
,
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with R and U in the conditions of the theorem, then A is dissipative.

1.4 Invariant Foliations

Consider a LV field XA,q with rank(A) = k, for some 1 ≤ k ≤ n. Let
W ∈M(n−k)×n(R) be a (n− k)× n matrix whose rows form a basis of

Ker
(
AT
)
= {x ∈ R

n : xTA = 0 } .

Define the map g : Rn
+ → R

n−k, g(x) = W log x, where

log x = (log x1, . . . , log xn)
T .

We say that a map g : Rn
+ → R

n−k is a submersion if for all x ∈ R
n
+ its

derivative at x is surjective.

Proposition 1.4.1. The map g : Rn
+ → R

n−k is a submersion.

Proof. The jacobian matrix of g is Dgx = W D−1
x , where the matrix

D−1
x = diag

(
1
x1
, . . . , 1

xn

)
. By the definition of W , Dgx has maximal rank

n− k. Hence Dgx : Rn → R
n−k is surjective.

We denote by FA the pre-image foliation, whose leaves are the pre-images
g−1(c) of g. By a classical theorem on Differential Geometry, each non-empty
pre-image g−1(c) is a submanifold of dimension k. Recall that the dimension
of a foliation is the common dimension of its leaves.

Definition 1.4.2. A foliation F is said to be invariant under a vector field
X, and we say that F is X-invariant, if X(x) ∈ TxF for every x, where TxF
denotes the tangent space at x to the unique leaf of F through x.

This definition is equivalent to say that the flow of X preserves the leaves
of F .

Proposition 1.4.3. The foliation FA is XA,q-invariant with

dim(FA) = rank(A) .

Proof. We have

Dgx (XA,q(x)) = Dgx (DxA(x− q))

= WD−1
x DxA(x− q)

= WA(x− q) = 0 ,
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and the last equality follows by the definition of W . Hence XA,q(x) ∈ TxFA

and FA is XA,q-invariant.

The following proposition is a simple but key observation.

Proposition 1.4.4. If A ∈Mn×n(R) is dissipative and D is a positive diag-
onal matrix such that QAD ≤ 0 then Ker(A) = DKer(AT ).

Proof. Assume first that QA ≤ 0 on R
n and consider the decomposition

A =M +N with M = (A+AT )/2 and N = (A−AT )/2. Clearly Ker(M)∩
Ker(N) ⊆ Ker(A). On the other hand, if v ∈ Ker(A) then vT M v = vTAv =
0. Because QM = QA ≤ 0 this implies that M v = 0, i.e., v ∈ Ker(M).
Finally, since N = A−M , v ∈ Ker(N). This proves that Ker(A) = Ker(M)∩
Ker(N). Similarly, one proves that Ker(AT ) = Ker(M) ∩ Ker(N). Thus
Ker(A) = Ker(AT ).

In general, if QAD ≤ 0, we have Ker((AD)T ) = Ker(DAT ) = Ker(AT ),
and Ker(AD) = D−1Ker(A). Thus, from the previous case applied to AD
we get D−1Ker(A) = Ker(AT ).

Considering a LV system (1.7), we see that the set of equilibrium points
of XA,q is the affine space

EA,q := {x ∈ R
n
+ : A(x− q) = 0 } . (1.9)

Theorem 1.4.5. Given a dissipative LV system XA,q , each leaf of FA inter-
sects transversely EA,q in a single point.

Proof. A proof of this theorem can be seen in [24].

1.5 Replicator Equation

In 1978 Taylor and Jonker [39] introduced a system of differential equations
that in 1983 Schuster and Sigmund [33] designated as the replicator equation.
These systems have been studied essentially in the context of EGT.

This equation models the frequency evolution of certain strategical be-
haviours within a biological population. In fact, the replicator equation says
that the logarithmic growth of the usage frequency of each behavioural strat-
egy is directly proportional to how well that strategy fares within the popu-
lation.

In 1981 Hofbauer [15] stated an important relation between the LV sys-
tems and the replicator equation. In fact, he proved the equivalence of both
systems (see Theorem 1.5.4 below).
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In this section we present some elementary definitions and properties of
the replicator equation that we will address later in chapter 4. For a more
detailed introduction on the subject see [16] for instance.

Consider a population where individuals interact with each other accord-
ing to a set of n possible strategies. The state of the population concerning
this interaction is fully described by a vector x = (x1, . . . , xn) ∈ R

n, where
xi represents the frequency of individuals with strategy i, for i = 1, . . . , n.
Hence xi ≥ 0 for all i and

∑n
i=1 xi = 1. The set of all population states is

the simplex ∆n−1.

If an individual using strategy i interacts with an individual using strategy
j, a coefficient aij represents the average payoff for that interaction. Let
A = (aij) ∈ Mn(R

n) be the matrix consisting of these aij’s. Assuming
random encounters between individuals of that population,

(Ax)i =
n∑

k=1

aikxk

is the average payoff for strategy i and

xTAx =
n∑

i=1

n∑

k=1

aikxixk

is the global average payoff of all population strategies. The growth rate
dxi
dt

xi

of the frequency of strategy i are equal to the payoff difference (Ax)i−x
TAx,

which yields the replicator equation

dxi
dt

= xi
(
(Ax)i − xTAx

)
, i = 1, . . . , n , (1.10)

defined on the simplex

∆n−1 = {(x1, . . . , xn) ∈ R
n :

n∑

j=1

xj = 1, xi ≥ 0 , i = 1, . . . , n} .

Proposition 1.5.1. The simplex ∆n−1 is invariant under (1.10).

Proof. The n-plane containing ∆n−1 given by
∑n

i=1 xi = 1 is invariant be-
cause

d

dt

(
n∑

i=1

xi

)
=

n∑

i=1

dxi
dt

=
n∑

i=1

xi(Ax)i −
n∑

i=1

xi

︸ ︷︷ ︸
=1

n∑

j=1

xj(Ax)j = 0 .
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Similarly, given any q-dimensional face σ of ∆n−1, the q-plane containing
σ is invariant.

Based on this result, from now on, we shall only consider the restriction
of (1.10) to ∆n−1.

Proposition 1.5.2. For xj > 0 we have the “replicator quotient rule”

d

dt

(
xi
xj

)
=
xi
xj

((Ax)i − (Ax)j) .

Proof.

d

dt

(
xi
xj

)
=

dxi
dt
xj − xi

dxj
dt

x2j

=
xixj

(
(Ax)i − xTAx

)
− xixj

(
(Ax)j − xTAx

)

x2j

=
xi
xj

((Ax)i − (Ax)j) .

Notice that the equilibrium points of (1.10) in int(∆n−1) are the solutions
of (Ax)1 = · · · = (Ax)n and

∑n
i=1 xi = 1 satisfying xi ≥ 0 for i = 1, . . . , n .

Lemma 1.5.3. The addition of a constant cj to all entries in the jth-column
of A ∈Mn(R) does not change (1.10) on ∆n−1.

Proof. Consider the matrix B = A + C, where matrix C have zeros in all
entries except in column j whose entries are all equal to a constant cj. For
each i we have

dxi
dt

= xi
(
(Bx)i − xTB x

)

= xi

(
(Ax)i + cjxj − xTAx−

n∑

k=1

cjxkxj

)

= xi


(Ax)i − xTAx+ cjxj(1− xj)−

n∑

k=1
k 6=j

cjxkxj




= xi


(Ax)i − xTAx+ cjxj




n∑

k=1
k 6=j

xk −
n∑

k=1
k 6=j

xk







= xi
(
(Ax)i − xTAx

)
.
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Considering a constant matrix C ∈Mn(R) with equal rows, the previous
lemma says that adding C ∈ Mn(R) to A ∈ Mn(R) does not change the
dynamics of system (1.10) on ∆n−1.

We have that the replicator equation is a cubic equation on the compact
set ∆n−1 while the LV equation is quadratic on R

n
+. However, Hofbauer in [15]

proved that the replicator equation in n variables x1, . . . , xn is equivalent to
the LV equation in n− 1 variables y1, . . . , yn−1 (see also [16]).

Theorem 1.5.4. There exists a differentiable invertible map from
Ŝn = {x ∈ ∆n−1 : xn > 0} onto R

n−1
+ mapping the orbits of the replica-

tor equation
dxi
dt

= xi
(
(Ax)i − xTAx

)
, i = 1, . . . , n , (1.11)

to time re-parametrization of the orbits of the LV equation

dyi
dt

= yi

(
ri +

n−1∑

j=1

a′ijyj

)
, i = 1, . . . , n− 1 , (1.12)

where ri = ain − ann and a′ij = aij − anj .

In Proposition 1.1.4 we have seen that a LV system admits an ω-limit
point in int(Rn

+) if and only if it has an equilibrium point in int(Rn
+). Hence,

from Theorem 1.5.4 we have that

Proposition 1.5.5. If the replicator equation (1.11) has no equilibrium point
in int(∆n−1), then every solution converges to the boundary of ∆n−1.

We have also a natural generalization of Theorem 1.1.5 in LV systems to
the replicator equation.

Theorem 1.5.6. If the replicator equation (1.11) admits a unique equi-
librium point q ∈ int(∆n−1), and if the ω-limit of the orbit of x(t) is in
int(∆n−1), then

lim
t→∞

1

T

∫ T

0

x(t) dt = q .

Now we introduce the concept of permanence that is a stability notion
introduced by Schuster et al. in [31].

Definition 1.5.7. A replicator equation (1.11) defined on ∆n−1 is said to be
permanent if there exists δ > 0 such that, for all x ∈ int(∆n−1),

lim inf
t→∞

d
(
ϕt(x), ∂∆n−1

)
> δ ,

where ϕt denotes the flow determined by system (1.11).
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A system to be permanent means that sufficiently small perturbations
cannot lead any species to extinction.

The following theorem due to Jansen [18] is also valid to LV systems.

Theorem 1.5.8. If there is a point p ∈ int(∆n−1) such that for all boundary
equilibria x ∈ ∂∆n−1,

pT Ax > xT Ax , (1.13)

then X is permanent.

This Theorem 1.5.8 is a corollary of the following theorem which gives
sufficient conditions for a system to be permanent. This result is stated and
proved by Sigmund and Hofbauer in [16, Theorem 12.2.1].

Theorem 1.5.9. Let P : ∆n−1 −→ R be a smooth function such that P = 0
on ∂∆n−1 and P > 0 on int(∆n−1). Assume there is a continuous function
Ψ : ∆n−1 −→ R such that

(1) for any orbit x(t) in int(∆n−1), d
dt
logP (x(t)) = Ψ(x(t)) ,

(2) for any orbit x(t) in ∂∆n−1,
∫ T

0
Ψ(x(t)) dt > 0 for some T > 0.

Then the vector field X is permanent.
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Chapter 2

Stably Dissipative

Lotka-Volterra Systems

In most cases in real world, when we are modelling a phenomenon, we may not
know exactly the interaction matrix of the system. So, its important to study
systems that maintain their properties even when they slightly changed, i.e.,
systems that persist to small perturbations.

We study perturbations that do not change the system’s associated graph.
These systems are designated as stably dissipative systems.

The notion of stably dissipativeness is due to Redheffer et al. whom
in a set of papers [25–29] studied the asymptotic stability of this class of
systems, under the name of stably admissible LV systems. Redheffer and his
collaborators designated by admissible a class of matrices that Volterra firstly
classified as dissipative (see [41]).

In 2010, Zhao and Luo[48] presented a classification of stably dissipative
systems in dimension five and studied their possible different dynamics.

In [7] we have proved that for the class of stably dissipative LV systems
the associated graph completely determines the rank of its defining matrix.
Moreover, the rank of its defining matrix is the dimension of the associated
invariant foliation.

This chapter is organized as follows. In section 2.1, we introduce the
formal definition of stably dissipative systems, i.e., systems that are dissipa-
tive and that maintain their properties for small enough perturbations. In
section 2.2, we present the Redheffer reduction algorithm and explain how
it runs on the graph associated to an interaction matrix of a LV system. In
section 2.3, we define stably dissipative graphs and we will see how to charac-
terize stably dissipative matrices that share the same graph. In section 2.4,
we prove that the rank of the defining matrix of a stably dissipative LV sys-
tem is completely determined by the system’s graph. In section 2.5, based
on the properties of the stably dissipative LV systems in terms of the rank of
its associated graph, we state a simplified reduction algorithm that allows us
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to derive properties on stably dissipative graphs. Finally, in section 2.6, we
define the trimming operation on a stably dissipative graph, which preserves
its stably dissipativeness.

2.1 Stably Dissipative Matrices

Given a matrix A = (aij) ∈ Mn(R) we call admissible perturbation of A to
any other matrix Ã = (ãij) ∈Mn(R) such that

ãij ≈ aij and ãij = 0 ⇔ aij = 0.

By definition, admissible perturbations Ã of A are perturbations that
maintain the same graph, i.e., such that G(A) = G(Ã).

Definition 2.1.1. A matrix A ∈ Mn(R) is said to be stably dissipative if
any small enough admissible perturbation Ã of A is dissipative, i.e., if there
exists ε > 0 such that for any admissible perturbation Ã of A,

max
1≤i,j≤n

|aij − ãij| < ε ⇒ Ã is dissipative.

A LV system (1.7) is said to be stably dissipative if its interaction matrix is
stably dissipative.

Given a dissipative LV system (1.7) with interaction matrix A, we can
choose a positive diagonal matrix D such that QAD ≤ 0. However, for
stably dissipative systems we have an important additional property due to
Redheffer and Zhou [29]. This lemma plays a key role in the theory of stably
dissipative systems.

Lemma 2.1.2. Let A ∈Mn(R) be a stably dissipative matrix. Then for any
choice of a positive diagonal matrix D = diag(d1, . . . , dn) such that QAD ≤ 0,
the following condition holds

n∑

i,j=1

djaijwiwj = 0 ⇒ aiiwi = 0, for all i = 1, . . . , n .

Given a stably dissipative matrix A ∈ Mn(R), we have that aii ≤ 0 for
all i. To study necessary and sufficient conditions for a matrix to be stably
dissipative we consider two different cases: aii < 0 for all i, or else there are
some aii = 0.

These two cases can be seen in more detail in [48]. However we present
some theorems, together with some useful lemmas, that characterize stably
dissipative matrices, as follows.
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Theorem 2.1.3. If aii < 0 for all i ∈ {1, . . . , n}, then A ∈ Mn(R) is stably
dissipative if and only if there exists a positive diagonal matrix D such that
QAD < 0.

Proof. A proof of this theorem can be seen in [7].

Lemma 2.1.4. Let i and j be adjacent vertices of G(A) with A ∈ Mn(R)
stably dissipative. Then aiiajj > aijaji.

We denote by (i, j) the edge that connects vertices i and j.

Lemma 2.1.5. Let A ∈ Mn(R) be a stably dissipative matrix. Then, every
cycle in G(A) as at least an edge (i, j) such that aii < 0 and ajj < 0, for
some i, j ∈ {1, . . . , n}.

Proofs of Lemma 2.1.4 and Lemma 2.1.5 can be seen in [27].

Theorem 2.1.6. Let A ∈ Mn(R) be a matrix such that aii = 0 for all
i ∈ {1, . . . , n} or there exists only one k ∈ {1, . . . , n} such that akk < 0 and
aii = 0 for all i 6= k. Then, A is stably dissipative if and only if (i) G(A) has
no cycles and (ii) aij 6= 0 ⇒ aijaji < 0, for all i 6= j.

Proof. Given A ∈ Mn(R) stably dissipative, by Lemma 2.1.4 and
Lemma 2.1.5, (i) and (ii) hold because there is at most one aii < 0.

Suppose now that (i) and (ii) are satisfied. Since G(A) has no cycles, at
most is has n − 1 edges. Thus, by (ii), we can choose a positive diagonal
matrix D = diag(d1, . . . , dn) such that diaij + djaji = 0 for all aij 6= 0.
Hence

∑n
i,j=1 diaijwiwj = dkakkw

2
k ≤ 0 and A is dissipative. We can easily

see that an arbitrary small enough perturbation Ã of A also satisfies (i) and
(ii). Therefore, Ã is dissipative, and so we can conclude that A is stably
dissipative.

In the case where there exists more than one i such that aii < 0 we
have also a theorem that characterizes stably dissipative matrices (see The-
orem 2.1.10 below). We present first two useful lemmas.

Given a graph G, we can denote it by G = (V,E), where V is the set of
all of its vertices and E the set of all of its edges.

Lemma 2.1.7. Let G = (V,E) be a graph. If G has no cycles, then there
exists a partition {V0, . . . , Vℓ} of V satisfying:

(i) V0 is a set of vertices such that for each connected component of the
graph, V0 contains exactly one vertex which is an endpoint of a single
edge of the connected component;

(ii) for all j ∈ {1, . . . , ℓ} and for all i ∈ Vj, there exists one and only one
i′ ∈ Vj−1 such that (i, i′) ∈ E.

23



Proof. If G is a graph with no cycles, then the graph is a forest. So, on each
connected component of the graph, consider one vertex that is an endpoint of
a single edge in E, and define V0 to be the set of all those vertices. Note that
for each connected component of the graph there is more then one vertex
that is an endpoint of a single edge in E but we consider only one in each
connected component of the graph.

Recursively, for j ∈ {1, . . . , ℓ}, we consider the set Vj of all vertices i such
that there exists an edge that connects it to a vertex i′ in the set Vj−1.

This recursive procedure of defining the sets Vj must finish because the
vertices are finite.

Since V0 has only one vertex in each connected component of the graph,
by definition V1 has also only one vertex in the same connected component (if
not, the vertex in V0 couldn’t be an endpoint of a single edge in E). Naturally,
the vertices in V2, for each connected component of the graph, are linked with
the only one vertex in V1. Suppose now that for some j ∈ {3, . . . , ℓ}, and
some vertex i in Vj there exists more then one vertex i′ in Vj−1 such that
(i, i′) ∈ E. This would imply that the graph G had a cycle.

Definition 2.1.8. Given a matrix A ∈ Mn(R) and a subset I ⊆ {1, . . . , n},
we denote by AI = (aij)(i,j)∈I×I the submatrix I × I of A.

Lemma 2.1.9. Let A ∈ Mn(R) be a stably dissipative matrix. Then, for all
I ⊆ {1, . . . , n}, the submatrix AI is stably dissipative.

Proof. Let I be a subset of {1, . . . , n}. Let ÃI be a perturbation of AI .
Consider Ã the matrix whose entries (i, j) ∈ I × I are the corresponding
entries of ÃI and for (i, j) /∈ I × I, ãij = aij. Clearly, Ã is a perturbation
of A. So, there exists a positive diagonal matrix D such that QÃD ≤ 0.
Considering now DI the submatrix I × I of D, we have that QÃIDI

≤ 0,
which concludes the proof.

Theorem 2.1.10. Let A ∈Mn(R) be a matrix such that aii = 0 for all i ≤ k
and aii < 0 for all i > k, for some k ∈ {1, . . . , n}. Let M = (aij) be the
submatrix of A corresponding to k + 1 ≤ i, j ≤ n and let G̃(A) be the graph
obtained from G(A) removing all the edges (i, j) such that i, j > k. Then,
A is stably dissipative if and only if (i) G̃(A) has no cycles and (ii) there
exists a positive diagonal matrix D = diag(d1, . . . , dn) such that QMD0 < 0
and djaij + diaji = 0 for i ≤ k or j ≤ k, where D0 = diag(dk+1, . . . , dn).

Proof. Given A ∈ Mn(R) stably dissipative, by Lemma 2.1.9, M is stably
dissipative. Then, by Theorem 2.1.3, Lemma 2.1.4 and Lemma 2.1.5 we
obtain (i) and (ii).

Suppose now that (i) and (ii) are satisfied. By (ii), A is obviously dis-
sipative. Since G̃(A) has no cycles, we can consider, as in Lemma 2.1.7,
{V0, . . . , Vℓ} partition of V , where V is the set of all vertices of G̃(A).
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Let Ã = (ãij) be a small enough perturbation of A = (aij) and consider
the positive diagonal matrix D̃ = diag(d̃1, . . . , d̃n) recursively defined by

d̃i =





di if i ∈ V0

−d̃i′
ãii′
ãi′i

if i ∈ Vj , j 6= 0
,

for j ∈ {1, . . . , ℓ}, where i′ ∈ Vj−1 is the unique vertex of G̃(A) such that
(i, i′) ∈ E.

Since D̃ is a perturbation of D, we have

Q[(ÃD̃)ij]
k<i,j≤n

< 0

and
d̃iãi′i + d̃i′ ãii′ = 0 , for all i ≤ k or j ≤ k .

Hence QÃD̃ ≤ 0.

Finally we present a useful property for the stably dissipative systems.

Lemma 2.1.11. Let D be a positive diagonal matrix. If A is a stably dissi-
pative matrix, then AD and D−1A are also stably dissipative.

Proof. Since A is dissipative, there exists a positive diagonal matrix D1 such
that QAD1 ≤ 0 , which is equivalent to Q(AD)(D−1D1) ≤ 0 . Hence AD is
dissipative. Analogously, since there exists a positive diagonal matrixD1 such
that QAD1 ≤ 0, by Remark 1.3.2 we have QD−1

1 A ≤ 0, which is equivalent to
Q(D−1

1 D)(D−1A) ≤ 0, and again by Remark 1.3.2 we have Q(D−1A)(D−1
1 D)−1 ≤ 0,

which shows that D−1A is dissipative.
Let B be a small enough admissible perturbation of AD. Then there

exists admissible perturbations Ã and D̃ of A and D, respectively, such that
B = ÃD̃. Since A is stably dissipative, we have that Ã is dissipative. Then,
there exists a positive diagonal matrixD2 such that QÃD2

≤ 0 , which iimplies

Q(ÃD̃)(D̃−1D2)
≤ 0 . Hence ÃD̃ is dissipative.

A similar argument proves that D−1A is stably dissipative.

2.2 Redheffer Reduction Algorithm

As stated before in Proposition 1.3.3, when A is dissipative, the LV sys-
tem (1.7) admits the Lyapunov function

h(x) =
n∑

i=1

xi − qi log xi
di

, (2.1)
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which decreases along the orbits of XA,q.

Lemma 2.2.1. If q ∈ int(Rn
+), then h is a proper function.

Proof. For each i = 1, . . . , n consider hi : R+ → R defined by

hi(xi) =
1

di
(xi − qi log xi) .

We have that

lim
xi→0+

hi(xi) = +∞ , lim
xi→+∞

hi(xi) = +∞ ,

and hi reaches its minimum at xi = qi . Hence hi is a proper function.
Consider now h̃ : Rn

+ → R defined by

h̃(x) =
n∑

i=1

(hi(xi)− hi(qi)) .

We have that h̃(x) ≥ 0 for all x ∈ R
n
+ . Hence, given any non-negative

constant c,

h̃−1 (]−∞, c]) ⊆
n∏

i=1

h−1
i ([0, c]) .

Since each hi is proper, h−1
i ([0, c]) is compact. Hence

∏n
i=1 h

−1
i ([0, c]) is

compact. Since h̃−1 (]−∞, c]) is closed, we have that h̃ is a proper function.
Hence h = h̃+

∑n
i=1 hi(qi) is a proper function.

From now on, in this section, we will assume that q ∈ int(Rn
+).

Since h is a proper function, XA,q determines a complete semi-flow

φt
A,q : R

n
+ −→ R

n
+ ,

defined for all t ≥ 0.

Definition 2.2.2. We call attractor of the LV system (1.7) to the following
topological closure

ΛA,q := ∪x∈Rn+
ω(x) ,

where ω(x) is the ω-limit of x by the semi-flow {φt
A,q : R

n
+ → R

n
+}t≥0.

We need the following classical theorem (see [20, Theorem 2]).

Theorem 2.2.3 (LaSalle). Given a vector field f(x) on a manifold M , con-
sider the autonomous o.d.e. on M ,

x′ = f(x). (2.2)
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Let h :M → R be a smooth function such that

1. h is a Lyapunov function, i.e., the derivative of h along the flow satisfies
ḣ(x) := Dhxf(x) ≤ 0 for all x ∈M .

2. h is bounded from below.

3. h is a proper function, i.e. {h ≤ a} is compact for all a ∈ R.

Then (2.2) induces a complete semi-flow on M such that the topological clo-
sure of all its ω-limits is contained in the region where the derivative of h
along the flow vanishes, i.e.,

∪x∈Mω(x) ⊆ {x ∈M : ḣ(x) = 0}.

Since h is a Lyapunov function for a dissipative LV system (1.7), from
Theorem 2.2.3 we can deduce the following result about the attractor.

Proposition 2.2.4. Given a dissipative LV system with interaction matrix
A ∈ Mn(R), an equilibrium q ∈ int(Rn

+), and a positive diagonal matrix
D = diag(d1, . . . , dn) such that QAD ≤ 0, we have

ΛA,q ⊆
{
x ∈ R

n
+ : QAD

(
D−1(x− q)

)
= 0

}
.

Proof. By Theorem 2.2.3 the attractor ΛA,q is contained in the set where
ḣ(x) = 0. The conclusion follows by the proof of Proposition 1.3.3 and
Remark 1.3.2.

Redheffer et al. [25–29] have characterized the class of stably dissipative
systems and its attractor ΛA,q in terms of the graph G(A). In particular,
they described a simple reduction algorithm, running on the graph G(A),
that “deduces” every restriction of the form ΛA,q ⊆ {x : xi = qi}, 1 ≤ i ≤ n,
that holds for every stably dissipative system with the same associated graph
G(A). To start this algorithm they use Lemma 2.1.2, which plays a key role
in the theory of stably dissipative systems.

An immediate consequence of Proposition 2.2.4 and Lemma 2.1.2 is that

ΛA,q ⊆ {x ∈ R
n
+ : xi = qi} (2.3)

for every i = 1, . . . , n such that aii < 0.
A species i is said to be of type • to state that ΛA,q ⊆ {x : xi = qi}

holds. Similarly, a species i is said to be of type ⊕ to state that ΛA,q ⊆
{x : X i

A,q(x) = 0}, which means {xi = const.} is an invariant foliation under
φt
A,q : ΛA,q → ΛA,q. Otherwise, a species i is said to be of type ◦, meaning

that we don’t know nothing about species i (at that moment).
This should be interpreted as a collection of statements about the attrac-

tor ΛA,q.
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Proposition 2.2.5. Given neighbour vertices j, ℓ in the graph G(A),

(a) If j is of type • or ⊕ and all of its neighbours are of type •, except for
ℓ, then ℓ is of type •;

(b) If j is of type • or ⊕ and all of its neighbours are of type • or ⊕, except
for ℓ, then ℓ is of type ⊕;

(c) If j is of type ◦ and all of its neighbours are of type • or ⊕, then j is
of type ⊕.

Proof. The proof involves the manipulation of algebraic relations holding on
the attractor. To simplify the terminology we will say that some algebraic
relation holds to mean that it holds on the attractor.

Observe that if j is of type • then xj = qj, and if j is of type ⊕ then
ajj = 0.

If j is of type • or ⊕ we have that d
dt
xj = 0. Then, by (1.7), we obtain

aj1(x1 − q1) + · · ·+ ajn(xn − qn) = 0 . (2.4)

Let j, ℓ be neighbour vertices in the graph G(A).

Let us prove (a). If j is of type • or ⊕ and all of its neighbours are of
type •, except for ℓ, then from 2.4 we obtain

ajℓ(xℓ − qℓ) = 0 ,

from which follows that xℓ = qℓ because ajℓ 6= 0 , which proves (a).

Let us prove (b). If j is of type • or ⊕ and all of its neighbours are of
type • or ⊕, except for ℓ, then from 2.4 we obtain

ajℓ(xℓ − qℓ) = C ,

for some constant C. Hence xℓ is constant, which proves (b).

Let us prove (c). Suppose j is of type ◦ and all of its neighbours are of
type • or ⊕. By (1.7) we have that

dxj
dt

= xj

n∑

k=1

ajk(xk − qk) .

Since all neighbours of j are of type • or ⊕ we obtain

dxj
dt

= xj C ,

for some constant C. Hence

xj = B0 e
Ct ,
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where B0 = xj(0). Since the system is dissipative we have that the constant
C must be 0. Hence xj is constant, which proves (c).

Based on these facts, Redheffer et al. introduced a reduction algorithm
on the graph G(A) to derive information on the specie’s types of a stably
dissipative LV system (1.7).

Since aii ≤ 0 for all i, before starting the reduction algorithm, there is an
initial step that consists in colouring the vertices of the graph G(A) according
to the following rule.

Rule 1. Colour in black, •, every vertex i ∈ {1, . . . , n} such that aii < 0,
and in white, ◦, all other vertices, i.e., every vertex i ∈ {1, . . . , n} such that
aii = 0.

The reduction procedure consists of the following rules, corresponding to
valid inference rules:

Rule 2. If j is a • or ⊕-vertex and all of its neighbours are •, except for
one vertex ℓ, then colour ℓ as •.

Rule 3. If j is a • or ⊕-vertex and all of its neighbours are • or ⊕, except
for one vertex ℓ, then draw ⊕ at the vertex ℓ.

Rule 4. If j is a ◦-vertex and all of is neighbours are • or ⊕, then draw ⊕
at the vertex j.

Definition 2.2.6. Redheffer et al. define the reduced graph of the system,
R(A), as the graph obtained from G(A) by successive applications of the
reduction Rules 2, 3 and 4 until they can no longer be applied. We designate
this procedure as the Redheffer Reduction Algorithm (RRA).

In [27] Redheffer and Walter proved the following result, which in a sense
states that the RRA on G(A) can not be improved.

Theorem 2.2.7. Given a stably dissipative matrix A,

(a) If R(A) has only •-vertices then A is nonsingular, the equilibrium point
q is unique and every solution of (1.7) converges to q as t→ ∞.

(b) If R(A) has only • and ⊕-vertices, but not all •, then A is singular,
the equilibrium point q is not unique, and every solution of (1.7) has a
limit, as t→ ∞, that depends on the initial condition.

(c) If R(A) has at least one ◦-vertex then there exists a stably dissipative

matrix Ã, with G(Ã) = G(A), such that the system (1.7) associated

with Ã has a nonconstant periodic solution.

Based on these ideas Oliva et al. [6, Theorem 4.5] proved that the dy-
namics on the attractor of a stably dissipative LV system can be defined by a
conservative lower dimensional LV system whose associated graph is a forest.
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Theorem 2.2.8. Consider a LV system (1.7) restricted to the set
R

n
+ = {(x1, . . . , xn) ∈ R

n : xi ≥ 0, i = 1, . . . , n}. Suppose that the system is
stably dissipative and has an equilibrium point q ∈ int(Rn

+). Then the limit
dynamics of (1.7) on the attractor ΛA,q is described by a lower dimensional
Hamiltonian LV system.

2.3 Stably Dissipative Graphs

Definition 2.3.1. We designate by black and white graph (BW graph) the
triple G = (V,E, {V•, V◦}), where
(i) (V,E) is a graph,

(ii) V = V• ∪ V◦ and V• ∩ V◦ = ∅.

Given a dissipative matrix A ∈Mn(R) we associate it the BW graph

(V,E, {V•,V◦}) , (2.5)

where G(A) = (VA,EA) and

V• = { 1 ≤ i ≤ n : aii < 0 } and V◦ = { 1 ≤ i ≤ n : aii = 0 } .

This structure corresponds to the colouring procedure defined by Rule 1
of the RRA.

From now on in this chapter G(A) denotes the BW graph (2.5).

Definition 2.3.2. We say that the graph G(A) has a strong link (•−•) if
there is an edge (i, j) between vertices i, j such that aii < 0 and ajj < 0.

In [27] Redheffer and Walter gave the following property of stably dissipa-
tive matrices in terms of their associated graph (reformulation of
Lemma 2.1.5).

Lemma 2.3.3. If A is a stably dissipative matrix, then every cycle of G(A)
has at least one strong link (•−•).

Definition 2.3.4. We say that a BW graph G is stably dissipative if and
only if every cycle of G contains at least a strong link (•−•).

The name “stably dissipative” stems from the use we shall make of this
class of graphs to characterize stably dissipative matrices. See Proposi-
tion 2.3.7 below.

Proposition 2.3.5. Given a dissipative matrix A ∈Mn(R), there is a posi-
tive diagonal matrix D = diag(d1, . . . , dn) such that aij dj = −aji di whenever
aii = 0 or ajj = 0, and for every w ∈ R

n and k ∈ V•,
∑

i,j∈V•
aijdiwiwj ≤ 0.
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Proof. Let D = diag(d1, . . . , dn) be a positive diagonal matrix such that for
all w ∈ R

n, QDA(w) =
∑

i,j aijdiwiwj ≤ 0. Assuming aii = 0, choose a vector
w ∈ R

n with wi = 1 and wk = 0 for every k 6= i, j. Then

(aijdj + ajidi) xj + ajjdj x
2
j = QDA(x) ≤ 0 ,

which implies that aijdj + ajidi = 0, and everything else follows.

Definition 2.3.6. We say that a dissipative matrix A ∈ Mn(R) is almost
skew-symmetric if and only if aij = −aji whenever aii = 0 or ajj = 0, and
the quadratic form Q(xk)k∈V•

=
∑

i,j∈V•
aij xi xj is negative definite.

In this context, the following proposition is a reformulation of Theo-
rem 2.1.10.

Proposition 2.3.7. The matrix A ∈Mn(R) is stably dissipative if and only
if G(A) is a stably dissipative graph and there exists a positive diagonal matrix
D such that AD is almost skew-symmetric.

Proof. Assuming A is stably dissipative, by Lemma 2.3.3, G(A) is stably
dissipative. Take a diagonal matrix D > 0 according to Lemma 2.1.2, which
implies that Q(xk)k∈V•

=
∑

i,j∈V•
aijdixixj is negative definite. By Proposi-

tion 2.3.5, AD is almost skew-symmetric.
Conversely, assume G(A) is stably dissipative, assume there is a positive

diagonal matrix D such that AD is almost skew-symmetric, and take Ã =
(ãij) some close enough perturbation of A. Let G̃(A) be the partial graph
of G(A) obtained by removing every strong link (•−•). Because G(A) is
stably dissipative, the graph G̃(A) has no cycles. Hence, since AD is almost
skew-symmetric, the result follows by Theorem 2.1.10.

2.4 The Rank of the Graph

Definition 2.4.1. Given a stably dissipative graph G, we denote by SD(G)
the set of all stably dissipative matrices A with G(A) = G.

This section’s main theorem whose proof we present below is the following.

Theorem 2.4.2. Let G be a stably dissipative graph. Then every matrix
A ∈ SD(G) has the same rank.

By this theorem we can define the rank of a stably dissipative graph G,
denoted hereafter by rank(G), as the rank of any matrix in SD(G). Together
with Proposition 1.4.3, we have the following result.
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Corollary 2.4.3. Let G be a stably dissipative graph. Then, for every matrix
A ∈ SD(G), any stably dissipative LV system with matrix A has an invariant
foliation of dimension rank(G).

Definition 2.4.4. We shall say that a graph G has constant rank if and only
if every matrix A ∈ SD(G) has the same rank.

With this terminology, Theorem 2.4.2 just states that every stably dissi-
pative graph has constant rank.

2.5 Simplified Reduction Algorithm

Since the RRA (see Definition 2.2.6) runs on the graph G(A), the conclusions
drawn from the reduction procedure hold for all stably dissipative systems
that share the same graph G(A).

The following proposition is a slight improvement on item (b) of Theo-
rem 2.2.7.

Proposition 2.5.1. If R(A) has only • and ⊕-vertices then the system has
an invariant foliation with a single globally attractive equilibrium point in
each leaf.

Proof. Combine Theorem 2.2.7 (b) with Theorem 1.4.5.

Remark 2.5.2. In [28] Redheffer and Zhi Ming make the following state-
ment:

“Let A be stably dissipative and let every vertex ◦ in G(A) be
replaced arbitrarily by ⊕. Then A is nonsingular if and only if,
by algebraic manipulations, every vertex can then be replaced by
•.”

We shall explain this statement in terms of a simpler reduction algorithm.
Let us say that a species i ∈ {1, . . . , n} is a restriction on the equilibria of
XA,q whenever EA,q ⊂ {x ∈ R

n
+ : xi = qi }, where EA,q is the set of all

equilibria of (1.7) as defined in (1.9). Notice that every species of type • is
also a restriction on the equilibria of XA,q. Think of colouring i as black as
the statement that i is a restriction to the equilibria of XA,q. Notice that
at the beginning of the reduction algorithm, described in the introduction
of this section, the weaker interpretation that all black vertices correspond
to restrictions on the equilibria is also valid. If we simply do not write ⊕-
vertices, but consider every ◦-vertex as a ⊕-vertex, then the reduction Rules 3
and 4 can be discarded, while the Rule 2 becomes
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(R) If all neighbours of a vertex j are •-vertices, except for one vertex k,
then we can colour k as a •-vertex.

The idea implicit in Remark 2.5.2 is that (R) is a valid inference rule
for the weaker interpretation of the colouring statements above. Assuming
that every ◦-vertex is a ⊕-vertex amounts to looking for restrictions on the
equilibria set EA,q instead of the attractor ΛA,q. Let us still call reduced graph
to the graph, denoted by R∗(G), obtained from G by successively applying
rule (R) alone until it can no longer be applied. The previous considerations
show that

Proposition 2.5.3. Given a stably dissipative matrix A, every •-vertex of
R∗(G(A)) is a restriction to the equilibria of XA,q.

We shall write R∗(G) = {•} to express that all vertices of R∗(G) are
•-vertices.

Corollary 2.5.4. If G is a stably dissipative graph such that R∗(G) = {•}
then every matrix A ∈ SD(G) is nonsingular. In particular G has constant
rank.

Proof. Given A ∈ SD(G), by Proposition 2.5.3 we have EA,q = {q}, which
automatically implies that A is nonsingular.

In fact, the converse statement of this corollary holds by Remark 2.5.2.

Proposition 2.5.5. Let A ∈ Mn(R) be a stably dissipative matrix. If A is
nonsingular then R∗(G(A)) = {•}.

Proof. Let A ∈ Mn(R) be a stably dissipative matrix. By Proposition 2.2.4
we have that

A(x− q) = 0 ,

on ΛA,q. Since A is nonsingular, the result follows.

We call any extreme ◦-vertex of G a ◦-endpoint of G.

Lemma 2.5.6. Let G be a stably dissipative graph. If G has no ◦-endpoints,
then R∗(G) = {•}.

Proof. Let G be a stably dissipative graph with no ◦-endpoints. Assume, by
contradiction, that R∗(G) 6= {•}. We shall construct a cycle in R∗(G) with
no •−• edges. Since every ◦-vertex of R∗(G) is also a ◦-vertex of G, this will
contradict the assumption that G is stably dissipative.

In the following construction we always refer to the vertex colouring of
R∗(G). Take j0 to be any ◦-vertex. Then, given jk take a neighbouring vertex
jk+1 to be another ◦-vertex, if possible, or a •-vertex otherwise. While the
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path is simple (no vertex repetitions) it can not end at some ◦-endpoint, and
it can not contain any •−• edge because whenever we arrive to a •-vertex from
a ◦-one we can always escape to another ◦-vertex. In fact, no •-vertex can be
linked to a single ◦-vertex since otherwise we could reduce it to a •-vertex by
applying rule (R). By finiteness this recursively defined path must eventually
close, hence producing a cycle with no •−• edges.

Given a stably dissipative graph G and some ◦-endpoint i ∈ V◦, we define
the trimmed graph Ti(G) as follows: Let i′ ∈ V be the unique vertex con-
nected to i by some edge of G. Then Ti(G) is the partial graph obtained from
G by removing every edge incident with i′ except with i. See an example in
figure 2.1.

The trimming operation preserves the stable dissipativeness of the graph,
i.e.,

Proposition 2.5.7. Ti(G) is stably dissipative whenever G is.

Proof. The proof follows by Definition 2.3.4 because Ti(G) is obtained by
removing some edges from G.

Figure 2.1: A graph G and it’s trimmed graph Ti(G).

Similarly we define the trimmed matrix Ti(A) as follows: annihilate every
entry of row i′, except for ai′i and ai′i′ , and annihilate every entry of column
i′, except for aii′ and ai′i′ . See the example below, where matrix A ∈M5(R)
is the associated matrix to the graph G in figure 2.1.

A =




· 0 · ∗ ·
0 0 0 aii′ ·
· 0 · ∗ ·
∗ ai′i ∗ ai′i′ ∗
· 0 · ∗ ·




Ti(A) =




· 0 · 0 ·
0 0 0 aii′ ·
· 0 · 0 ·
0 ai′i 0 ai′i′ 0
· 0 · 0 ·




The “∗” above represent entries of A that are annihilated in Ti(A), and “·”
are nonzero constants.
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Lemma 2.5.8. Let i ∈ V◦ be some ◦-endpoint of a stably dissipative graph
G. If A ∈ SD(G) then

Ti(A) ∈ SD (Ti(G)) and rank (Ti(A)) = rank(A) .

Proof. Take A ∈ SD(G) and let A′ = Ti(A), where i is some ◦-endpoint.
Denote, respectively, by colj and rowj the jth column and the jth row of A,
and denote by col′j and row′

j the j
th column and the jth row of the trimmed

matrix. Since i is a ◦-endpoint, aii′ is the only nonzero entry in rowi, and ai′i is
the only nonzero entry in coli. Then the trimmed matrix A′ is obtained from
A by applying the following Gauss elimination rules, either simultaneously
or in some arbitrary order

row′
j := rowj −

aji′

aii′
rowi j 6= i′ ,

col′j := colj −
ai′j
ai′i

coli j 6= i′ .

Because Gauss elimination preserves the matrix rank we have
rank(A′) = rank(A). To finish the proof, it is enough to see now that
A′ is stably dissipative. We use Proposition 2.3.7 for this purpose. First,
G(A′) = Ti(G) is stably dissipative as observed above. Let D be a posi-
tive diagonal matrix such that AD is almost skew-symmetric. In view of
Proposition 2.3.7, we only need to prove that A′D is also almost skew-
symmetric. Notice that G and Ti(G) share the same black and white ver-
tices. If a′kk = 0 or a′jj = 0 then also akk = 0 or ajj = 0. Hence,
because AD is almost skew-symmetric, akj dj = −ajk dk. Looking at the
Gauss elimination rules above, we have a′kj = akj and a′jk = ajk, or else
a′kj = a′jk = 0. In either case we have a′kj dj = −a′jk dk. Finally, we need to
see that Q′(xℓ)ℓ∈V•

=
∑

k,j∈V•
a′kjdjxkxj is a negative definite quadratic form.

If i′ is a ◦-vertex then Q′(xℓ)ℓ∈V•
=
∑

k,j∈V•
akjdj xkxj is negative definite

because AD is almost skew-symmetric. Otherwise, if i′ is a •-vertex, given
a nonzero vector (xℓ)ℓ∈V•

we define (x′ℓ)ℓ∈V•
letting x′ℓ = xℓ for ℓ 6= i′, while

x′i′ = 0. Then

Q′(xℓ)ℓ∈V•
= ai′i′︸︷︷︸

<0

di′x
2
i′ +

∑

k,j∈V•

akjdjx
′
kx

′
j

︸ ︷︷ ︸
=Q(x′

ℓ
)ℓ∈V•≤0

< 0 ,

since (xℓ)ℓ∈V•
6= 0 implies that either xi′ 6= 0 or else (x′ℓ)ℓ∈V•

6= 0. This proves
that Q′ is negative definite.

As a simple corollary of the previous lemma we obtain
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Lemma 2.5.9 (Trimming lemma). Let i ∈ V◦ be some ◦-endpoint of a sta-
bly dissipative graph G. If Ti(G) has constant rank then so has G, and
rank(G) = rank(Ti(G)).

We can now prove our main Theorem 2.4.2.

Proof of Theorem 2.4.2. Define recursively a sequence of graphs
G0, G1, . . . , Gm, with G0 = G, and where Gi+1 = Tji(Gi) for some ◦-endpoint
ji of Gi. This sequence will end at some graph Gm with no ◦-endpoint. By
Lemma 2.5.6 we have R∗(Gm) = {•}. The connected components of Gm are
either reducible to •-vertices by iteration of rule (R), or else composed by
◦-vertices alone. Since the ◦-components can not be trimmed anymore, they
must be either formed of a single ◦-vertex, or else a single ◦−◦ edge. By Corol-
lary 2.5.4, Gm has constant rank. Finally, applying inductively Lemma 2.5.9
we see that all graphs Gi have constant rank. Hence G, in particular, has
constant rank.

The previous proof gives a simple recipe to compute the rank of a graph.
Trim G while possible. In the end, discard the single ◦-vertex components
and count the remaining vertices. We can see some examples in table 2.1.

Original graph Trimmed graph Graph rank

6

4

5

Table 2.1: Some graph trimming examples.
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2.6 Trimming Effect on Dynamics

In this last section we use an example to describe the effect of trimming a
stably dissipative matrix on the underlying dynamics.

Consider the stably dissipative LV system with interaction matrix

A =




0 −2 0 0 0 0 −1
1 0 −1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 −2 0 1
0 0 0 1 0 −1 0
0 0 0 0 1 0 0
1 0 0 −1 0 0 −1




and equilibrium point ✶ ∈ R
7 with all coordinates equal to 1. The associated

graph G(A) is represented in figure 2.2.

Figure 2.2: Associated graph of matrix A, G(A).

Figure 2.3: Phase portrait of a system E.

The null space, Ker(AT ), is generated by the vector (1, 0, 2, 1, 0, 2, 0).
Hence the foliation F , with leaves Fc given by

Fc = {x ∈ R
7 : log x1 + 2 log x3 + log x4 + 2 log x6 = c} ,
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is an invariant foliation with dimension rank(G(A)) = 6 in R
7. The system’s

phase portrait is represented in figure 2.3, being the attractor a 3D-plan
transversal to F given by

Γ = {x ∈ R
7 : x1 = x4, x2 = x5, x3 = x6, x7 = 1} .

The intersection of each leaf Fc with Γ is a surface Sc given by

Sc = Fc ∩ Γ = {(x1, x2, x3, x1, x2, x3, 1) : log x1 + 2 log x3 =
c

2
},

which is foliated into invariant curves by the level sets of h, defined in (2.1).
Notice that Sc corresponds to an invariant leaf of the conservative system
with graph ◦ ◦ ◦.

With the first trim on G we get the graph T6(G) represented in figure 2.4.

Figure 2.4: The trimmed graph of G, T6(G).

This corresponds to annihilate the entries (4, 5) and (5, 4) of the original
matrix A. Notice that the components x5 and x6 of the system are indepen-
dent of the rest. Hence the dynamics of this new system is the product of
two independent LV systems represented in figure 2.5.

Figure 2.5: Representation of the dynamic of the system E1.

The five dimensional system on the left of figure 2.5 has a straight line of
equilibria. Moreover it leaves invariant a foliation of dimension four with a
single globally attractive fixed point on each leaf. The right-hand side system
is a typical conservative predator-prey.

Now we have two different possibilities of trimming the graph T6(G): we
can either choose the ◦-endpoint 3 or else 4. In the first case we get the
graph T3(T6(G)) represented in figure 2.6, whose dynamics is illustrated in
figure 2.7.
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Figure 2.6: The trimmed graph T3(T6(G)) of T6(G).

Figure 2.7: Representation of the system’s dynamics associated to the graph T3(T6(G)).

Figure 2.8: The trimmed graph T4(T6(G)) of T6(G).

Figure 2.9: Representation of the system’s dynamics associated to the graph T4(T6(G)).

The three dimensional system in the middle of figure 2.7 has a straight line
of equilibria. Moreover it leaves invariant a foliation of dimension two with
a single globally attractive fixed point on each leaf. The left and right-hand
side systems are typical conservative predator-preys.

In the second case we get the graph T4(T6(G)) represented in figure 2.8,
whose dynamics is depicted in figure 2.9.

Here, the left-hand side three dimensional system is conservative, leaving
invariant a foliation of dimension two transversal to a straight line of equi-
libria. The middle and right-hand side systems are typical predator-prey,
respectively, dissipative and conservative.

Trimming T4(T6(G)) choosing the ◦-endpoint 1 we get the graph
T1 (T4 (T6(G))) represented in figure 2.10, whose dynamics is a product of
three predator-prey systems, illustrated in figure 2.11, with a one dimen-
sional system consisting of equilibria.

39



Figure 2.10: The trimmed graph T1(T4(T6(G))) of T4(T6(G)).

Figure 2.11: Representation of the system’s dynamics associated to the graph
T1(T4(T6(G))).

Notice that by trimming T3(T6(G)) we obtain an isomorphic graph to the
one in figure 2.10.
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Chapter 3

Vector Fields on Polytopes

In this chapter we address the study of analytic flows defined on polytopes.
We present a theory that allows us to analyze the asymptotic dynamics of
the flow along the heteroclinic network composed by the flowing-edges and
the vertices of the polytope where the flow is defined.

Consider a flow ϕt
X defined on a polytope Γd associated to a vector field

X. In [5] the author introduces a new method to encapsulate the asymp-
totic dynamics of ϕt

X along the heteroclinic network of Γd. This asymptotic
behaviour is completely determined by local data obtained from X at each
vertex singularity. We designate this local data as the skeleton character.
From this data we construct a piecewise constant vector field χ defined in
a geometric space C∗(Γd) designated as the dual cone of the polytope Γd.
In some sense the orbits of χ give us information about the asymptotic be-
haviour of the flow ϕt

X along the heteroclinic network.
Looking to the heteroclinic network composed by the flowing-edges of Γd,

we consider sets S, called structural sets, consisting of flowing-edges such
that every cycle of the heteroclinic network of X contains at least one edge
in S. Given a structural set S, we denote by Σ ⊂ Γd a union of cross-sections
to X, one at each flowing-edge in S. The flow ϕt

X induces a Poincaré return
map PS to Σ, designated as the S-Poincaré map of X.

At the level of the dual cone, the flow of χ also induces a return map
on the union ΠS of the corresponding cross-sections in C∗(Γd), designated as
the S-Poincaré map of χ, denoted by πS. This map is piecewise linear and
can be computed from the vector field’s skeleton character. πS carries the
asymptotic behaviour of PS along the flowing-edges in the sense that after a
rescaling change of coordinates Ψε, depending on a blow-up parameter ε, πS
is the C∞ limit of Ψε ◦ PS ◦ (Ψε)

−1 as ε tends to 0+.
Because the Poincaré map πS is computable, we can run algorithms to find

the πS-invariant linear algebra structures. If these structures are invariant
under small non-linear perturbations, they will persist as invariant geometric
structures for PS, and hence for the flow ϕt

X .
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We make use of this stability principle to prove, in Theorem 3.6.6, the ex-
istence of normally hyperbolic stable and unstable manifolds for heteroclinic
cycles satisfying some appropriate assumptions.

We use the letters Σ and P for cross-sections on the polytope, and for the
associated Poincaré maps between these cross-sections, respectively, while
we will use the letters Π and π for the corresponding cross-sections on the
dual cone, and for the associated Poincaré maps, respectively. Moreover,
the interior and boundary of each of these cross-sections, e.g., int(Π), ∂Π,
will refer to the topological interior and boundary with respect to the affine
subspace generated by the respective cross-sections.

In this chapter we introduce the necessary theoretical background as well
the corresponding main results (whose proofs can be seen in [2]) that will be
required in chapter 4.

This chapter is organized as follows. In section 3.1, we define polytopes
and all their associated notation, terminology and concepts. In section 3.2,
we introduce the class of vector fields on polytopes to which our results apply.
In section 3.3, we define the dual cone of a polytope, where the asymptotic
dynamics along the heteroclinic network takes place. In section 3.4, we in-
troduce the class of skeleton vector fields (piecewise constant vector fields)
on the dual cone, whose dynamics encapsulate the asymptotic behaviour of
the given flow. In section 3.5, we define the concept of structural set (of the
heteroclinic network) and the associated Poincaré return map. Finally, in
section 3.6, we give sufficient conditions (Theorem 3.6.6) for the existence of
normally hyperbolic stable and unstable manifolds for heteroclinic cycles.

3.1 Polytopes

In this section we provide preliminary definitions and notations toward the
definition of polytope. Given a compact convex set K ⊆ R

N , we call affine
support of K to the affine subspace spanned by K. The dimension of K
is by definition the dimension of its affine support. We can now define d-
dimensional simple polytopes.

Definition 3.1.1. A set Γd ⊂ R
N is called a d-dimensional simple polytope

if it is a compact convex subset of dimension d, with affine support Ed ⊂ R
N ,

for which there exists a family of affine functions {fi : E
d → R}i∈I such that

(a) Γd = ∩i∈If
−1
i ([0,+∞[).

(b) Γd ∩ f−1
i (0) 6= ∅ , ∀i ∈ I.

(c) Given J ⊆ I such that Γd ∩ (∩j∈Jf
−1
j (0)) 6= ∅ , the linear 1-forms dfj

are linearly independent at every point p ∈ ∩j∈Jf
−1
j (0).
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Given J ⊆ I such that ρJ := Γd ∩ (∩j∈Jf
−1
j (0)) 6= ∅ the subset ρJ is an

r-dimensional face of Γd, where r = d− |J |. We denote by Kr(Γd) the set of
all r-dimensional faces of Γd. Specially, we define

• the set of vertices V := K0(Γd), and denote its elements by letters like
v, v′, vi, etc.

• the set of edges E := K1(Γd), and denote its elements by letters like γ,
γ′, γi, etc.

• the set of faces F := Kd−1(Γd), and denote its elements by letters like
σ, σ′, σi, etc.

• the set of corners C := { (v, γ, σ) ∈ V × E × F : γ ∩ σ = {v} }.

The second and third conditions of Definition 3.1.1 assert that every fi
defines a face σi = Γd∩f−1

i (0). Thus, from now on we assume that the family
of functions defining Γd is indexed in F instead of I, so that σ = Γd ∩ f−1

σ (0)
for all σ ∈ F .

A corner is given by a triple (v, γ, σ) where v ∈ V is a vertex, γ ∈ E is
an edge, and σ ∈ F is a face. However, any pair of these three elements in a
corner determines uniquely the third one. Therefore, we will sometimes refer
to the corner (v, γ, σ) shortly as (v, γ) or (v, σ). An edge γ with endpoints
v1, v2 determines two corners (v1, γ, σ1) and (v2, γ, σ2), referred as end corners
of γ. The faces σ1, σ2 will be referred as opposite faces of γ.

Definition 3.1.2. Given a vertex v, we denote by Fv and Ev the set of all
faces, respectively edges, which contain v.

Since Γd is a simple polytope, both sets Fv and Ev have d elements.
Condition (c) of Definition 3.1.1 guarantees that for every v ∈ V the covectors
{(dfσ)v : σ ∈ Fv} are linearly independent. This implies that, inside a
neighbourhood Uv of the vertex v, the functions {fσ : σ ∈ Fv} can be used
to define a coordinate system for Γd.

Given a vertex v, we define ψv : Uv → R
Fv ≡ R

d by

z 7→ (ψσ
v (z))σ∈Fv := (fσ(z))σ∈Fv .

It is clear that the restriction of ψv to Ñv := Uv ∩ Γd is a local coordinate
system for Γd sending the vertex v to the origin and every face σ to the
hyperplane xσ = 0. This restriction, still denoted by ψv, is called the local v-
coordinate system of Γd. Shrinking the neighbourhoods Ñv, if necessary, one
can make them disjoint. Furthermore, we will assume that for every vertex
v we have [0, 1]d ⊂ ψv(Ñv). This can be achieved multiplying each defining
function of Γd by a suitable positive constant.

Definition 3.1.3. Setting Nv := ψ−1
v ([0, 1]d), the pairwise disjoint local co-

ordinate systems {(Nv, ψv) : v ∈ V } will be referred as the vertex coordinates
of Γd.
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3.2 Vector Fields on Polytopes

Throughout the rest of the chapter, Γd will denote a d-dimensional simple
polytope. For a d-dimensional polytope Γd, we denote by Cω(Γd) the space of
functions defined on Γd that can be extended analytically to a neighbourhood
of Γd, and denote by X

ω(Γd) the space of vector fields X, defined on Γd, that
have an analytic extension to a neighbourhood of Γd and such that X is
tangent to every r-dimensional face of Γd, for all 0 ≤ r ≤ d. If X ∈ X

ω(Γd),
then for every face σ ∈ F , dfσ(X) = 0 along σ = {z ∈ Γd : fσ(z) = 0}.
This implies that either dfσ(X) is identically zero or else there exists a non-
identically zero function Hσ ∈ Cω(Γd) such that

dfσ(X) = fσHσ . (3.1)

Definition 3.2.1. We say that the vector field X is nondegenerate if for all
σ ∈ F the function Hσ in (3.1) is such that Hσ 6≡ 0 on σ.

Given a vertex v of Γd, denote by TvΓ
d the linear space of tangent vectors

to Γd at v. For every corner (v, γ, σ), there is a unique vector e(v,σ) parallel
to γ and such that (dfσ)v(e(v,σ)) = 1. Hence {e(v,σ)}σ∈Fv is the dual basis on
TvΓ

d of the 1-form basis {(dfσ)v}σ∈Fv on (TvΓ
d)∗. For any X ∈ X

ω(Γd) the
vectors e(v,σ) are eigenvectors of the derivative (DX)v. Then

Hσ(v) = (dfσ)v(DX)v(e(v,σ)) ,

is the eigenvalue associated to e(v,σ).

Definition 3.2.2. The skeleton character of X ∈ X
ω(Γd) is defined to be the

family χ := (χv
σ)(v,σ)∈V×F where

χv
σ :=

{
−Hσ(v) if σ ∈ Fv

0 , otherwise
,

while the skeleton character at v ∈ V is χv := (χv
σ)σ∈F .

Definition 3.2.3. Given a vertex v, we define the sector at v

Πv := { (uσ)σ∈F ∈ R
F : uσ = 0 ∀σ /∈ Fv, uσ′ ≥ 0 ∀σ′ ∈ Fv } .

3.3 Dual Cone of a Polytope

In this section we introduce the concept of a polytope’s dual cone. Let Γd

be a simple polytope with a defining family of affine functions {fσ}σ∈F . The
dual cone of Γd is a subset of RF

+.
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Definition 3.3.1. For every vertex v ∈ V consider the set Πv. The dual
cone of Γd is defined to be

C∗(Γd) :=
⋃

v∈V

Πv .

Dual cones of polytopes have a simplicial structure.

Definition 3.3.2. Given 0 ≤ r ≤ d, for every ρ ∈ Kd−r(Γd) the set

Πρ := { (xσ)σ∈F ∈ R
F
+ : xσ = 0 if ρ 6⊆ σ }

is called a r-dimensional face of C∗
r (Γ

d), and the union

C∗
r (Γ

d) :=
⋃

{Πρ : ρ ∈ Kd−r(Γd) }

will be referred as the r-dimensional skeleton of the dual cone.

To justify the used “duality” terminology notice that

Remark 3.3.3. Given faces ρ, ρ1 and ρ2 of Γd,
• If ρ has dimension d− r then Πρ is a r-dimensional convex cone.

• If the face ρ is the convex hull of ρ1 ∪ ρ2 then

Πρ = Πρ1 ∩ Πρ2 .

• In particular, if γ is an edge with endpoints v1 and v2 then

Πγ = Πv1 ∩ Πv2 .

In definition 3.1.3, for a given vertex v in Γd, we define the vertex coor-
dinates of Γd. We can generalize this definition to every r-dimensional face
of Γd.

For every σ ∈ F set

Nσ := { z ∈ Γd : fσ(z) ≤ 1 } . (3.2)

More generally for every face ρ ∈ Kd−r(Γd) define

Nρ :=
⋂

σ∈F
σ⊃ρ

Nσ ,

which is a neighbourhood of ρ in Γd. Multiplying the functions fσ, if needed,
by some large constants, we can assume that

Nρ ∩Nρ′ = ∅ whenever ρ ∩ ρ′ = ∅ ,
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for all faces ρ ∈ Kr(Γd) and ρ′ ∈ Kr′(Γd).

Definition 3.3.4. Given a vector field X ∈ X
ω(Γd), a vertex v and ε > 0,

we define the rescaling v-coordinate ΨX
v,ε : Nv\∂Γ

d → Πv by

z 7→ y :=

{
−ε2 log(ψσ

v (z)) if σ ∈ Fv

0 if σ /∈ Fv
, (3.3)

where ψv : Nv → [0, 1]d is the v-coordinate system in Definition 3.1.3.

Notice that there are natural identifications Πv ≡ R
Fd
+ ≡ R

d
+.

To shorten the convergence statements in the upcoming results, we intro-
duce some terminology.

Definition 3.3.5. Suppose we are given a family of functions, or mappings,
Fε with varying domains Uε. Let F be another function with domain U .
Suppose that all these functions have the same target and source spaces,
which are assumed to be linear spaces. We will say that limε→0+ Fε = F in
the C∞ topology, to mean that:

• domain convergence: for every compact subset K ⊆ U , we haveK ⊆ Uε

for all small enough ε > 0, and

• derivative uniform convergence on compacts: for every k ∈ N

lim
ε→0+

sup
u∈K 0≤i≤k

∣∣Di [Fε(u)− F (u)]
∣∣ = 0 .

If in a statement Fε is written as a composition of two or more mappings
then its domain should be understood as the composition domain.

For a given vertex v ∈ V we define

Πv(ε) := { y ∈ Πv : yσ ≥ ε for all σ ∈ Fv } . (3.4)

Lemma 3.3.6. Consider the functions Hσ defined in (3.1), and the re-
scaling v-coordinate ΨX

v,ε specified in Definition 3.3.4. Then the push-forward
of X by ΨX

v,ε is

(ΨX
v,ε)∗X = ε2X̃ε

v ,

where X̃ε
v := (−Hσ

(
(ΨX

v,ε)
−1(y)

)
σ∈Fv

. Furthermore, the following limit holds
in the C∞ topology

lim
ε→0

(X̃ε
v)|Πv(ε) = χv .

Proof. A proof of this lemma can be seen in [2].
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Definition 3.3.7. We define the skeleton coordinate map on Γd by

ψ : Γd → W, ψ(z) := (ψσ(z))σ∈F , ψσ(z) := min{1, fσ(z)} ,

where W := {x ∈ R
F : 0 ≤ xσ ≤ 1 for all σ ∈ F }.

Notice also that the local coordinate (Nv, ψv) (see Definition 3.1.3) is
simply the composition of the restriction of ψ to Nv with the orthogonal
projection R

F → Πv ≃ R
d.

Next we introduce a family of rescaling change of coordinates from the
polytope Γd to its dual cone C∗(Γd) .

Definition 3.3.8. Given a vector field X ∈ X
ω(Γd) and ε > 0, the ε-rescaling

Γd-coordinate for X is the mapping ΨX
ε : Γd\∂Γd → C∗(Γd) defined by

z 7→ ΨX
ε (z) :=

(
−ε2 log(ψσ(z))

)
σ∈F

,

where ψ is the skeleton coordinate map above.

Notice that for every vertex v the restriction of ΨX
ε to Nv\∂Γ

d is one-to-
one and onto Πv.

3.4 Skeleton Vector Fields

In this section we define and characterize skeleton vector fields on the dual
cone. Every vector field X ∈ X

ω(Γd) yields a skeleton vector field on the dual
cone of Γd.

Definition 3.4.1. A skeleton vector field on C∗(Γd) is a family χ = (χv)v∈V
of vectors in R

F such that χv is tangent to Πv for all v ∈ F . Alternatively,
a skeleton vector field χ is a family χ = (χv

σ)(v,σ)∈V×F such that χv
σ = 0 for

σ /∈ Fv.

In this section, we study the skeleton vector fields associated to vector
fields defined on polytopes.

Definition 3.4.2. Given a nondegenerate X ∈ X
ω(Γd), the skeleton charac-

ter of X, χ = (χv
σ)(v,σ)∈V×F , (see Definition 3.2.2) is a skeleton vector field

that we refer as the skeleton vector field of X.

We want to study the piecewise linear flows generated by skeleton vector
fields on C∗(Γd).

Definition 3.4.3. Given a skeleton vector field χ, a vertex v ∈ V is called

• χ-attractive if χv ∈ Πv,
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• χ-repelling if −χv ∈ Πv,

• of saddle type otherwise.

The edges of Γd are also classified with respect to χ.

Definition 3.4.4. Let γ ∈ E be an edge with end corners (vi, σi) and (vj, σj).
The edge γ is called χ-defined if either χvi

σi
χ
vj
σj 6= 0 or else χvi

σi
= χ

vj
σj = 0.

Moreover, we say that γ is

• a flowing-edge if χvi
σi
χ
vj
σj < 0,

• a neutral edge if χvi
σi
= χ

vj
σi = 0,

• an attracting edge if χvi
σi
< 0 and χ

vj
σj < 0,

• a repelling edge if χvi
σi
> 0 and χ

vj
σj > 0,

• a χ-undefined if non of the above happens.

Moreover, for flowing-edges we write vi
γ

−→ vj whenever χ
vi
σi
< 0 and χ

vj
σj > 0.

The vertices vi and vj are called, respectively, the source of γ, denoted by
s(γ), and the target of γ, denoted by t(γ).

Definition 3.4.5. The skeleton χ is said to be regular if it has no χ-undefined
edges.

Definition 3.4.6. We denote by Gχ the directed graph Gχ = (V,Eχ) where
V is the vertex set of Γd, and Eχ is the set of all flowing-edges.

From now on, we will only consider regular skeleton vector fields.

Definition 3.4.7. We call orbit of χ to any continuous piecewise affine func-
tion c : I → C∗(Γd), defined on some interval I ⊂ R, such that

• dc
dt
(t) = χv whenever c(t) is interior to some sector Πv, with v ∈ V ,

• the set { t ∈ I : c(t) ∈ C∗
d−1(Γ

d) } is finite or countable.

Definition 3.4.8. Given a vertex v ∈ V , two flowing-edges γ, γ′ ∈ Eχ and
a face σ′ ∈ F such that (v, γ′, σ′) ∈ C and t(γ) = s(γ′) = v, we define the
sector

Πγ,γ′ :=

{
x ∈ int(Πγ) : xσ −

χv
σ

χv
σ′

xσ′ > 0, σ ∈ Fv, σ 6= σ′

}
.

Moreover, for each v ∈ Πγ,γ′ , we set

Lχ
γ,γ′(x) = Lγ,γ′(x) :=

(
xσ −

χv
σ

χv
σ′

xσ′

)

σ∈F

. (3.5)

Next proposition relates the previous definition with the orbits of χ.

48



Proposition 3.4.9. Given v ∈ V , γ, γ′ ∈ Eχ and σ′ ∈ F such that
(v, γ′, σ′) ∈ C and t(γ) = s(γ′) = v, the sector Πγ,γ′ is the set of points
x ∈ int(Πγ) which are connected by the orbit segment c(t) = x+ tχv (t ≥ 0)
in Πv to the point x′ = Lχ

γ,γ′(x) in int(Πγ′).

Proof. A proof of this proposition can be seen in [2].

Remark 3.4.10. Given two corners (v, γ′, σ′) and (v, γ′′, σ′′) around the
same vertex v, if v is χ-attractive or χ-repelling then it is not possible to
connect any point of Πγ′ to any point of Πγ′′ through a line parallel to the
constant vector χv.

Notice that the points in the boundary of Πγ′ are in the intersection of
more than two sectors Πv with v ∈ V . Hence, if an orbit ends up in one of
these points it might not be possible to continue it in a unique way. In the
sequel we disregard this type of orbits.

We will extract information about the flow of the vector field X from the
behaviour of the flow of the skeleton vector field χ. Instead of dealing with
the flow of χ we introduce an associated Poincaré map πχ.

Definition 3.4.11. Let Πχ ⊂ C∗
d−1(Γ

d) be the disjoint union

Πχ :=
⋃

{Πγ,γ′ : t(γ) = s(γ′), (γ, γ′) ∈ Eχ × Eχ } .

We define the skeleton Poincaré map πχ : Πχ ⊂ C∗
d−1(Γ

d) → C∗
d−1(Γ

d) by

πχ(x) := Lγ,γ′(x) whenever x ∈ Πγ,γ′ .

Proposition 3.4.12. Given v ∈ V , γ, γ′ ∈ Eχ and σ′ ∈ F such that
(v, γ′, σ′) ∈ C and t(γ) = s(γ′) = v, the linear map Lγ,γ′ is represented
by the following matrix

Mγ,γ′ =

(
δσ,σ′′ −

χv
σ

χv
σ′

δσ′,σ′′

)

σ,σ′′∈F

,

where δσ,σ′′ is the Kronecker delta symbol.

Proof. The proof follows by the definition of Lγ,γ′ in (3.5).

Definition 3.4.13. A sequence of edges ξ = (γ0, γ1, . . . , γm) is called a χ-
path if ξ is a path of the graph Gχ, i.e., if

• γj ∈ Eχ, for all j = 0, 1, . . . ,m,

• t(γj−1) = s(γj), for all j = 1, . . . ,m.

The χ-path ξ is called a cycle when γ0 = γm. The integer m is called the
length of the path.
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From now on we will write π = πχ whenever the skeleton vector field χ
is implicit from the context.

Definition 3.4.14. An orbit segment of π = πχ is any finite sequence
x = (x0, x1, . . . , xm) where xj ∈ Πχ and xj = π(xj−1) for all j = 1, . . . ,m.
The unique χ-path ξ = (γ0, γ1, . . . , γm) such that for all j = 1, . . . ,m,
xj ∈ Πγj−1,γj , is called the itinerary of x.

By definition, all edges in the itinerary of some orbit segment must be
flowing-edges.

Definition 3.4.15. Given a χ-path ξ = (γ0, γ1, . . . , γm), we define the skele-
ton Poincaré map of χ along ξ to be the mapping πξ : Πξ → Πγm

πξ := Lγm−1,γm ◦ . . . ◦ Lγ0,γ1 ,

where

Πξ :=
{
x ∈ int(Πγ0) : π

j(x) ∈ int(Πγj) for all j = 1, . . . ,m
}

= int(Πγ0) ∩
m⋂

j=1

(Lγj−1,γj ◦ . . . ◦ Lγ0,γ1)
−1int(Πγj) .

Given a path ξ = (γ0, γ1, . . . , γm), by Proposition 3.4.12 the matrix cor-
responding to the Poincaré map πξ is given by

Mξ :=Mγm−1,γm · · ·Mγ0,γ1 . (3.6)

Any two paths ξ′ and ξ′′ where the end edge of ξ′ is equal to the initial
edge of ξ′′ can be concatenated to form a new path ξ such that πξ = πξ′′ ◦πξ′ .

We finish this section by introducing the concept of structural set, and
the associated skeleton Poincaré map.

Definition 3.4.16. A non-empty set of edges S ⊂ Eχ is said to be a struc-
tural set for χ if

(i) any χ-cycle ξ = (γ0, . . . , γm) contains an edge in S,

(ii) S is minimal w.r.t. (i).

Notice that the structural set S is in general not unique. The concept
of structural set can be defined for general directed graphs. It corresponds
to the homonym notion introduced by L. Bunimovich and B. Webb [4], but
applied to the line graph1.

1The line graph of a directed graph G, denoted by L(G), is the graph whose vertices
are the edges of G, and where (γ, γ′) ∈ E × E is an edge of L(G) if t(γ) = s(γ′).
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Definition 3.4.17. We say that a χ-path ξ = (γ0, . . . , γm) is a branch of S,
or shortly an S-branch, if

(i) γ0, γm ∈ S,

(ii) γj /∈ S for all j = 1, . . . ,m− 1.

We denote by BS(χ) the set of all S-branches of Gχ.

Let ΠS := ∪ξ∈BS(χ)Πξ where Πξ is defined inside Definition 3.4.15.

Definition 3.4.18. We define the S-Poincaré map to be πS : ΠS → ΠS

where πS(u) := πξ(u) for all u ∈ Πξ.

Proposition 3.4.19. Given X ∈ X
ω(Γd), with a skeleton vector field χ, and

a structural set S ⊂ Eχ, if

(i) χ is regular,

(ii) χ has no attracting or repelling edges,

(iii) all vertices are of saddle type,

then the following equality holds, up to a union of linear subspaces of dimen-
sion d− 2,

ΠS =
⋃

γ∈S

Πγ .

Proof. A proof of this proposition can be seen in [2].

3.5 Asymptotic Poincaré Maps

In this section, we study the asymptotic behaviour of the flow of a vector
field X ∈ X

ω(Γd) along the edges of Γd. The limit flow is described in terms
of the skeleton Poincaré map πχ associated with the skeleton vector field χ
of X.

Definition 3.5.1. We say that a vector field X ∈ X
ω(Γd) is regular when it is

nondegenerate and its skeleton vector field χ is regular (see Definition 3.4.5).

Throughout this section X ∈ X
ω(Γd) will denote a regular vector field

and χ its skeleton vector field.
Given a corner (v, γ, σ) ∈ C, let

Σv,γ := (ΨX
v,ε)

−1(Πγ) .

This is a cross-section, transversal to X which intersects γ at a single point
zv,γ .
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Given two flowing-edges γ, γ′ ∈ Eχ such that t(γ) = s(γ′), let Dγ,γ′ be
the set of points x ∈ int(Σv,γ) such that the orbit {ϕt

X(x) : t ≥ 0} has a first
transversal intersection with Σv,γ′ . Then, the partial Poincaré map

Pγ,γ′ : Dγ,γ′ ⊂ int(Σv,γ) → int(Σv,γ′)

is defined by Pγ,γ′(x) := ϕ
τ(x)
X (x), where

τ(x) := min{ t > 0 : ϕt
X(x) ∈ Σv,γ′ } .

A flowing-edge v
γ

−→ v′ of a regular vector field X is a heteroclinic orbit
with α-limit v and ω-limit v′. Given an edge v

γ
−→ v′, we denote by Pγ the

Poincaré map from a small enough neighbourhood of zv,γ in Σv,γ into Σv′,γ.

Definition 3.5.2. Given a χ-path ξ = (γ0, γ1, . . . , γm), the composition

Pξ := (Pγm ◦ Pγm−1,γm) ◦ . . . ◦ (Pγ1 ◦ Pγ0,γ1)

is referred as the Poincaré map of the vector field X along ξ. The domain of
this composition is denoted by Dξ.

Given a path ξ, the asymptotic behaviour of the Poincaré map Pξ along
ξ is given by the corresponding Poincaré map πξ of the skeleton vector field
χ. More precisely we have

Proposition 3.5.3. Given a χ-path ξ = (γ0, . . . , γm) with v0 = s(γ0) and
vm = s(γm), let U

ε
ξ be the domain of the map F ε

ξ := ΨX
vm,ε ◦ Pξ ◦ (ΨX

v0,ε
)−1

from Πγ0(ε) into Πγm(ε). Then

lim
ε→0+

(
F ε
ξ

)
|Uε
ξ

= πξ,

in the sense of Definition 3.3.5.

Proof. A proof of this proposition can be seen in [2].

To encode the semi-global dynamics of the flow ϕt
X along the edges we will

use Poincaré return maps to a system of cross-sections placed at the edges
of a structural set (see Definition 3.4.16). Any orbit of the flow ϕt

X that
shadows some heteroclinic circuit must intersect this cross-section system in
a recurrent way.

Definition 3.5.4. Let X ∈ X
ω(Γd) be a regular vector field with a structural

set, S ⊂ E. We define the S-Poincaré map PS : DS ⊂ ΣS → ΣS setting
ΣS := ∪γ∈SΣγ, DS := ∪ξ∈BS(χ)Dξ and PS(p) := Pξ(p) for all p ∈ Dξ. Notice
that the domains Dξ and Dξ′ are disjoint for ξ 6= ξ′ in BS(χ).
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By construction, the suspension of the S-Poincaré map PS : DS ⊂ ΣS →
ΣS embeds (up to a time re-parametrization) in the flow of the vector field
X. In this sense the dynamics of the map PS encapsulates the qualitative
behaviour of the flow ϕt

X of X along the edges of Γd. The following theorem
is a corollary of Proposition 3.5.3.

Theorem 3.5.5. Let X ∈ X
ω(Γd) be a regular vector field with skeleton

vector field χ and a structural set S ⊂ Eχ. Then

lim
ε→0+

ΨX
ε ◦ PS ◦ (ΨX

ε )
−1 = πS

in the sense of Definition 3.3.5.

Proof. A proof of this theorem can be seen in [2].

Consider now a function h : Γd → R,

h(x) = −
N∑

j=1

cj log xj , (3.7)

to be a first integral of the flow of X, where cj are constants.

Definition 3.5.6. We call skeleton of the first integral h to the function
η : C∗(Γd) → R defined by

η(u) :=
N∑

j=1

cj uj .

Proposition 3.5.7. In these conditions the following limit holds

lim
ε→0+

ε2h
(
ΨX

ε

)−1
= η .

Proof. Observing that
(
ΨX

ε

)−1
(z) =

(
e−

ψσ(z)

ε2

)
σ∈F

, the equality

ε2h
(
ΨX

ε

)−1
= η

follows.

Proposition 3.5.8. If (3.7) is a first integral of the flow of X, the Poincaré
map πS preserves the function η, i.e.,

η ◦ πS = η .
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Proof. Since the flow is h-invariant, by Theorem 3.5.5 and Proposition 3.5.7,

η ◦ πS = lim
ε→0+

ε2h
(
ΨX

ε

)−1
◦ΨX

ε ◦ PS ◦ (ΨX
ε )

−1 = lim
ε→0+

ε2h
(
ΨX

ε

)−1
= η .

3.6 Invariant Manifolds

Let X ∈ X
ω(Γd) be a regular vector field with skeleton χ, and consider a

fixed χ-structural set S (see Definition 3.4.16).
As before, ✶ ∈ R

F
+ stands for the vector with all coordinates equal to 1.

We will write
u := ✶ · u =

∑

σ∈F

uσ .

LetG = Gχ denote the directed graph of χ (see Definition 3.4.6) and recall
that BS(χ) represents the set of all S-branches of G (see Definition 3.4.17).
Given a χ-path ξ = (γ1, . . . , γm) such that the cone Πξ has non-empty inte-
rior, we define the (d− 2)-simplex

∆χ
ξ := {u ∈ int(Πξ) : u = 1 }

and set ∆χ
S := ∪ξ∈BS(G)∆

χ
ξ . Analogously, for each edge γ ∈ Eχ we define

∆γ := {u ∈ int(Πγ) : u = 1 } and set ∆S := ∪γ∈S∆γ.

Definition 3.6.1. Given a χ-path ξ = (γ1, . . . , γm), the projective Poincaré
map along ξ is the map π̂ξ : ∆

χ
ξ ⊂ ∆γ1

→ ∆γm defined by

π̂ξ(u) := πξ(u)/πξ(u) .

The projective S-Poincaré map is the application π̂S : ∆χ
S ⊂ ∆S → ∆S

defined by π̂S(u) := π̂ξ(u) for all u ∈ ∆χ
ξ .

Definition 3.6.2. A periodic point of π̂S is any point u ∈ ∆χ
S such that

u = (π̂S)
n(u), for some n ≥ 1. If the period n is minimum, denoting by ξj

the unique S-branch such that (π̂S)
j(u) ∈ ∆χ

ξj
for all j = 0, 1, . . . , n− 1, and

concatenating these branches, we obtain a cycle ξ such that u = π̂ξ(u). We
refer to this cycle ξ as the itinerary of the periodic point u.

Definition 3.6.3. Let u be a periodic point of π̂S whose itinerary is the
cycle ξ. Then we say that u is an eigenvector of πξ, i.e., πξ(u) = λu, and
the number λ = λ(u) > 0 will be referred as the eigenvalue of u. Define σ(u)
to be the maximum ratio λ/ |λ′| where λ′ ranges over all eigenvalues of πξ
different from λ.
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Given a periodic point u of π̂S, with itinerary ξ, the eigenvalues of D(π̂S)u
are the ratios λ(u)/λ′ where λ′ ranges over the eigenvalues of πξ associated
to eigen-directions different from u. Then next proposition follows easily.

Proposition 3.6.4. Let u be a periodic point of π̂S with itinerary ξ.

(a) If σ(u) < 1 then u is an attracting periodic point of π̂S,

(b) If σ(u) > 1 then u is a repelling periodic point of π̂S.

Let M be a smooth Riemann manifold, ϕt : M → M a flow (discrete or
continuous) of class Cs (s ≥ 1) and V ⊆M an invariant submanifold for ϕt.

Definition 3.6.5. We say that V is s-normally hyperbolic for ϕt if the tan-
gent bundle of M over V , TVM , has a Dϕt-invariant splitting

TVM = Eu ⊕ TV ⊕ Es ,

and there exists σ > 1 and c > 0 such that for all p ∈ V , for all 0 ≤ k ≤ s,
and for all t ≥ 0 (t ∈ Z or t ∈ R) :

(i) m(Dϕt
|Eup

) > cσt ‖Dϕt
|TpV

‖k ,

(ii) ‖Dϕt
|Esp

‖ < c−1 σ−tm(Dϕt
|TpV

)k ,

where m(A) = min‖v‖=1 ‖Av‖ denotes the minimum expansion of a linear
map A, and ‖A‖ = max‖v‖=1 ‖Av‖ is the operator norm of A. In case ϕt is
smooth, and s can be taken arbitrarily large, we say that V is ∞-normally
hyperbolic.

Because the skeleton Poincaré map is computable, we can run algorithms
to find the structures invariant for the S-Poincaré map. If these structures
are stable under small non-linear perturbations, they will persist as invariant
geometric structures for the PS-Poincaré map, and hence for the flow. Based
on this stability principle we prove in the following theorem on the existence
of normally hyperbolic stable and unstable manifolds of heteroclinic cycles.

Theorem 3.6.6. Given X ∈ X
ω(Γd) regular with skeleton χ, denote by ϕt

X

the flow of X. Given a periodic point u0 of π̂S with itinerary ξ, let Cξ be the
heteroclinic cycle determined by ξ. Assume u0 has eigenvalue λ(u0) 6= 1 and
the linear map πξ has no other eigenvalue of absolute value λ. Then there
exists a manifold W ⊂ Γd such that

(a) W is of class C∞,

(b) W is either forward or backward invariant under the flow of X,

(c) W is ∞-normally hyperbolic,

(d) If σ(u) < 1 then W is normally contractive,

(e) If σ(u) > 1 then W is normally repelling,
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(f) If λ(u) > 1 then W is forward invariant and for every p ∈ W

lim
t→+∞

d(ϕt
X(p), Cξ) = 0 .

(g) If λ(u) < 1 then W is backward invariant and for every p ∈ W

lim
t→+∞

d(ϕ−t
X (p), Cξ) = 0 .

Proof. Let γ0 be the first edge of the cycle ξ, and identify the hyperplane
that contains Πγ0 with R

d−1. Consider the (d− 1)× (d− 1) matrix Mξ that
represents the linear map πξ : Πξ ⊂ Πγ0 → Πγ0 , whose eigenvalues we denote
by λ0, λ1, . . . , λk with λ0 = λ > 0 and |λj| 6= λ for j = 1, . . . , k. Consider
the following system of coordinates Φ : Πγ0 ≡ R

d−1
+ → R×∆d−2, u 7→ (r, θ)

defined by the relations {
er = u
θ = u/u

. (3.8)

In these coordinates the map fξ = πξ : Πξ ⊂ Πγ0 → Πγ0 is given by

fξ(r, θ) :=
(
r + logMξθ, π̂ξ(θ)

)
.

The point u0 is a fixed point of π̂ξ, with coordinates r = 0 and θ = u0.
The line V = { (r, θ) ∈ R × ∆d−2 : θ = u0 } is fξ-invariant. Notice that
m(D(fξ)|TpV ) = 1 =

∥∥D(fξ)|TpV
∥∥. Since u0 is a hyperbolic fixed point of π̂ξ

there is a D(π̂ξ)u0-invariant decomposition Tu0∆
d−2 = Es ⊕Eu such that for

all p = (r, u0) ∈ V and all k ∈ N,

‖D(fξ)|Es(p)‖ < 1 = m(D(fξ)|TpV )
k ,

and similarly ∥∥D(fξ)|TpV
∥∥k = 1 < m(D(fξ)|Eu(p)) .

Because k is arbitrary, V is s-normally hyperbolic for any s ∈ N. Consider
now the half-line V+ = { (r, θ) ∈ R×∆d−2 : r ≥ 0, θ = u0 }.

If λ < 1 then log λ = logMξ u0 < 0, V+ is backward invariant and over-
flowing for the map fξ.

If λ > 1 then log λ = logMξ u0 > 0, V+ is forward invariant and over-
flowing for the inverse map f−1

ξ .

Because they are analogous, we only address the case λ < 1. Consider
the family of mappings

fξ,ε(r, θ) := Φ ◦Ψε ◦ Pξ ◦ (Ψε)
−1 ◦ Φ−1(r, θ ) ,

with Ψε := ΨX
v,ε and where v is the source vertex of the first flowing-edge
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in ξ. In a neighbourhood of V+ this map converges uniformly (as ε → 0+)
to f(r, θ) := Φ ◦ πξ ◦ Φ

−1(r, θ). Then by [9, Theorem 4.1], ignoring for now
the fact that V+ is not compact, for every small enough ε > 0 there exists
a unique fξ,ε-invariant normally hyperbolic manifold V ε

+ of class C∞ close to
V+. Setting W0 := (Ψε)

−1Φ−1(V ε
+), this manifold is normally hyperbolic and

over-flowing under the Poincaré map Pξ. For each x ∈ W0, consider the orbit
segment of x by the flow ϕt

X from time 0 to the first return time τ(x) to W0,

ςτx := {ϕt
X(x) : t ∈ [0, τ(x)

)
}.

Consider W :=
⋃

x∈W0
ςτx . As W0 is Pξ-invariant in the sense that

W0 ⊆ Pξ(W0), we have W a normally hyperbolic manifold invariant un-
der the flow (in the same sense as W0) of class C

∞. Statements (d)-(g) of W
w.r.t. the flow follow from the corresponding properties of W0 w.r.t. Pξ and
V ε
+ w.r.t. fξ,ε.
We now briefly explain how the non compactness of V+, in the application

of [9, Theorem 4.1], can be skirted. The idea is to compactify the mappings
fξ and fξ,ε, or, more precisely, their domain [0,+∞) × ∆d−2. Notice ∆d−2

is already compact. Take any diffeomorphism h : [0, 1) → [0,+∞), e.g.,
h(x) = x/(1− x), and define f̃ξ : [0, 1]×∆d−2 → [−1, 1]×∆d−2 by

f̃ξ(s, θ) :=
(
h−1(h(s) + logMξθ), π̂ξ(θ)

)
.

The compactification f̃ξ,ε is defined analogously, so that f̃ξ = limε→0 f̃ξ,ε.
Then Ṽ+ = [0, 1]×∆d−2 is a compact normally hyperbolic manifold such that
f̃ξ(Ṽ+) ⊇ Ṽ+, and in fact ∞-normally hyperbolic. To see this take any s ∈ N.

For each n ≥ 1 let Ṽ
(n)
+ := f̃−n

ξ (Ṽ+). Because p = (1, u0) is a parabolic fixed

point of f |Ṽ+
, the derivatives of f̃n

ξ |Ṽ (n)
+

: Ṽ
(n)
+ → Ṽ+ and its inverse tend to 1

as n → ∞. Thus, letting Mn = ‖Df̃n
ξ |Ṽ (n)

+
‖ and mn = m(Df̃n

ξ |Ṽ (n)
+

), we can

choose n large enough so that none of the eigenvalues λnj , of (π̂ξ)
n at u0, lies

inside the interval [ms
n,M

s
n], which implies that Ṽ+ is s-normally hyperbolic.

The rest of the argument goes without change.

If (f) holds, the manifold W is called the stable manifold of Cξ, and
denoted by W s

loc(ξ). If (g) holds, the manifold W is called the unstable
manifold of Cξ, and denoted by W u

loc(ξ).
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Chapter 4

Polymatrix Replicators

Evolutionary Game Theory (EGT) originated from the work of John May-
nard Smith and George R. Price [22] who applied the theory of strategic
games developed by John von Neumann and Oskar Morgenstern [42] to evo-
lution problems in Biology. Unlike Game Theory, EGT investigates the dy-
namical processes of biological populations.

As stated before, LV systems and the replicator equation are classes of
o.d.e.s which plays a central role in EGT.

Another fundamental class of models in EGT are the bimatrix replica-
tors, associated to bimatrix games, where two groups of individuals within a
population, e.g. males and females, interact using different sets of strategies,
say n strategies for the first group and m strategies for the second. There
are no interactions within each group. The state of this model is a pair of
probability vectors in the (n +m − 2)-dimensional prism ∆n−1 × ∆m−1. A
more detailed study of bimatrix replicators can be found in [16], for instance.

The theory of equilibria for n-person games was initiated in the years
1950s by John Nash [23]. A subclass of n-person games, referred as polymatrix
games, where the payoff of each player is the sum of the payoffs corresponding
to simultaneous contests with the opponents, was studied in the years 1970s
by J. Howson [17] who attributes the concept to E. Yanovskaya [43] in 1968.

In polymatrix games, a population is divided in a finite number of groups,
each one with a finite number of strategies. Interactions between individuals
of any two groups are allowed, including the same group.

The differential equation associated to a polymatrix game, introduced
in [3] and designated as polymatrix replicator, is defined in a finite product
of simplices.

Polymatrix replicator generalizes the symmetric and asymmetric repli-
cator equations. The replicator equation in dimension n is the case of the
polymatrix replicator with one group defined in the simplex ∆n−1. The asym-
metric games for two “populations”, one with n strategies and the other with
m, is the case of the polymatrix replicator with two groups defined on the
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prism ∆n−1 × ∆m−1, where the submatrices corresponding to interactions
within each group are null.

In this chapter we address essentially the study of polymatrix replicators.
In section 4.1, we state the basic definitions and properties of the polymatrix
replicators. In section 4.2, we describe the skeleton character of the vector
field defined by the polymatrix replicator. K. Sigmund and J. Hofbauer [16]
and W. Jansen [18] give sufficient conditions for permanence in the usual
replicators. In section 4.3 we generalize these results to polymatrix repli-
cators. In sections 4.4 and 4.5, we define the classes of conservative and
dissipative polymatrix games, and study their properties. In particular, we
extend to polymatrix replicators the concept of stably dissipativeness intro-
duced by Redheffer et al. [27–29]. In this context we generalize a theorem of
Oliva et al. [6] about the Hamiltonian nature of the limit dynamics in “stably
dissipative” polymatrix replicators. Finally, in section 4.6, we give examples
in the scope of this work’s applicability.

4.1 Definitions and Properties

In this section we introduce the evolutionary polymatrix games. This class of
systems contains both the replicator models and the evolutionary bimatrix
games.

Consider a population divided in p groups, labelled by an integer α rang-
ing from 1 to p. Individuals of each group α = 1, . . . , p have exactly nα

strategies to interact with other members of the population. The strategies
of a group α are labelled by positive integers j in the range

n1 + . . .+ nα−1 < j ≤ n1 + . . .+ nα .

We will write j ∈ α to mean that j is a strategy of the group α. Hence the
strategies of all population are labelled by the integers j = 1, . . . , n, where
n = n1 + · · ·+ np.

This context can be formalized in the following definition.

Definition 4.1.1. A polymatrix game is an ordered pair (n,A) where
n = (n1, . . . , np) is a list of positive integers, called the game type, and
A ∈Mn(R) a square matrix of dimension n = n1 + . . .+ np.

The matrix A is the payoff matrix. Given strategies i ∈ α and j ∈ β, in
the groups α and β respectively, the entry aij = aαβij represents an average
payoff for an individual using the first strategy in some interaction with an
individual using the second. Thus, the payoff matrix A can be decomposed
into nα×nβ block matrices Aαβ, with entries aαβij , where α and β range from
1 to p.
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Definition 4.1.2. Two polymatrix games (n,A) and (n,B) with the same
type are said to be equivalent, and we write (n,A) ∼ (n,B), when for
α, β = 1, . . . , p, all the rows of the block matrix Aαβ − Bαβ are equal.

The state of the population is described by a point x = (xα)α in the prism

Γn := ∆n1−1 × . . .×∆np−1 ⊂ R
n ,

where ∆nα−1 = {x ∈ R
nα :

nα∑
i=1

xi = 1}, and the entry xj = xαj represents the

usage frequency of strategy j within the group α.

Definition 4.1.3. Considering d = n−p, we denote by Γn the d-dimensional
simple polytope whose affine support is the d-dimensional space Ed ⊂ R

n

defined by the p equations

∑

i∈α

xαi = 1, 1 ≤ α ≤ p .

Definition 4.1.4. A polymatrix game (n,A) determines the following o.d.e.
on the prism Γn

dxαi
dt

= xαi

(
(Ax)i −

p∑

β=1

(xα)TAαβxβ

)
, i ∈ α, α = 1, . . . , p , (4.1)

called a polymatrix replicator system.

This equation says that the growth rate of each frequency xαi is the dif-
ference between its payoff (Ax)i =

∑n
j=1 aijxj and the average payoff of all

strategies in the group α. The underlying vector field on Γn will be denoted
by Xn,A, or simply by XA when the type n is clear from the context. The flow
ϕt
n,A associated to Xn,A leaves the prism Γn invariant. Hence, by compactness

of Γn, this flow is complete.

In the case p = 1, we have Γn = ∆n−1 and (4.1) is the usual replicator
equation associated to the payoff matrix A.

When p = 2, and A11 = A22 = 0, Γn = ∆n1−1×∆n2−1 and (4.1) becomes
the bimatrix replicator equation associated to the pair of payoff matrices
(A12, A21).

The polytope Γn is parallel to the affine subspace

Hn :=

{
x ∈ R

n :
∑

j∈α

xj = 0, for α = 1, . . . , p

}
. (4.2)
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For each α = 1, . . . , p, we denote by πα : Rn → R
n the projection

x 7→ y, yi :=

{
xi if i ∈ α
0 if i /∈ α

. (4.3)

Lemma 4.1.5. Given a matrix C ∈ Mn(R), the following statements are
equivalent:

(a) Cαβ has equal rows, for all α, β ∈ {1, . . . , p},

(b) Cx ∈ H⊥
n , for all x ∈ R

n.

Moreover, if any of these conditions holds then Xn,C = 0 on Γn.

Proof. Assume (a). Since H⊥
n is spanned by the vectors πα(✶) with α =

1, . . . , p, we have v ∈ H⊥
n iff vi = vj for all i, j ∈ α. Because all rows of C in

the group α are equal, we have (Cx)i = (Cx)j for all i, j ∈ α. Hence item
(b) follows.

Next assume (b). For all i ∈ α, with α ∈ {1, . . . , p}, Cei ∈ H⊥
n , which

implies that ci,k = cj,k for all j ∈ α. This proves (a).
If (a) holds, then for any α ∈ {1, . . . , p}, i, j ∈ α and k = 1, . . . , n, we

have cik = cjk. Hence for any x ∈ Γn, and i, j ∈ α with α ∈ {1, . . . , p},
(C x)i = (C x)j, which implies that Xn,C = 0 on Γn.

Proposition 4.1.6. Given two polymatrix games (n,A) and (n,B) with the
same type n, Xn,A = Xn,B on Γn if (n,A) ∼ (n,B).

Proof. Follows from Lemma 4.1.5 and the linearity of the correspondence
A 7→ Xn,A.

Given a polymatrix game (n,A) the following proposition characterizes
the equilibria of the associated polymatrix replicator.

Proposition 4.1.7. Given a polymatrix game (n,A), a point q ∈ int(Γn) is
an equilibrium of Xn,A if and only if (Aq)i = (Aq)j for all i, j ∈ α and
α = 1, . . . , p.

Proof. Suppose that q ∈ int (Γn) is an equilibrium point of Xn,A. Then, for
all α = 1 . . . , p and every i ∈ α,

qi

(
(Aq)i −

p∑

β=1

(qα)TAαβqβ

)
= 0 .

Since q ∈ int (Γn),

(Aq)i =

p∑

β=1

(qα)TAαβqβ .
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Hence (Aq)i = (Aq)j, for all i, j ∈ α and α = 1, . . . , p.

Suppose now that q ∈ int (Γn) such that (Aq)i = (Aq)j, for all i, j ∈ α
and α = 1, . . . , p. Then, for each i ∈ α,

qi

(
(Aq)i −

p∑

β=1

(qα)TAαβqβ

)
= qi

(
(Aq)i −

∑

j∈α

qj(Aq)j

)

= qi



(Aq)i −

∑

j∈α

qj

︸ ︷︷ ︸
=1

(Aq)i




= 0 .

4.2 Polymatrix Skeleton

Consider the polymatrix game (n,A) whose associated polymatrix replicator
is defined on the d-dimensional prism Γn. The defining functions of Γn are
fi : E

d → R, fi(x) := xi, with i ∈ α and α = 1, . . . , p.

We define

• Vn := V (Γn) the set of the vertices of Γn;

• En := E(Γn) the set of the edges of Γn;

• Fn := F (Γn) the set of the faces of Γn;

• Fn,v := Fv(Γn) the set of the faces of Γn containing the vertex v.

The polytope Γn has exactly
∏p

α=1 nα vertices

Vn = { ei1 + · · ·+ eip : iα ∈ α for α = 1, . . . , p } ,

where the vectors eiα stand for the canonical basis of Rn.

The polytope Γn has exactly n faces

Fn = {σj : j = 1, . . . , n } ,

where σj := Γn ∩ {fj = 0}.
For each vertex v = ei1+ · · ·+eip the set Fn,v of d = n−p faces containing

v is
Fn,v = {σj : j ∈ α, j 6= iα, α = 1, . . . , p } .
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A vertex v in Vn is given by v = ei1 + · · · + eip . We can label the vertex
v with (i1, . . . ip) where each iα ∈ α for α = 1, . . . , p. We define the set of
vertex labels of Γn by

Vn := {(i1, . . . , ip) : iα ∈ α for α = 1, . . . , p } .

Observing that the polytope has exactly n faces we can also label each
face of Γn with j = 1, . . . , n. We define the set of face labels of Γn by

Fn := { 1, . . . , n } ,

where a vertex v with label (i1, . . . , ip) belongs to the face j if and only if
j 6= iα for all α = {1, . . . , p}. So, given a vertex v with label (i1, . . . , ip), we
define the set of the face labels of Γn that contain v as

Fn,v := { j : j /∈ {i1, . . . , ip} } .

Beyond the incidence relations between the vertices and faces of Γn we
have a natural bijection between vertices and its labels, as well between faces
and its labels.

Proposition 4.2.1. Given n = (n1, . . . , np) ∈ N
p , we have the following

bijections:

(1) ΦV : Vn → Vn , (i1, . . . , ip) 7→ ei1 + · · ·+ eip;

(2) ΦF : Fn → Fn , j 7→ σj , where σj = {x ∈ Γn : fj(x) = 0} .

Moreover, for all v ∈ Vn and all σ ∈ Fn if

ΦV (i1, . . . , ip) = v and ΦF (j) = σ ,

then
v ∈ σ ⇔ j /∈ {i1, . . . , ip} .

Proof. Observing that the polytope has exactly n faces we can identify each
face σ of Γn with the unique j ∈ {1, . . . , n} such that

j /∈
⋃

(i1,...,ip)∈σ

{i1, . . . , ip} .

The proof of the statements follows from the corresponding definitions.

Given a vertex v we have the corresponding sector in R
F
+ defined by

Πv = {(xi)i∈Fn ∈ R
F
+ : xi = 0 if i /∈ Fn,v} .
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Analogously, given an edge γ = (v′, v′′), the corresponding sector in R
F
+

is defined by

Πγ = {(xi)i∈Fn ∈ R
F
+ : xi = 0 if i /∈ Fn,v′ ∩ Fn,v′′} .

Let us fix a general face i ∈ Fn. We can rewrite (4.1) as

dxi
dt

= xi

(
(Ax)i −

∑

k∈α

n∑

j=1

akjxkxj

)
, i ∈ α, α = 1, . . . , p , (4.4)

Considering the Taylor development of the right hand side of (4.4) in the
variable xi around zero, we have

dxi
dt

= A1 xi + A2 (xi)
2 + A3 (xi)

3 ,

where each coefficient Aℓ is a polynomial in the remaining variables xj with
j 6= i. The first coefficient is

A1 :=
n∑

j=1
j 6=i

aijxj −
∑

k∈α
k 6=i

n∑

j=1
j 6=i

akjxkxj , (4.5)

the second coefficient is

A2 := aii −
n∑

j=1
j 6=i

aijxj −
∑

k∈α
k 6=i

akixk , (4.6)

and the third coefficient is A3 := −aii .

Proposition 4.2.2. Let XA be the vector field associated to a polymatrix
replicator (4.4) defined on Γn. Then

XA is regular ⇔ (4.5) does not vanish identically on Γn .

Furthermore, if XA is regular, for every vertex v ∈ Vn with label
(j1, . . . , jp), the skeleton character of XA is the family χ = (χv

i )(v,i)∈Vn×Fn

where

χv
i =

{ ∑p
β=1(ajαjβ − aijβ) if i ∈ Fn,v

0 , otherwise .

Proof. The proof follows from Definition 3.2.2 and Definition 3.4.5.
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4.3 Permanence

In this section we generalize to polymatrix replicators the definition and some
properties of permanence stated in the context of LV and replicator systems.

If an orbit in the interior of the state space converges to the boundary, this
corresponds to extinction. Despite we give a formal definition of permanence
in polymatrix replicators (see Definition 4.3.3), as we saw in the context of the
LV systems and the replicator equation, we say that a system is permanent
if there exists a compact set K in the interior of the state space such that
all orbits starting in the interior of the state space end up in K. This means
that the boundary of the state space is a repellor.

Consider a polymatrix game (n,A) . Throughout the rest of the section,
X will denote the associated vector field on the d-dimensional prism Γn.

Proposition 4.3.1. If the flow of X has no interior fixed point then it admits
a strict Lyapunov function on int (Γn). In particular the system has no
periodic orbits, and no α or ω-limits inside int (Γn).

Proof. Consider the convex set

K = {Ax : x ∈ int (Γn)} ,

the open convex set
K̃ = {ty : y ∈ K, t > 0} ,

and the linear space L ⊂ R
n generated by the vectors {πα(✶) : α = 1, . . . , p }.

If K̃ ∩ L is non-empty there exists a point q ∈ int (Γn) and a number t > 0
such that t (Aq) ∈ L, which implies that q is an equilibrium point of X.
Thus, under the assumptions of the proposition, by Minkowski’s Separating
Theorem, there exists a linear hyperplane H ⊂ R

n that contains L and
doesn’t intersect K̃.

Let c be the unit normal to H that points to the half-space bounded by
H and not containing K̃. Then 〈c, A q〉 < 0 for all q ∈ int (Γn).

Consider now

V (x) =

p∑

α=1

∑

i∈α

cαi log xαi .

Since L ⊂ H = c⊥, for each α we have that
∑

i∈α c
α
i = 0 . Therefore,

differentiating V along the flow in int (Γn),

dV

dt
=

p∑

α=1

∑

i∈α

cαi
(
(Ax)i − πα(x)

TAx
)
=

p∑

α=1

∑

i∈α

〈cαi , (Ax)i〉 < 0 ,

which proves that V is a strict Lyapunov function.
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The following result is a generalization of the average principle in LV
systems (see Theorem 1.1.5) and replicator equation (see Theorem 1.5.6) to
the polymatrix replicator systems.

Proposition 4.3.2 (Average Principle). Let x(t) ∈ int (Γn) be an interior
orbit of the vector field X such that for some ε > 0 and some time sequence
Tk → +∞, as k → +∞, one has

(1) d (x(Tk), ∂Γn) ≥ ε for all k ≥ 0,

(2) lim
k→+∞

1

Tk

∫ Tk

0

x(t) dt = q,

(3) lim
k→+∞

1

Tk

∫ Tk

0

πα (x(t))
T Ax(t) dt = aα for all α ∈ {1, . . . , p}.

Then q is an equilibrium of X and aα = πα(q)
TAq, for all

α ∈ {1, . . . , p}. Moreover,

lim
k→+∞

1

Tk

∫ Tk

0

x(t)TAx(t) dt = qTAq .

Proof. Let α ∈ {1, . . . , p} and i, j ∈ α. Observe that from (2) we obtain

lim
k→+∞

1

Tk

∫ Tk

0

(Ax)i dt = (Aq)i .

By (1) we have for all k, ε < xαi (Tk) < 1− ε. Hence

(Aq)i − (Aq)j = eTi Aq − eTj Aq

= lim
k→+∞

1

Tk

∫ Tk

0

(
eTi Ax− eTj Ax

)
dt

= lim
k→+∞

1

Tk

(
log

xαi (Tk)

xαj (Tk)
− log

xαi (0)

xαj (0)

)
= 0 .

It follows that q is an equilibrium of X, and for all i, j ∈ α,
α = 1, . . . , p, (Aq)i = (Aq)j = πα(q)

T Aq.
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Finally, using (1)-(3),

0 = lim
k→+∞

1

Tk
(log xαi (Tk)− log xαi (0))

= lim
k→+∞

1

Tk

∫ Tk

0

dxαi
dt

(t)

xαi (t)
dt

= lim
k→+∞

1

Tk

∫ Tk

0

(
(Ax)i −

p∑

β=1

(xα)TAαβ xβ

)
dt

= lim
k→+∞

1

Tk

∫ Tk

0

(
(Ax)i − πα(x)

TAx
)
dt

= (Aq)i − lim
k→+∞

1

Tk

∫ Tk

0

πα(x)
TAxdt = (Aq)i − aα ,

which implies that aα = πα(q)
T Aq, and hence

lim
k→+∞

1

Tk

∫ Tk

0

xTAxdt = qTAq .

In the context of the polymatrix replicator systems we have a natural
generalization of the definition of permanence in the replicator equation (see
Definition 1.5.7).

Definition 4.3.3. Given a vector field X defined in Γn, we say that the
associated flow ϕt

X is permanent if there exists δ > 0 such that x ∈ int (Γn)
implies

lim inf
t→+∞

d
(
ϕt
X(x), ∂Γn

)
≥ δ .

The following theorem generalizes Theorem 1.5.9 for polymatrix replica-
tors.

Theorem 4.3.4. Let Φ : Γn → R be a smooth function such that
Φ = 0 on ∂Γn and Φ > 0 on int (Γn). Assume there is a continuous function
Ψ : Γn → R such that

(1) for any orbit x(t) in int (Γn),
d
dt
log Φ(x(t)) = Ψ(x(t)) ,

(2) for any orbit x(t) in ∂Γn,
∫ T

0
Ψ(x(t)) dt > 0 for some T > 0.

Then the vector field X is permanent.

Proof. In the proof of Theorem 1.5.9, Sigmund and Hofbauer [16, Theorem
12.2.1] use an argument that is abstract and applicable to a much wider class
of systems, including polymatrix replicator systems.
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Remark 4.3.5. Sigmund and Hofbauer in [16, Theorem 12.2.2] prove that
for the conclusion in Theorem 4.3.4 it is enough to check (2) for all ω-limit
orbits in ∂Γn. Thus, defining

(2’) for any ω-limit orbit x(t) in ∂Γn,
∫ T

0
Ψ(x(t)) dt > 0 for some T > 0,

we have that condition (2’) implies (2).

The k-dimensional face skeleton of Γn, denoted by ∂kΓn, is the union of
all j-dimensional faces of Γn with j ≤ k. In particular, the edge skeleton of
Γn is the union ∂1Γn of all vertices and edges of Γn.

The following theorem generalizes Jansen’s Theorem [18] (see
Theorem 1.5.8) for polymatrix replicators.

Theorem 4.3.6. If there is a point q ∈ int (Γn) such that for all boundary
equilibria x ∈ ∂Γn,

qTAx > xTAx , (4.7)

then X is permanent.

Proof. The proof we present here is essentially an adaptation of the argument
used in the proof of Theorem 13.6.1 in [16].

Take the given point q ∈ int (Γn) and consider Φ : Γn → R,

Φ(x) :=
n∏

i=1

(xi)
qi .

We can easily see that Φ = 0 on ∂Γn and Φ > 0 on int (Γn).
Consider now the continuous function Ψ : Γn → R,

Ψ(x) := qTAx− xTAx .

We have that
d

dt
log Φ(x(t)) = Ψ(x(t)) .

It remains to show that for any orbit x(t) in ∂Γn, there is a T > 0 such
that ∫ T

0

Ψ(x(t)) dt > 0 . (4.8)

We will prove by induction in k ∈ N that if x(t) ∈ ∂kΓn then (4.8) holds
for some T > 0.

If x(t) ∈ ∂0Γn then x(t) ≡ q′ for some vertex q′ of Γn. Since by (4.7)
Ψ(q′) > 0, (4.8) follows. Hence the induction step is true for k = 0.

Assume now that conclusion (4.8) holds for every orbit x(t) ∈ ∂m−1Γn,
and consider an orbit x(t) ∈ ∂mΓn. Then there is an m-dimensional face
σ ∈ Km(Γn) that contains x(t). We consider two cases:
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(i) If x(t) converges to ∂σ, i.e., limt→+∞ d (x(t), ∂σ) = 0 then the ω-limit
of x(t), ω(x), is contained in ∂σ. By induction hypothesis, (4.8) holds for
all orbits inside ω(x), and consequently, by Remark 4.3.5 the same is true
about x(t).

(ii) If x(t) does not converge to ∂σ, there exists ε > 0 and a sequence
Tk → +∞ such that d (x(Tk), ∂σ) ≥ ε for all k ≥ 0. Let us write

x̄(T ) =
1

T

∫ T

0

x dt and aα(T ) =
1

T

∫ T

0

πα(x)
T Axdt

for all α = 1, . . . , p. Since the sequences x̄(Tk) and aα(Tk) are bounded,
there is a subsequence of Tk, that we will keep denoting by Tk, such that
x̄(Tk) and aα(Tk) converge, say to q′ and aα, respectively, for all α = 1, . . . , p.
By Proposition 4.3.2, q′ is an equilibrium point in σ and aα = πα(q

′)TAq′.
Therefore

1

Tk

∫ Tk

0

Ψ(x(t)) dt

converges to qTAq′ − q′TAq′, which by (4.7) is positive. This implies (4.8)
and hence proves the permanence of X.

4.4 Conservative Polymatrix

Definition 4.4.1. We say that any vector q ∈ R
n is a formal equilibrium of

a polymatrix game (n,A) if

(a) (Aq)i = (Aq)j for all i, j ∈ α, and all α = 1, . . . , p,

(b)
∑

j∈α qj = 1 for all α = 1, . . . , p.

Observe that a formal equilibrium of a polymatrix game (n,A) is an
equilibrium of the natural extension of Xn,A to the affine subspace spanned
by Γn .

The matrix A induces a quadratic form QA : Hn → R defined by
QA(w) := wT Aw, where Hn is defined in (4.2).

Definition 4.4.2. We call diagonal matrix of type n to any diagonal matrix
D = diag(di) such that di = dj for all i, j ∈ α and α = 1, . . . , p.

Definition 4.4.3. A polymatrix game (n,A) is called conservative if it has
a formal equilibrium q, and there exists a positive diagonal matrix D of type
n such that QAD = 0 on Hn.
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Let {e1, . . . , en} denote the canonical basis in R
n, and Vn be the set of

vertices of Γn. Each vertex v ∈ Vn can be written as v = ei1 + · · ·+ eip , with
iα ∈ α, α = 1, . . . , p, and it determines the set

Vv := { (i, iα) : i ∈ α, i 6= iα, α = 1, . . . , p }

of cardinal n− p = dim(Hn). Notice that (i, j) ∈ Vv if and only if i 6= j are
in the same group, and vj = 1. Hence there is a natural identification

Vv ≡ { i ∈ {1, . . . , n} : vi = 0 } .

For every vertex v, the family Bv := { ei − ej : (i, j) ∈ Vv } is a basis of Hn.

Lemma 4.4.4. Given a vertex v of Γn and x, q ∈ Γn, we have

x− q =
∑

(i,j)∈Vv

(xi − qi) (ei − ej) .

Proof. Let v be a vertex of Γn. Notice that for all α = 1, . . . , p,

−(xiα − qiα) =
∑

i 6=iα
i∈α

(xi − qi) .

∑

(i,j)∈Vv

(xi − qi) (ei − ej) =

p∑

α=1

∑

i 6=iα
i∈α

(xi − qi)(ei − eiα)

=

p∑

α=1

∑

i 6=iα
i∈α

(xi − qi)ei −

p∑

α=1

∑

i 6=iα
i∈α

(xi − qi)eiα

=

p∑

α=1

∑

i 6=iα
i∈α

(xi − qi)ei +

p∑

α=1

(xiα − qiα)eiα

=

p∑

α=1

∑

i∈α

(xi − qi)ei = x− q

Given ordered pairs of strategies in the same group (i, j), (k, ℓ), i.e.,
i, j ∈ α and k, ℓ ∈ β for some α, β ∈ {1, . . . , p}, we define

A(i,j),(k,ℓ) := aik + ajℓ − aiℓ − ajk .
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Proposition 4.4.5. The coefficients A(i,j),(k,ℓ) do not depend on the repre-
sentative A of the polymatrix game (n,A).

Proof. Consider the matrix B = A−C, where matrix C is constant by blocks,

and each block Cαβ =
(
cαβij

)
i∈α,j∈β

have equal rows for all α, β = 1, . . . , p.

Let (i, j) ∈ α and (k, ℓ) ∈ β, for some α, β = 1, . . . , p, we have that

B(i,j),(k,ℓ) = bik + bjℓ − biℓ − bjk

= aik − cαβk + ajℓ − cαβℓ − aiℓ + cαβℓ − ajk + cαβk
= A(i,j),(k,ℓ) ,

where cαβk is the constant entry on the kth-column of Cαβ.

Definition 4.4.6. Given v ∈ Vn, we define Av ∈ Mn−p(R) the matrix with
entries A(i,j),(k,ℓ), indexed in Vv × Vv, and G(Av) its associated graph (see
Definition 1.1.2).

Proposition 4.4.7. This matrix represents the quadratic form
QA : Hn → R in the basis Bv.

Proposition 4.4.8. Let q be a formal equilibrium of the polymatrix game
(n,A). The quadratic form QA : Hn → R is given by

QA(x− q) =
∑

(i,j),(k,ℓ)∈Vv

A(i,j),(k,ℓ) (xi − qi) (xk − qk) . (4.9)

Proof. Using Lemma 4.4.4, we have

QA(x− q) =



∑

(i,j)∈Vv

(xi − qi)(ei − ej)




T

A



∑

(k,ℓ)∈Vv

(xk − qk)(ek − eℓ)




=
∑

(i,j),(k,ℓ)∈Vv

(ei − ej)
TA(ek − eℓ)(xi − qi)(xk − qk)

=
∑

(i,j),(k,ℓ)∈Vv

A(i,j),(k,ℓ)(xi − qi)(xk − qk) ,

Remark 4.4.9. For all w ∈ Hn, QD−1A(w) = QAD(D
−1w). Hence, because

DHn = Hn for any diagonal matrix D of type n

(1) QAD(w) = 0 ∀ w ∈ Hn ⇔ QD−1A(w) = 0 ∀ w ∈ Hn.

(2) QAD(w) ≤ 0 ∀ w ∈ Hn ⇔ QD−1A(w) ≤ 0 ∀ w ∈ Hn.
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Lemma 4.4.10. Given A ∈Mn(R), if q is a formal equilibrium of Xn,A, and
D = diag(di) is a positive diagonal matrix of type n, then the derivative of

h(x) = −
n∑

i=1

qi
di

log xi (4.10)

along the flow of Xn,A satisfies

dh

dt
(x) = QD−1A(x− q) .

Proof.

dh

dt
(x) = −

n∑

i=1

qi
di

dxi
dt

xi
= −

n∑

i=1

qi
di
((Ax)i −

p∑

β=1

(xα)tAαβxβ)

= −qTD−1Ax+ xTD−1Ax = (x− q)TD−1Ax

= (x− q)TD−1Ax− (x− q)TD−1Aq︸ ︷︷ ︸
=0

= (x− q)TD−1A (x− q) = QD−1A(x− q) .

To explain the vanishing term notice that for all α ∈ {1, . . . , p} and i, j ∈ α,
(Aq)i = (Aq)j, di = dj and

∑
k∈α (xk − qk) = 0.

Proposition 4.4.11. If (n,A) is conservative, q is a formal equilibrium of
Xn,A, and D = diag(di) is a positive diagonal matrix of type n such that
QAD = 0 on Hn, then (4.10) is a first integral for the flow of Xn,A, i.e.,
dh
dt

= 0 along the flow of Xn,A.
Moreover, Xn,A is Hamiltonian w.r.t. a stratified Poisson structure on

the prism Γn, having h as its Hamiltonian function.

Proof. The first part follows from Lemma 4.4.10 and Remark 4.4.9. The
second follows from [3, theorem 3.20].

4.5 Dissipative Polymatrix

Definition 4.5.1. A polymatrix game (n,A) is called dissipative if it has a
formal equilibrium q, and there exists a positive diagonal matrix D of type
n such that QAD ≤ 0 on Hn.

Proposition 4.5.2. If (n,A) is dissipative, q is a formal equilibrium of Xn,A,
and D = diag(di) is a positive diagonal matrix of type n such that QAD ≤ 0
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on Hn, then

h(x) = −
n∑

i=1

qi
di

log xi

is a Lyapunov decreasing function for the flow of Xn,A, i.e.,
dh
dt

≤ 0 along the
flow of Xn,A.

Proof. Follows from Lemma 4.4.10 and Remark 4.4.9.

Definition 4.5.3. A polymatrix game (n,A) is called admissible if (n,A) is
dissipative and for some vertex v ∈ Γn the matrix Av is stably dissipative
(see Definition 2.1.1).

Proposition 4.5.4. Let q be a formal equilibrium of the polymatrix game
(n,A). Given v ∈ Vn and (i, j) ∈ Vv, then we have the “polymatrix quotient
rule”

d

dt

(
xi
xj

)
=
xi
xj

∑

(k,ℓ)∈Vv

A(i,j),(k,ℓ) (xk − qk) . (4.11)

Proof. Let v be a vertex of Γn, (i, j) ∈ Vv, and q be a formal equilibrium.
Using Lemma 4.4.4, we have

d

dt

(
xi
xj

)
=

xi
xj

((Ax)i − (Ax)j)

=
xi
xj

(
(A(x− q))i − (A(x− q))j

)

=
xi
xj

∑

(k,ℓ)∈Vv

(ei − ej)
TA(ek − eℓ)(xk − qk)

=
xi
xj

∑

(k,ℓ)∈Vv

A(i,j),(k,ℓ)(xk − qk) .

Proposition 4.5.5. If the dissipative polymatrix replicator associated to
(n,A) has an equilibrium q ∈ int (Γn), then for any state x0 ∈ int (Γn) and
any pair of strategies i, j in the same group, the solution x(t) of (4.1) with
initial condition x(0) = x0 satisfies

1

c
≤
xi(t)

xj(t)
≤ c , for all t ≥ 0 ,

where c = c(x) is a constant depending on x.

Proof. Notice that the Lyapunov function h in Proposition 4.5.2 is a proper
function because q ∈ int(Γn). Given x0 ∈ int (Γn), h(x0) = a for some con-
stant a > 0. By Proposition 4.5.2 the compact set K = {x ∈ int(Γn) : h(x) ≤
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a} is forward invariant by the flow of Xn,A. In particular, the solution of the
polymatrix replicator with initial condition x(0) = x0 lies in K. Hence the
quotient xi

xj
has a minimum and a maximum in K.

Proposition 4.5.6. Given a dissipative polymatrix game (n,A), if Xn,A ad-
mits an equilibrium q ∈ int(Γn) then there exists a Xn,A-invariant foliation
F on int(Γn) such that every leaf of F contains exactly one equilibrium point.

Proof. Fix some vertex v ∈ Vn. Recall that the entries of Av are indexed in
the set Vv ≡ { i ∈ {1, . . . , n} : vi = 0 }. Given a vector w = (wi)i∈Vv ∈ R

n−p,
we denote by w̄ the unique vector w̄ ∈ Hn such that w̄i = wi for all i ∈ Vv.

Let E ⊂ R
n be the affine subspace of all points x ∈ R

n such that for
all α = 1, . . . , p and all i, j ∈ α, (Ax)i = (Ax)j and

∑
j∈α xj = 1. By

definition E ∩ int(Rn) is the set of interior equilibria of Xn,A. We claim
that E = {q + w̄ : w ∈ Ker(Av)}. To see this it is enough to remark that
w ∈ Ker(Av) if and only if

(Aw̄)i − (Aw̄)j = (ei − ej)
TAw̄ = 0 , ∀ (i, j) ∈ Vv.

Given b ∈ Ker(AT
v ), consider the function gb : int(Rn

+) → R defined by
gb(x) :=

∑n
j=1 b̄j log xj. The restriction of gb to Γn is invariant by the flow

of Xn,A. Note that we can write

gb(x) =
n∑

l=1

b̄l log xl =
∑

(i,j)∈Vv

bi log

(
xi
xj

)
,

and differentiating gb along the flow of Xn,A, by Proposition 4.5.5 we get

ġb(x) = bT Av(xk − qk)k∈Vv = 0 for all x ∈ Γn.

Fix a basis {b1, . . . , bk} of Ker(AT
v ), and define g : int(Rn

+) → R
k by

g(x) := (gb1(x), . . . , gbk(x)). This map is a submersion. For that consider
the matrix B ∈ Mk×n(R) whose rows are the vectors b̄j, j = 1, . . . , k. We
can write g(x) = B log x, where log x = (log x1, . . . , log xn). Hence Dgx =
BD−1

x , where Dx = diag(x1, . . . , xn), and because B has maximal rank,
rank(B) = k, the map g is a submersion. Hence g determines the foliation F

whose leaves are the pre-images g−1(c) = {g ≡ c} with c ∈ R
k.

Let us now explain why each leaf of F contains exactly one point in
E. Consider the vector subspace parallel to E, E0 := {w̄ : w ∈ Ker(Av)}.
Because (n,A) is dissipative, Av ∈ Mn−p(R) is also dissipative, and by
Proposition 1.4.4, Ker(Av) and Ker(AT

v ) have the same dimension. There-
fore dim(E0) = k. Let {c1, . . . , cn−k} be a basis of E⊥

0 ⊂ R
n and consider the

matrix C ∈M(n−k)×n(R) whose rows are the vectors cj, j = 1, . . . , n−k. The
matrix C provides the following description E = {x ∈ R

n : C (x − q) = 0}.
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Consider the matrix U =

[
B
C

]
∈Mn×n(R), which is nonsingular because by

Proposition 1.4.4, Ker(Av) = DKer(AT
v ), for some positive diagonal matrix

D.

The intersection g−1(c) ∩ E is described by the system

x ∈ g−1(c) ∩ E ⇔

{
B log x = c
C(x− q) = 0

.

Considering u = log x, this system becomes

{
B u = c
C(eu − q) = 0

.

It is now enough to see that

{
B u = c
C(eu − q) = 0

and

{
B u′ = c
C(eu

′

− q) = 0

imply u = u′. By the mean value theorem, for every i ∈ {1, . . . , n} there is
some ũi ∈ [ui, u

′
i] such that

eui − eu
′
i = eũi(ui − u′i),

which in vector notation is to say that

eu − eu
′

= Deũ(u− u′) = eũ ∗ (u− u′).

Hence
{
B (u− u′) = 0
C(eu − eu

′

) = 0
⇔

{
B (u− u′) = 0
C Deũ(u− u′) = 0

⇔

[
B

C Deũ

]
(u− u′) = 0

⇔ U

[
I 0
0 Deũ

]
(u− u′) = 0 .

Therefore, because

[
I 0
0 Deũ

]
is non-singular, we must have u = u′.

Restricting F to int(Γn) we obtain a Xn,A-invariant foliation on int(Γn).
Notice that the restriction g|int(Rn) : int(R

n) → R
k is invariant by the flow of

Xn,A because all its components are.

Since all points in int(Γn) ∩ E are equilibria, each leaf of the restricted
foliation contains exactly one equilibrium point.

76



Definition 4.5.7. We call attractor of the polymatrix replicator (4.1) to the
following topological closure

Λn,A := ∪x∈Γnω(x) ,

where ω(x) is the ω-limit of x by the flow {ϕt
n,A : Γn → Γn}t∈R.

Proposition 4.5.8. Given a dissipative polymatrix replicator associated to
(n,A) with an equilibrium q ∈ int (Γn), and D = diag(di) is a positive diag-
onal matrix of type n, we have that

Λn,A ⊆ {x ∈ Γn : QD−1A(x− q) = 0 } .

Proof. By Theorem 2.2.3 the attractor Λn,A is contained in the region where
dh
dt
(x) = 0. The conclusion follows then by Lemma 4.4.10.

Given an admissible polymatrix replicator associated to (n,A) with an
equilibrium q ∈ int (Γn), we say that a strategy i is of type • to mean that
the following inclusion holds Λn,A ⊆ {x : xi = qi}. Similarly, we say that a
strategy i is of type ⊕ to state that Λn,A ⊆ {x : X i

n,A(x) = 0}. Otherwise, a
species i is said to be of type ◦, meaning that we don’t know nothing about
species i (at that moment). Given two strategies i and j in the same group,
we say that i and j are related when the orbits of the attractor Λn,A are
tangent to the foliation { xi

xj
= const. } .

For any v ∈ Vn we denote by avij the entries of the matrix Av. Moreover,
given a subset J ⊂ {1, . . . , n} we will denote by Av,J the submatrix Av,J :=
(avij)i,j /∈J .

With this terminology we have

Proposition 4.5.9. Given an admissible polymatrix game (n,A) with an
equilibrium q ∈ int (Γn) the following statements hold:

(1) For any graph G(Av):

(a) if J ⊂ {1, . . . , n} is a set of strategies of type •, the submatrix
Av,J is stably dissipative, and avii < 0, for some i /∈ J , then i is of
type •;

(b) if J ⊂ {1, . . . , n} is a set of strategies of type • or ⊕, the submatrix
Av,J is stably dissipative and avii < 0, for some i /∈ J , then i is of
type ⊕;

(2) For any graph G(Av), if j and the unique strategy j′ in the same group
as j, with vj′ = 1, are both of type • or ⊕ then:

(c) if all neighbours of j but (possibly) l in G(Av) are of type •, then
l is also of type •;
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(d) if all neighbours of j but (possibly) l in G(Av) are of type • or ⊕,
then l is also of type ⊕;

(3) For any graph G(Av) with v ∈ Vn:

(e) if all neighbours of a strategy j in G(Av) are of type • or ⊕, then
j is related to the unique strategy j′, in the same group as j, such
that vj′ = 1.

Proof. The proof involves the manipulation of algebraic relations holding on
the attractor. To simplify the terminology we will say that some algebraic
relation holds to mean that it holds on the attractor.

Choose a positive diagonal matrix D of type n such that QAD ≤ 0 on Hn,

and set Ã := D−1A. By Lemma 2.1.11, for any v ∈ Vn, the matrices Av and

Ãv have the same dissipative and stably dissipative character.
In the proofs of items (a) and (b) we will use Lemma 4.5.17 and Corol-

lary 4.5.15 that appears below.
Proof of (a) when J = ∅: Given v ∈ Vn,A such that Av is stably dissipative,

for any solution x(t) of the polymatrix replicator in the attractor, we have
that QÃv

(x(t)− q) = 0. Hence, since Ãv is stably dissipative and avii < 0,
by Lemma 2.1.2 follows that xi(t) = qi on the attractor, which proves i is of
type •.

Proof of (a) when J 6= ∅: Given a subset J of strategies of type •, define
c : J → (0, 1) by c(j) = qj. Then Λn,A ⊂ Γn(c) (defined in (4.14) below). By
Corollary 4.5.15 the affine homeomorphism ψn,c : Γn(c) → Γn(c) embeds Λn,A

in the polymatrix replicator Xn(c),A(c) on Γn(c).
Let A(c) be the matrix in Definition 4.5.13 and v̌ = (vj)j /∈J . It follows by

Lemma 4.5.17 that there exists a positive diagonal matrix Ď of type n(c) such
that (A(c)Ď)v̌ is a submatrix of (AD)v indexed in Vv \J . On the other hand,
since Av,J is a submatrix of Av, then Av,JDv̌ is a submatrix of AvDv = (AD)v
indexed in Vv \ J . Therefore A(c)v̌Ďv̌ = (A(c)Ď)v̌ = Av,JDv̌, because these
are submatrices of (AD)v with the same set of indexes.

Since Av,J is stably dissipative, by Lemma 2.1.11, the matrix A(c)v̌ is
stably dissipative. We can now apply the case (a), with J = ∅, to the
polymatrix game (n(c), A(c)), vertex v̌ and strategy i. By this property, the
attractor of the Xn(c),A(c) is contained in some affine hyperplane {xi = q′i}.
Hence, using the embedding ψn,c, the same holds for Λn,A. This shows that
i is of type •.

Proof of (b): Consider a subset J of strategies of type • or ⊕. Given
x ∈ int(Γn) there exists a function c : J → (0, 1) (depending on x) such that
ω(x) ⊂ Γn(c). By Corollary 4.5.15 the affine homeomorphism ψn,c : Γn(c) →
Γn(c) embeds ω(x) in the polymatrix replicator Xn(c),A(c) on Γn(c).

Arguing as in the previous item we obtain that A(c)v̌ = Av,JDv̌(Ďv̌)
−1.

Hence, as before, A(c)v̌ is stably dissipative.
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We can now apply the case (a), with J = ∅, to the polymatrix game
(n(c), A(c)), vertex v̌ and strategy i. By this property, the Xn(c),A(c)-invariant
set ψn,c(ω(x)) is contained in some affine hyperplane {xi = q′i}, where q

′
i

depends on x. Hence the same holds for ω(x). This shows that i is of type
⊕.

Let j and j′, the unique strategy in the same group as j with vj′ = 1, be

strategies of type • or ⊕. Then d
dt

(
xj
xj′

)
= 0, i.e., by Proposition 4.5.4,

∑

(k,k′)∈Vv

A(j,j′),(k,k′) (xk − qk) = 0 . (4.12)

Observe that if j is of type • then xj = qj. Otherwise avjj = A(j,j′),(j,j′) = 0.
Let l be a neighbour of j in the graph G(Av).
Proof of (c): If all neighbours of j but l in G(Av) are of type •, then

by (4.12)
A(j,j′),(l,l′) (xl − ql) = 0 ,

from which follows that xl = ql, because A(j,j′),(l,l′) 6= 0 . Hence l is of type •.
Proof of (d): If all neighbours of j but l in G(Av) are of type • or ⊕, then

by (4.12)
A(j,j′),(l,l′) (xl − ql) = C ,

for some constant C. Then xl is constant, because A(j,j′),(l,l′) 6= 0. Hence l is
of type ⊕.

Proof of (e): Suppose all neighbours of a strategy j are of type • or ⊕
and take j′ the unique strategy, in the same group as j, such that vj′ = 1.
By the polymatrix quotient rule (see Proposition 4.5.4),

d

dt

(
xj
xj′

)
=
xj
xj′

∑

(k,k′)∈Vv

A(j,j′),(k,k′) (xk − qk) .

Since all neighbours of j are of type • or ⊕ we obtain

d

dt

(
xj
xj′

)
=
xj
xj′

C ,

for some constant C. Hence

xj
xj′

= B0 e
Ct ,

where B0 =
xj(0)

xj′ (0)
. By Proposition 4.5.5 we have that the constant C must

be 0. Hence there exists a constant B0 > 0 such that
xj
xj′

= B0, which proves

(e).
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Proposition 4.5.10. If in a group α all strategies are of type • (resp. of
type • or ⊕) except possibly for one strategy i, then i is also of type • (resp.
of type ⊕).

Proof. Suppose that in a group α all strategies are of type • or ⊕ except for
one strategy i. We have that xk = ck, for some constant ck, for each k 6= i.
Thus,

xi = 1−
∑

j∈α
j 6=i

xj = 1−
∑

j=•

xj −
∑

k=⊕

xk = 1−
∑

j=•

qj −
∑

k=⊕

ck .

Hence i is of type ⊕.
If in a group α all strategies are of type •, the proof is analogous.

Proposition 4.5.11. Assume that in a group α with n strategies, n − k of
them, with 0 ≤ k < n, are of type • or ⊕, and denote by S the set of the
remaining k strategies. If the graph with vertex set S, obtained by drawing
an edge between every pair of related strategies in S, is connected, then all
strategies in S are of type ⊕.

Proof. Since all strategies in α \ S are of type • or ⊕, for the strategies in
S we have that ∑

i∈S

xi = 1− C , (4.13)

where C =
∑

j∈α\S xj.
Let GS be the graph with vertex set S obtained drawing an edge between

every pair of related strategies in S. Since GS is connected we have that it
contains a tree. Considering the k − 1 relations between the strategies in
S given by that tree, we have k − 1 linearly independent equations of the
form xi = Cijxj for pairs of strategies i and j in S, where Cij is a constant.
Together with (4.13) we obtain k linear independent equations for the k
strategies in S, which implies that xi = constant, for every i ∈ S. This
concludes the proof.

Based on these facts we introduce a reduction algorithm on the set of
graphs {G(Av) : v ∈ Vn } to derive information on the strategies of an
admissible polymatrix game (n,A).

In each step, we also register the information obtained about each strategy
in what we call the “information set”, where all strategies of the polymatrix
are represented.

The algorithm is about labelling (or colouring) strategies with the“colours”
• and ⊕. The algorithm acts upon all graphs G(Av) with v ∈ Vn as well as
on the information set. It is implicit that after each rule application, the
new labels (or colours) are transferred between the graphs G(Av) and the
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information set, that is, if in a graph G(Av) a strategy i has been coloured
i = •, then in all other graphs containing the strategy i, we colour it i = •,
as well on the information set.

Rule 1. Initially, for each graph G(Av) such that Av is stably dissipative
colour in black (•) any strategy i such that avii < 0. Colour in white (◦) all
other strategies.

This rule follows from item (a) of Proposition 4.5.9 with J = ∅.
The reduction procedure consists in applying the following rules, corre-

sponding to valid inferences rules. For each graph G(Av) such that for some
set of strategies J ⊂ {1, . . . , n} of type • or ⊕ the submatrix Av,J = (avij)i,j /∈J
is stably dissipative:

Rule 2. If J ⊂ {1, . . . , n} is a set of strategies of type •, the submatrix Av,J

is stably dissipative and avii < 0, for some i /∈ J , then colour i = •.

Rule 3. If J ⊂ {1, . . . , n} is a set of strategies of type • or ⊕, the submatrix
Av,J is stably dissipative and avii < 0, for some i /∈ J , then colour i = ⊕.

Rule 4. If i has colour • or ⊕, the unique strategy i′ in the same group as i
with vi′ = 1 has also colour • or ⊕ and all neighbours of i in G(Av,J) but j
are •, then colour j = •.

Rule 5. If i has colour • or ⊕, the unique strategy i′ in the same group as
i with vi′ = 1 has also colour • or ⊕ and all neighbours of i but j in G(Av)
are • or ⊕, then colour j = ⊕.

For each graph G(Av) such that v ∈ Vn:

Rule 6. If i has colour ◦ and all neighbours of i in G(Av) are • or ⊕, then
we put a link between strategies j and j′ in the “information set”, where j′ is
the unique strategy such that vj′ = 1 and j′ is in the same group as j.

The following rules can be applied to the set of all strategies of the poly-
matrix game.

Rule 7. If in a group all strategies have colour • (respectively, •,⊕) except
for one strategy i, then colour i = • (respectively, i = ⊕).

Rule 8. If in a group some strategies have colour • or ⊕, and the remaining
strategies are related forming a connected graph, then colour with ⊕ all that
remaining strategies.

We define the reduced information set R(n,A) as the {•,⊕, ◦}-coloring on
the set of strategies {1, . . . , n}, which is obtained by successive applications
to the graphs G(Av), v ∈ Vn, of the reduction rules 1-6, until they can no
longer be applied.
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Proposition 4.5.12. Let (n,A) be an admissible polymatrix game, and con-
sider the associated polymatrix replicator (4.1) with an interior equilibrium
q ∈ int(Γn).

1. If all vertices of R(n,A) are • then q is the unique globally attractive
equilibrium.

2. If R(n,A) has only • or ⊕ vertices then there exists an invariant foli-
ation with a unique globally attractive equilibrium in each leaf.

Proof. Item (1) is clear because if all strategies are of type • then for every
orbit x(t) = (x1(t), . . . , xn(t)) of (4.1), and every i = 1, . . . , n, one has
limt→+∞ xi(t) = qi.

Likewise, if R(n,A) has only • or ⊕ vertices then every orbit of (4.1)
converges to an equilibrium point, which depends on the initial condition.
But by Proposition 4.5.6 there exists an invariant foliation F with a single
equilibrium point in each leaf. Hence, the unique equilibrium point in each
leaf of F must be globally attractive.

Given a type n with total length n = n1+ . . .+np and a function c : J →
(0, 1) on some subset J ⊂ {1, . . . , n}, define

Γn(c) := Γn ∩
⋂

j∈J

{xj = c(j)}. (4.14)

The group partition in {1, . . . , n} induces a splitting in {1, . . . , n} \ J , and
we denote by n(c) the corresponding type of total length n − |J |. There is
a natural affine homeomorphism ψn,c : Γn(c) → Γn(c) defined by ψn,c(x) =
(yl)l /∈J , where for each group α = 1, . . . , p and index l ∈ α,

yl =

(
1−

∑

j∈α∩J

c(j)

)−1

xl.

Next we define the c-reduction (n(c), A(c)) of a polymatrix game (n,A)
for any given restriction data function c : J → (0, 1).

Definition 4.5.13. Let c be a one-step restriction data function, i.e., J =
{l}. If l ∈ α and nα > 1 we define A(c) = (aij(c)) to be the matrix indexed
in {1, . . . , n} \ {l} with entries

aij(c) :=

{
aij − alj if j /∈ α
(aij − alj)(1− c(l)) + (ail − all)c(l) if j ∈ α \ {l} .

(4.15)

while if l ∈ α and nα = 1 we set

aij(c) := aij +
ail
p− 1

. (4.16)
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When J = {l1, . . . , lk} with l1 < . . . < lk and k ≥ 2 the matrix A(c)
indexed on {1, . . . , n} \ J is defined recursively through a sequence of one-
step reductions, first in l1, second in l2 and so on.

Proposition 4.5.14. Given a polymatrix game (n,A) and a restriction data
function c : J → (0, 1), if (x,Xn,A(x)) ∈ T (Γn(c)) then

Xn(c),A(c)(ψn,c(x)) = (Dψn,c)xXn,A(x) .

Proof. It is enough to address the case where c : J → (0, 1) is a one-step
restriction data function, i.e., J = {l}. We assume here that l ∈ α with
α ∈ {1, . . . , p} and nα > 1. The case nα = 1 follows from (4.16) in a simpler
way. Because (x,Xn,A(x)) ∈ T (Γn(c)) we have x ∈ Γn ∩ {xl = c(l)} and
X l

n,A(x) = 0.
Since

∑
j∈α
j 6=l

xj = 1− c(l), considering the change of variables y = ψn,c(x)

yj =

{ xj
1−c(l)

if j ∈ α \ {l}

xj if j /∈ α
, (4.17)

we have that
∑

j∈α\{l} yj = 1 .

By Proposition 4.1.6, we can assume A = (aij) has all entries equal to
zero in row l, i.e., alj = 0 for all j. Thus we obtain

dxl
dt

= xl

(
−

p∑

β=1

(xα)tAαβxβ

)
.

Hence, making xl = c(l), the replicator equation (4.1) becomes

(i) if i ∈ α \ {l},

dxi
dt

= xi




n∑

j=1
j 6=l

aijxj + ailc(l)−
∑

k∈α
k 6=l

n∑

j=1

akjxkxj


 (4.18)

(ii) if i ∈ β 6= α, the equation is essentially the same, with xl = c(l).

Observe that
∑p

β=1(x
α)tAαβxβ = 0 because we are assuming that x ∈

Γn ∩ {xl = c(l)} and X l
n,A(x) = 0.

Hence we can add

−
c(l)

1− c(l)

p∑

β=1

(xα)tAαβxβ
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to each equation for dxi
dt
, with i ∈ α \ {l}, without changing the vector

field Xn,A at the points x ∈ Γn ∩ {xl = c(l)} where Xn,A(x) is tangent
to {xl = c(l)}. So equation (4.18) becomes

dxi
dt

= xi




n∑

j=1
j 6=l

aijxj + ailc(l)−
1

1− c(l)

∑

k∈α
k 6=l

n∑

j=1

akjxkxj


 (4.19)

Now, using the change of variables (4.17), equation (4.19) becomes

dyi
dt

= yi


fi −

∑

k∈α
k 6=l

ykfk


 (i ∈ α) , (4.20)

where fi =
∑

j∈α\{l} aij(1− c(l))yj + ailc(l) +
∑

j /∈α aijyj.

Let α̌ ≡ α \ {l}. Setting ailc(l) = ailc(l)(
∑

j∈α̌ yj),

dyi
dt

= yi

(
gi −

∑

k∈β

ykgk

)
, i ∈ β, β ∈ {1, . . . , p} , (4.21)

where gi =
∑

j∈α̌(aij(1 − c(l)) + ailc(l))yj +
∑

j /∈α̌ aijyj, defines a new poly-
matrix game in dimension n− 1. In fact, (4.21) is the replicator equation of
the polymatrix game (n(c), A(c)), where, since we have assumed that alj = 0
for all j, (4.15) becomes

aij(c) =

{
aij if j /∈ α̌
aij(1− c(l)) + ailc(l) if j ∈ α̌ .

(4.22)

Corollary 4.5.15. Let (n,A) be a polymatrix game, c : J → (0, 1) a re-
striction data function and Λ ⊂ Γn(c) a Xn,A-invariant set. Then the affine
homeomorphism ψn,c : Γn(c) → Γn(c) embeds Λ in the flow of Xn(c),A(c) on
Γn(c). In other words, Λ lives on a lower dimension polymatrix replicator of
type n(c).

Lemma 4.5.16. Given a polymatrix game (n,A) and a diagonal matrix D
of type n, we have

(AD)v = AvDv ,

where Av is given in Definition 4.4.6 and Dv is the submatrix of D indexed
in Vv = { i ∈ {1, . . . , n} : vi = 0 }.
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Proof. Given indices i, k ∈ Vv, take j, resp. l, in the group of i, resp. k, such
that vj = vl = 1.

Since D is of type n we have dk = dl. By Definition 4.4.6,

((AD)v)ik = (AD)(i,j),(k,l) = aikdk + ajldl − aildl − ajkdk

= (aik + ajl − ail − ajk) dk

= A(i,j),(k,l) dk = (AvDv)ik .

Lemma 4.5.17. Let (n,A) be a dissipative polymatrix game and D a positive
diagonal matrix of type n such that QAD ≤ 0 on Hn. Given a restriction data
function c : J → (0, 1), and a vertex v of Γn such that Vv ⊃ J , there exists a
positive diagonal matrix Ď of type n(c) such that (A(c)Ď)v̌ is the submatrix
of (AD)v indexed in Vv \ J and v̌ = (vj)j /∈J is a vertex of Γn(c). In particular
(n(c), A(c)) is dissipative.

Proof. It is enough to address the case where c : J → (0, 1) is a one-step
restriction data function, i.e., J = {l}.

We assume here that l ∈ α with α ∈ {1, . . . , p} and nα > 1.
By Proposition 4.1.6, we can assume A = (aij) has all entries equal to

zero in row l, i.e., alj = 0 for all j. The matrix (AD)v is indexed in Vv. Since
l ∈ Vv the vertex v̌ is determined by the exact same strategies as v.

As in the proof of Proposition 4.5.14 the matrix A(c) is given by (4.22).
Hence the matrix A(c)v̌ has entries

av̌ij(c) =

{
avij if j /∈ α̌
avij(1− c(l)) if j ∈ α̌

.

Let us write d̃β = dj for j ∈ β and β ∈ {1, . . . , p} and denote by Ď the
positive diagonal matrix

Ď = diag

(
d̃1I1, . . . ,

d̃α
1− c(l)

Iα, . . . , d̃pIp

)
.

By Lemma 4.5.16, (A(c)Ď)v̌ = A(c)v̌ Ďv̌. All entries of this matrix are
of the form avijdj. Therefore (A(c)Ď)v̌ is the submatrix of AvDv = (AD)v
indexed in Vv \ {l}.

Let us prove now that (n(c), A(c)) is dissipative. Since QAD ≤ 0 on Hn,
by Proposition 4.4.8 we have that wT (AD)vw ≤ 0 for all w ∈ R

Vv . Hence,
because (A(c)Ď)v̌ is a submatrix of (AD)v, we also have wT (A(c)Ď)v̌w ≤ 0
for all w ∈ R

Vv̌ . This implies that QA(c)Ď ≤ 0 on Hn(c).
By definition (n,A) has a formal equilibrium q. A simple calculation
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shows that ψn,c(q) is a formal equilibrium of the the c-reduction (n(c), A(c)).

Remark 4.5.18. When c : J → (0, 1) is a one-step restriction data function
with J = {l}, and the group α ∈ {1, . . . , p} that contains the strategy l
satisfies nα = 1, the entries of the matrix A(c) are given by (4.16) and A(c)v̌
is a submatrix of Av. In this case, although the assumptions of Lemma 4.5.17
are not satisfied (because vl = 1) the conclusions of this lemma remain valid
taking Ď = diag(dj)j 6=l.

Lemma 4.5.19. Let (n,A) be a dissipative polymatrix game and c : l 7→ c(l)
a one-step restriction data function. Given v ∈ Vn,A such that Av is stably
dissipative and either (i) l ∈ Vv, or else (ii) l /∈ Vv = ∅ and {l} is a group of
(n,A), then A(c)v̌ is stably dissipative.

Proof. By assumption (n,A) is dissipative. Hence there exists a positive
diagonal matrix D of type n such that QAD ≤ 0 on Γn. By Lemma 4.5.17
and Remark 4.5.18, (n(c), A(c)) is a dissipative polymatrix game.

Since Av is stably dissipative, by Lemma 2.1.11 the matrix (AD)v = AvDv

is also stably dissipative. Because of Lemma 4.5.17 (or Remark 4.5.18),
(A(c)Ď)v̌ is a submatrix of (AD)v. Hence Lemma 2.1.9 implies that A(c)v̌Ďv̌

is stably dissipative. Finally applying Lemma 2.1.11 again, we conclude that
A(c)v̌ is stably dissipative.

Proposition 4.5.14 and Lemma 4.5.19 allows us to generalize [6, Theo-
rem 4.5], on the Hamiltonian nature of the limit dynamics, to the class of
admissible polymatrix replicators.

Theorem 4.5.20. Consider a polymatrix replicator Xn,A on Γn, and assume
that (n,A) is admissible and has an equilibrium q ∈ int (Γn). Then the
limit dynamics of Xn,A on the attractor Λn,A is embeddable in a Hamiltonian
polymatrix replicator on some lower dimensional prism Γn′.

Proof. By definition there exists a vertex v of Γn such that Av = (avij) is
stably dissipative. Applying Proposition 4.5.14 and Lemma 4.5.19 we obtain
a new polymatrix replicator in lower dimension that is admissible.

We can iterate this process until the corresponding vertex v̌ in the poly-
tope is such that, av̌ii = 0 for all i with v̌i = 0.

Let us denote the resulting polymatrix game by (r, A′). By Proposi-
tion 2.3.7, for some positive diagonal matrix D′ of type r, (A′D′)v̌ is skew-
symmetric. Hence QA′ D′ = 0 on Hr, and by Definition 4.4.3 the polymatrix
game (r, A′) is conservative. Thus by Proposition 4.4.11 the vector field Xr,A′

is Hamiltonian.
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4.6 Examples and Applications

In this section we present examples that illustrate some of the main results
of this chapter as well as of chapter 3.

In example 4.6.1 we begin with an admissible polymatrix game to il-
lustrate the reduction algorithm on the set of graphs {G(Av) : v ∈ Vn }
to derive information on the strategies of the polymatrix game. Since this
polymatrix game is admissible, we also illustrate the procedure to obtain
the Hamiltonian polymatrix replicator defined in a lower dimensional prism
whose dynamics describes the limit dynamics of the admissible game.

In example 4.6.2 we present a dissipative polymatrix game that has a
single attractive equilibrium in the interior of the phase space, and a hetero-
clinic cycle in the network formed by the flowing-edges of the polytope where
it is defined. We analyse the global dynamics of the flow in the polytope, in
particular the asymptotic dynamics along the heteroclinic cycle.

Finally, in example 4.6.3 we present a conservative polymatrix replicator.
We will see that for all sufficiently large energy level this system dynamics is
chaotic.

We will use the notation introduced in sections 4.1 and 4.2.

4.6.1 Reduction Algorithm

Consider the polymatrix replicator system associated to the polymatrix game
G = ((3, 2), A), where

A =




−1 8 −7 3 −3
−10 −1 11 3 −3
11 −7 −4 −6 6
−3 −3 6 0 0
3 3 −6 0 0



.

We denote by XG the vector field associated to this polymatrix replicator
defined on the polytope Γ(3,2) = ∆2 ×∆1 .

In this example we want to illustrate the reduction algorithm on the set
of graphs {G(Av) : v ∈ V(3,2) } to derive information on the strategies of
the polymatrix game G as described in section 4.5. Moreover, we will see
that this polymatrix game is admissible and that its limit dynamics on the
attractor is described by a Hamiltonian polymatrix replicator defined in a
lower dimensional prism.

In this game the strategies are divided in two groups, {1, 2, 3} and {4, 5}.
The vertices of the phase space Γ(3,2) will be designated by pairs in {1, 2, 3}×
{4, 5}, where the label (i, j) stands for the point ei + ej ∈ Γ(3,2). To simplify
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Figure 4.1: Four orbits in two different leafs of the polymatrix game G.

v1 = (1, 4) v2 = (1, 5) v3 = (2, 4) v4 = (2, 5) v5 = (3, 4) v6 = (3, 5)

Table 4.1: Vertex labels.

the notation we designate the prism vertices by the letters v1, . . . , v6 according
to table 4.1.
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Vertex Av G(Av)

v1




0 27 0
−27 −9 18
0 −18 0




v2




0 27 0
−27 −9 −18
0 18 0




v3



0 −27 0
27 −9 18
0 −18 0




v4



0 −27 0
27 −9 −18
0 18 0




v5



−9 18 −18
−36 −9 −18
18 18 0




v6



−9 18 18
−36 −9 18
−18 −18 0




Table 4.2: Matrix Av and its graph G(Av) for each vertex v.

The point q ∈ int
(
Γ(3,2)

)
given by

q =

(
1

3
,
1

3
,
1

3
,
1

2
,
1

2

)
,

is an equilibrium of our polymatrix replicator XG. In particular it is also a
formal equilibrium of G (see Definition 4.4.1).

The quadratic form QA : H(3,2) → R induced by matrix A is

QA(x) = −9 x23 ≤ 0 ,

where x = (x1, x2, x3, x4, x5) ∈ H(3,2). By Definition 4.5.1, G is dissipative.

In table 4.2 we present for each vertex v in the prism the corresponding
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Step Rule Vertex Strategy Group 1 Group 2

1 1 v1, v2, v3, v4 3

2 6 v4 (or v5) 4, 5

3 8 − 4, 5

4 3 v5 1, 2

Table 4.3: Information set of all strategies (by group) of G, where for each step, we
mention the rule, the vertex (or vertices) and the strategy (or strategies) to which we
apply the rule.

matrix Av and graph G(Av).

Considering vertex v1 = (1, 4) for instance, by Proposition 2.3.7, we have
that matrix Av1 is stably dissipative. Hence, by Definition 4.5.3, G is admis-
sible.

Table 4.3 represents the steps of the reduction procedure applied to G.
Let us describe it step by step:

(Step 1) Initially, considering the vertices v1, v2, v3 and v4 we apply rule 1 to
the corresponding graphs G(Av1), G(Av2), G(Av3) and G(Av4), and we
colour in black (•) strategy 3. We obtain the graphs depicted in column
“Step 1” in table 4.4;

(Step 2) In this step we can consider vertex v4 (or v5) to apply rule 6. Hence,
we put a link between strategies 4 and 5 in group 2;

(Step 3) In this step we apply rule 8 to strategies 4 and 5, and we colour with
⊕ that strategies. We obtain the graphs depicted in column “Step 3”
in table 4.4;

(Step 4) Finally, considering vertex v5, we apply rule 3 to the corresponding
graph G(Av5), with J = {5}, and we colour with ⊕ strategy 1 and 2.
We obtain the graphs depicted in column “Step 4” table 4.4.

Since G is admissible and has an equilibrium q ∈ int
(
Γ(3,2)

)
, by Theo-

rem 4.5.20 we have that its limit dynamics on the attractor ΛG is described
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Vertex Step 1 Step 3 Step 4

Table 4.4: The graphs obtained in each step of the reduction algorithm for G.

by a Hamiltonian polymatrix replicator in a lower dimensional prism. Con-
sidering the strategy 3 in group 1, by Definition 4.5.13 we obtain the (q, 3)-
reduction ((2, 2), A(3)) where Ã := A(3) is the matrix

Ã =




−9 9 9 −9
−9 9 9 −9
−6 6 6 −6
−6 6 6 −6


 .

Consider now the polymatrix replicator associated to the game

G̃ =
(
(2, 2), Ã

)
, which is equivalent to the trivial game ((2, 2), 0). Hence

its replicator dynamics on the polytope Γ(2,2) = ∆1 × ∆1 is trivial, in the
sense that all points are equilibria. In particular the associated vector field
XG̃ = 0 is Hamiltonian.

Since the reduced information set R(G) is of type {•,⊕}, by Proposi-
tion 4.5.12 the flow of XG admits an invariant foliation with a single globally
attractive equilibrium on each leaf, as we can see in figure 4.1.

Therefore, the attractor ΛG is just a line segment of equilibria, which
embeds in the Hamitonian flow of XG̃ = 0, as asserted by Proposition 4.5.14.

91



4.6.2 Dissipative Polymatrix

Consider the polymatrix replicator system associated to the polymatrix game
G = ((2, 2, 2), A), where

A =




0 −102 0 79 0 18
102 0 0 −79 −18 9
0 0 0 0 9 −18

−51 51 0 0 0 0
0 102 −79 0 −18 −9

−102 −51 158 0 9 0



.

We denote by XG the vector field associated to this polymatrix replicator
defined on the polytope Γ(2,2,2) = ∆1 ×∆1 ×∆1 ≡ [0, 1]3 .

We will prove that this system is dissipative, has a single attractive equi-
librium in the interior of the phase space, and an heteroclinic cycle whose
local unstable manifold extends to a global invariant surface containing the
interior equilibrium.

The cube [0, 1]3 has six faces labelled by an index j ranging from 1 to 6,
and designated by σ1, . . . , σ6. The vertices of the phase space [0, 1]3 will be
designated by tuples in {1, 2}×{3, 4}×{5, 6}, where the label (i, j, k) stands
for the point ei+ ej + ek ∈ Γ(2,2,2). To simplify the notation we designate the
cube vertices by the letters v1, . . . , v8 according to table 4.5.

v1 = (1, 3, 5) v2 = (1, 3, 6) v3 = (1, 4, 5) v4 = (1, 4, 6)
v5 = (2, 3, 5) v6 = (2, 3, 6) v7 = (2, 4, 5) v8 = (2, 4, 6)

Table 4.5: Vertex labels.

The skeleton character of XG is displayed in table 4.6, whose entries are
the components of the skeleton vector field χ of XG.

In this model all twelve edges of [0, 1]3 are flowing-edges and will be
designated by γ1, . . . , γ12, according to table 4.7, where we write γ = (vi, vj)
to mean that γ is a flowing-edge from vi to vj.

The graph of the skeleton vector field χ (see Definition 3.4.6) is repre-
sented in figure 4.2. Looking at the graph in figure 4.2, we can see that

S = { γ5 = (v3, v1), γ8 = (v6, v8) }

is a structural set for χ (see Definition 3.4.16), whose S-branches are displayed
in table 4.8.

The S-Poincaré map πS : ΠS → ΠS of χ (see Definition 3.4.18) is depicted
in figure 4.3. Notice that ΠS = Πγ5 ∪ Πγ8 , where Πγ5 = Πξ1 ∪ Πξ2 ∪ Πξ3 and
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χv
σ σ1 σ2 σ3 σ4 σ5 σ6

v1 0 −84 0 60 0 −162
v2 0 −93 0 33 144 0
v3 0 74 −60 0 0 75
v4 0 65 −33 0 −93 0
v5 84 0 0 −42 0 −111
v6 93 0 0 −69 93 0
v7 −74 0 42 0 0 126
v8 −65 0 69 0 −144 0

Table 4.6: The skeleton character of XG .

γ1 = (v1, v2) γ2 = (v4, v3) γ3 = (v5, v6) γ4 = (v8, v7)
γ5 = (v3, v1) γ6 = (v4, v2) γ7 = (v5, v7) γ8 = (v6, v8)
γ9 = (v1, v5) γ10 = (v2, v6) γ11 = (v7, v3) γ12 = (v8, v4)

Table 4.7: Edge labels.

Πγ8 = Πξ4∪Πξ5∪Πξ6 . Because the remaining coordinates vanish, we consider
the coordinates (u2, u6) on Πγ5 and (u1, u5) on Πγ8 . Table 4.9 gives the matrix
representation and the corresponding defining conditions for all the branches
of the S-Poincaré map πS, regarding the fixed coordinates. In all domains
Πξj , the inequalities u1 ≥ 0, u2 ≥ 0, u5 ≥ 0 and u6 ≥ 0 are implicit.

To represent the projective map π̂S : ∆χ
S ⊂ ∆S → ∆S (see Defini-

tion 3.6.1), we identify ∆γ5 = [0, 1], ∆γ8 = [1, 2] and ∆S = [0, 2]. With
these identifications, the mapping ϕ = π̂S : [0, 2] → [0, 2] is given in (4.23),
while its graph is shown in figure 4.4.

ϕ(x) =





3626x
3626−1343x

if 0 ≤ x ≤ 49
236

49−8746x
784−8031x

if 49
236

≤ x ≤ 14
41

316−19459x
1928−18002x

if 14
41

≤ x ≤ 1

677x+21488
43653−21488x

if 1 ≤ x ≤ 5153
4438

8374−18904x
137199−129854x

if 5153
4438

≤ x ≤ 274
209

629x−222
4924x−5242

if 274
209

≤ x ≤ 2

(4.23)

The points 0 and 1 are fixed points of this projective map. They corre-
spond to the invariant boundary lines of the cones Πξ1 and Πξ6 , and they
are both repelling fixed points. The map ϕ has also an attractive periodic
orbit {p, p′}, of period two, corresponding to the eigenvectors of πξ3 ◦ πξ4
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Figure 4.2: The oriented graph of χ, where the label i represents the edge γi.

From\To γ5 γ8

γ5 ξ1 ξ2, ξ3
γ8 ξ4, ξ5 ξ6

ξ1 = (γ5, γ9, γ7, γ11, γ5) ξ2 = (γ5, γ1, γ10, γ8) ξ3 = (γ5, γ9, γ3, γ8)
ξ4 = (γ8, γ4, γ11, γ5) ξ5 = (γ8, γ12, γ2, γ5) ξ6 = (γ8, γ12, γ6, γ10, γ8)

Table 4.8: S-branches of χ.

and πξ4 ◦ πξ3 (see Definition 3.6.3). Notice that both intervals I1 and I6 are
overflowing, i.e., ϕ(I1) ⊃ I1 and ϕ(I6) ⊃ I6. Hence, since ϕ is one-to-one,
the complementary intervals are forward invariant, i.e., ϕ(I2 ∪ I3) ⊂ I4 ∪ I5
and ϕ(I4 ∪ I5) ⊂ I2 ∪ I3. We have that p and p′ are the only fixed points
of ϕ2. Hence we have the following complete description of the projective
dynamics: the ω-limit of any point in ]0, 1[∪]1, 2] is the attractive periodic
orbit {p, p′}. The α-limit of any point in [0, 2] \ {p, p′} is one of the two fixed
points 0 or 1.

Regarding the periodic orbit {p, p′}, concatenating the paths ξ3 and ξ4
we obtain the cycle

ξ34 := (γ5, γ9, γ3, γ8, γ4, γ11, γ5) ,
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ξ def. equations of Πξ matrix of πξ

ξ1 49u6 − 187u2 ≥ 0

[
1 0

−1343
3626

1

]

ξ2 14u6 − 27u2 ≤ 0

[
11
23

52
207

1445
713

−1180
2139

]

ξ3

{
49u6 − 187u2 ≤ 0
14u6 − 27u2 ≥ 0

[
2900
5957

210
851

11594
5957

−434
851

]

ξ4 65u5 − 144u1 ≤ 0

[
7
10

11
40

357
148

−145
296

]

ξ5

{
65u5 − 144u1 ≥ 0
715u5 − 3723u1 ≤ 0

[
14717
20150

81
310

3723
1612

− 55
124

]

ξ6 715u5 − 3723u1 ≥ 0

[
1 0

−21488
22165

1

]

Table 4.9: Branches of πS .

which determines a heteroclinic cycle of XG along the polytope’s boundary.
The periodic point p corresponds to a fixed point π̂ξ34(w0) = w0 ∈ int (Πξ34),
i.e., w0 is an eigenvector of πξ34 (see Definition 3.6.3). The associated eigen-
value is

λ1 ≈ 0.946652 .

The eigenvalue of the second eigenvector of πξ34 , outside Πξ34 , is

λ2 ≈ 0.774422 .

Hence σ(w) = λ2

λ1
< 1, and by Proposition 3.6.4 we have that w0 is an

attractive periodic point of ϕ = π̂S. Thus, by Theorem 3.6.6, there exists
a normally contractive local unstable manifold W u

loc(ξ34) for the heteroclinic
cycle associated to ξ34.

Since the ω-limit of any point x ∈ [0, 2] \ {0, 1} is the attractive periodic
orbit {p, p′}, and the eigenvalue of the eigenvector w0 is λ1 < 1, it follows
that for all u ∈ int (ΠS),

lim
n→+∞

πn
S(u) = 0 .

This means that near the polytope’s edge skeleton all orbits of the flow
ϕt
XG

are attracted to W u
loc(ξ34), and at the same time pulled away from the

heteroclinic cycle ξ34.
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Figure 4.3: The S-Poincaré map πS : ΠS → ΠS . The pictures above represent the
domains Πξj labelled from 1 to 6. The pictures below represent the images πξj (Πξj )
labelled from 1′ to 6′.

Our polymatrix replicator only has one equilibrium in int
(
Γ(2,2,2)

)
,

q =

(
1

2
,
1

2
,
71

158
,
87

158
,
2

3
,
1

3

)
,

while it has 10 equilibria in ∂Γ(2,2,2), eight of them vertices, and the remaining
two on different 2-faces,

q1 =

(
7

17
,
10

17
,
37

79
,
42

79
, 1, 0

)
and q2 =

(
23

34
,
11

34
,
65

158
,
93

158
, 0, 1

)
.

The equilibrium q ∈ int
(
Γ(2,2,2)

)
satisfies

(1) (Aq)1 = (Aq)2 = −3
2
, (Aq)3 = (Aq)4 = 0 and (Aq)5 = (Aq)6 =

1
2
;

(2) q1 + q2 = q3 + q4 = q5 + q6 = 1.

By Definition 4.4.1, q is a formal equilibrium of G.

The quadratic form QAD : H(2,2,2) → R induced by matrix A is

QAD(x) = −x23 ≤ 0 ,

96



Figure 4.4: The projective map ϕ : [0, 2] → [0, 2] with Ij = ∆χ
ξj

for j = 1, . . . , 6.

where x = (x1, x2, x3, x4, x5, x6) ∈ H(2,2,2) and D is the positive diagonal
matrix of type (2, 2, 2) given by

D =




1
51

0 0 0 0 0
0 1

51
0 0 0 0

0 0 1
79

0 0 0
0 0 0 1

79
0 0

0 0 0 0 1
9

0
0 0 0 0 0 1

9



.

By Definition 4.5.1, G is dissipative.

The equilibrium q ∈ int
(
Γ(2,2,2)

)
is hyperbolic. The eigenvalues of q are

ζ± ≈ −0.545809± 37.0244 i , and ζ1 ≈ −2.90838 .

The local manifold W u
loc(ξ34) extends to a global surface of class C5 that

contains the interior equilibrium q. Let us explain this.

At the equilibrium point q we have a DXq-invariant decomposition
TpΓ = Ess ⊕ Es, where Es is the eigen-plane associated to the complex
eigenvalues ζ± and Ess is the eigen-direction associated to the eigenvalue ζ1.
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Figure 4.5: An approximation of the XG-invariant manifold on the polytope from two
different perspectives (up) and two different orbits starting near the respective faces equi-
librium (down).

Since
ζ1 < 5Re(ζ±) < 0 (4.24)

there exist central stable manifolds of class C5 tangent to Es at q (see [35],
Theorem III.8). These central manifolds are not unique because of the con-
tractive behaviour on the central direction.

The ω-limit of any interior point x ∈ int
(
Γ(2,2,2)

)
is the equilibrium q.

This follows by Proposition 4.5.8, because the system is dissipative and has
a unique interior equilibrium. This system has a strict global Lyapunov
function h : int

(
Γ(2,2,2)

)
→ R for XG. This function h has an absolute

minimum at q and satisfies

dh

dt
(x) = Dhx (XG) < 0

for all x ∈ int
(
Γ(2,2,2)

)
with x 6= q.
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Consider the set

W u(ξ34) :=
⋃

t>0

ϕt
X(W

u
loc(ξ34)) ,

that is a global unstable manifold. The equilibrium q is an accumulation
point ofW u(ξ34). In fact, W = W u(ξ34)∪{q} must be a smooth surface with
at most a possible cusp singularity at q. Obviously this is not possible due
to (4.24). Actually, W must be of class C5 at q.

We finish with a rough description of the replicator interior dynamics,
which can easily be proven from the previously established facts. The ω-
limit of any point in int

(
Γ(2,2,2)

)
is always the equilibrium point q. The

stable and strong stable invariant manifolds associated to the equilibrium q
satisfy:

• W s(q) = W u(ξ34) ∪ {q},

• W ss(q) = W u(q1) ∪ {q} ∪W u(q2).

Regarding the α-limit of a point x ∈ int
(
Γ(2,2,2)

)
we have three possibilities:

• If x ∈ W s(q) then α(x) is the heteroclinic cycle ξ34.

• If x is on the component of Γ(2,2,2) \W
s(q) that contains q1 then α(x)

can be any one of the following alternatives:

– the equilibrium point q1,
– one of the closed orbits around q1 in the face σ6,
– the heteroclinic cycle ξ1.

• If x is on the component of Γ(2,2,2) \W
s(q) that contains q2 then α(x)

can be any one of the following alternatives:

– the equilibrium point q2,
– one of the closed orbits around q2 in the face σ5,
– the heteroclinic cycle ξ6.

4.6.3 Conservative Polymatrix

Consider the polymatrix replicator system associated to the polymatrix game
G = ((5), A), where

A =




0 −2 2 −2 2
2 0 −2 0 0
−2 2 0 −3 0
2 0 3 0 −2
−2 0 0 2 0



.
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χv
σ σ1 σ2 σ3 σ4 σ5

v1 0 −2 2 −2 2
v2 2 0 −2 0 0
v3 −2 2 0 −3 0
v4 2 0 3 0 −2
v5 −2 0 0 2 0

Table 4.10: The skeleton character of XG .

We denote by XG the vector field associated to this polymatrix replicator
defined on the polytope Γ(5) = ∆4 .

We will prove that this system is conservative and the dynamics in all
sufficiently large energy levels is chaotic, i.e., the flow contains horse-shoes.

The point q ∈ int
(
Γ(5)

)
given by

q =

(
1

8
,
5

16
,
1

8
,
1

8
,
5

16

)
,

satisfies

(1) (Aq)1 = (Aq)2 = (Aq)3 = (Aq)4 = (Aq)5 = 0;

(2) q1 + q2 + q3 + q4 + q5 = 1 .

By Definition 4.4.1, q is a formal equilibrium of the polymatrix game G.

Since the matrix A is skew-symmetric, the quadratic form QA : H(5) → R

induced by matrix A is zero. By Definition 4.4.3, the polymatrix game G is
conservative.

The prism Γ(5) has five faces labelled by an index j ranging from 1 to 5,
and designated by σ1, . . . , σ5. The vertices of the phase space Γ(5) are also
labelled by i in {1, . . . , 5}, where the label i stands for the point ei ∈ Γ(5).
To simplify the notation we designate the prism vertices by 1, . . . , 5.

The skeleton character of XG is displayed in table 4.10, whose entries are
the components of the skeleton vector field χ of XG.

The edges of Γ(5) will be designated by γ1, . . . , γ10, according to table 4.11,
where we write γ = (i, j) to mean that γ is a flowing edge from vertex i to
vertex j. In this model not all edges of Γ(5) are flowing-edges. There are
three neutral edges, γ6, γ7, γ9, and seven flowing-edges, γ1, . . . , γ5, γ8, γ10. See
figure 4.6.

The graph of the skeleton vector field χ (see Definition 3.4.6) is repre-
sented in figure 4.6. Looking at the graph in figure 4.6, we can see that

S = { γ1 = (1, 2), γ4 = (5, 1) }
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γ1 = (1, 2) γ2 = (3, 1) γ3 = (1, 4) γ4 = (5, 1) γ5 = (2, 3)
γ6 = (2, 4) γ7 = (2, 5) γ8 = (3, 4) γ9 = (3, 5) γ10 = (4, 5)

Table 4.11: Edge labels.

is a structural set for χ (see Definition 3.4.16), whose S-branches denoted by
ξ1, . . . , ξ5 are displayed in table 4.12.

Figure 4.6: The oriented graph of χ.

From\To γ1 γ4

γ1 ξ1 ξ2, ξ3
γ4 ξ4 ξ5

ξ1 = (γ1, γ5, γ2, γ1) ξ2 = (γ1, γ5, γ8, γ10, γ4) ξ3 = (γ1, γ5, γ2, γ3, γ10, γ4)
ξ4 = (γ4, γ1) ξ5 = (γ4, γ3, γ10, γ4)

Table 4.12: S-branches of χ.

For this example the Hamiltonian is the function h : Γ(5) → R defined by

h(x) = −

(
1

8
log x1 +

5

16
log x2 +

1

8
log x3 +

1

8
log x4 +

5

16
log x5

)
.

By Definition 3.5.6 the skeleton of h is η : C∗(Γ(5)) → R,

η(u) =
1

8
u1 +

5

16
u2 +

1

8
u3 +

1

8
u4 +

5

16
u5 .
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We define the sets

∆γ = Πγ ∩ η
−1(1) , ∆ξ = Πξ ∩ η

−1(1)

and

∆S =
5⋃

i=1

∆ξi ,

where
η−1(1) := {u ∈ C∗(Γ(5)) : η(u) = 1} .

Consider the S-Poincaré map πS : ΠS → ΠS of χ (see Definition 3.4.18).
Notice that ΠS = Πγ1 ∪ Πγ4 , where Πγ1 = Πξ1 ∪ Πξ2 ∪ Πξ3 and Πγ4 =
Πξ4 ∪ Πξ5 . Because the remaining coordinates vanish, we consider the co-
ordinates (u3, u4, u5) on Πγ1 and (u2, u3, u4) on Πγ4 . Table 4.13 gives the
matrix representation and the corresponding defining conditions for all the
S-branches of the Poincaré map πS, regarding the fixed coordinates. In all
domains Πξj , the inequalities u2 ≥ 0, u3 ≥ 0, u4 ≥ 0 and u5 ≥ 0 are implicit.

ξ def. equations of Πξ matrix of πξ

ξ1 5u3 − 2u4 ≤ 0




1 0 0
−5

2
1 0

1 0 1




ξ2 3u3 − 2u4 ≥ 0



0 2

3
0

0 0 3
2

1 −2
3

1




ξ3

{
5u3 − 2u4 ≥ 0
3u3 − 2u4 ≤ 0




5
2

−1 0
−15

4
5
2

3
2

−3
2

1 1




ξ4 u2 − u4 ≤ 0




1 1 0
−1 0 1
1 0 0




ξ5 u2 − u4 ≥ 0



1 0 −1
0 1 5

2

0 0 1




Table 4.13: Branches of πS .

Since the Poincaré map πS preserves the function η (see Proposition 3.5.8)
we can consider the restriction of πS to ∆S. In figure 4.7 we represent the
Poincaré map πS : ∆S → ∆S. The sets ∆ξ1 , . . . ,∆ξ5 are represented in the
top of figure 4.7, labelled from 1 to 5, and the πS images of ∆ξ1 , . . . ,∆ξ5 are
represented in the bottom of the same figure, labelled from 1′ to 5′.
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Figure 4.7: The S-Poincaré map πS : ∆S → ∆S . The pictures above represent the
sets ∆ξ1 , . . . ,∆ξ5 , labelled from 1 to 5. The pictures below represent the πS iterates of
∆ξ1 , . . . ,∆ξ5 , labelled from 1′ to 5′.

Figure 4.8 shows 2000 πS-iterates (white dots) of a random point. Fol-
lowing the itinerary of that random point we consider the sequence of 25
S-branches

ξ1, ξ1, ξ3, ξ4, ξ2, ξ4, ξ2, ξ4, ξ2, ξ4, ξ2, ξ4, ξ2, (4.25)

ξ4, ξ2, ξ5, ξ5, ξ5, ξ5, ξ5, ξ4, ξ2, ξ4, ξ1, ξ1 .

Let M be the matrix of the Poincaré map associated to the path (4.25),
as defined in (3.6).

Numerically we have computed the eigenvalues of M ,

λu = 948.618, λs = 0.00105417, and λ = 1 ,

and the corresponding eigenvectors

wu = (0.284213,−0.923978, 0.255906) ,

ws = (0.112816, 0.906168,−0.407593) ,
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Figure 4.8: One orbit with 2000 iterates.

Figure 4.9: Stable and unstable manifolds at the periodic point p0.

and
p0 = (0.132969, 0.946979, 0.292489) .

By the defining equations given in table 4.13 we can see that p0 ∈ ∆ξ1 .
Hence p0 is a periodic point of πS with period 25. The iterates of p0 are
represented by the white dots in figure 4.9.
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Let ℓu0 and ℓs0 be the small line segments through p0, contained in ∆ξ1 ,
respectively with the (eigen) directions of the expanding (associated to wu)
and the contracting (associated to ws) eigen-spaces of the πS periodic point
p0. We denote by ℓu1 and ℓs1 the πS images of ℓu0 and ℓs0, respectively, i.e.,

ℓu1 = πS(ℓ
u
0) and ℓs1 = πS(ℓ

s
0) .

Let p1 = πS(p0). Our numerical experiment shows that ℓu0 intersects ℓs1
transversally, and ℓs0 intersects ℓu1 transversally as well. These intersection
points, respectively q0 and q1, belong to ∆ξ1 .

Let Ω be the union of the πS-orbits of p0, q0 and q1. We have that Ω is a
compact set contained in ∆S. Moreover, Ω is a hyperbolic πS-invariant set.
In particular, this implies the existence of a horse-shoe for the S-Poincaré
map πS : ∆S → ∆S (see [36]).

Therefore, by Theorem 3.5.5 in each level set h−1(c), where h is the Hamil-
tonian defined in (4.10) and c ≈ ∞ is a large energy level, the Poincaré
map PS (see Definition 3.5.4) has an invariant hyperbolic set conjugated to
Ω. This implies transversal homoclinic points and hence the existence of a
horse-shoe. This conclusion follows by the stability of hyperbolic invariant
sets under perturbations (see [35, Theorem 7.8]).
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Gabay, Sceaux, 1990. Reprint of the 1931 original. MR1189803 (93k:92011)

[42] John von Neumann and Oskar Morgenstern, Theory of Games and Economic Behav-
ior, Princeton University Press, Princeton, New Jersey, 1944. MR0011937 (6,235k)

[43] E. B. Yanovskaya, Equilibrium points in polymatrix games (in russian), Latvian Math-
ematical Collection (1968).

[44] E. C. Zeeman, Population dynamics from game theory, Global theory of dynami-
cal systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), 1980,
pp. 471–497. MR591205 (82e:58076)

[45] , Dynamics of the evolution of animal conflicts, J. Theoret. Biol. 89 (1981),
no. 2, 249–270. MR630636 (83a:92006)

[46] M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra sys-
tems, Dynam. Stability Systems 8 (1993), no. 3, 189–217. MR1246002 (94j:34044)

[47] , Extinction in competitive Lotka-Volterra systems, Proc. Amer. Math. Soc.
123 (1995), no. 1, 87–96. MR1264833 (95c:92019)

[48] Xiaohua Zhao and Jigui Luo, Classification and dynamics of stably dissipative lotka-
volterra systems, International Journal of Non-Linear Mechanics 45 (2010), no. 6, 603
–607. Nonlinear Dynamics of Biological Systems.

109



Index

admissible matrix, 21
admissible perturbation, 22
almost skew-symmetric matrix, 30
attracting edge, 48

black and white graph, 29

dual cone, 45

flowing-edge, 48
formal equilibrium, 71

Hamiltonian system, 11
Hamiltonian vector field, 10

invariant foliation, 15–16
itinerary, 54

Lotka-Volterra, 7–9
attractor, 26
conservative, 7, 9–13
dissipative, 7, 13–14
graph, 7
stably dissipative, 22

manifold
normally hyperbolic, 55

neutral edge, 48

orbit segment, 50

path, 49
cycle, 50
length, 50

period, 54
periodic point, 54
permanence

polymatrix replicator, 69

replicator equation, 19
Poincaré map, 52
Poisson bracket, 11
Poisson gradient, 11
polymatrix game, 61

admissible, 74
conservative, 71
dissipative, 74

polymatrix replicator
attractor, 75

polymatrix replicator system, 61
polytope, 42

corner, 43
edge, 43, 64
face, 43, 64
vertex, 43, 64
vertex coordinates, 43

projective Poincaré map, 54
eigenvalue, 54
eigenvector, 54

quotient rule
polymatrix, 75
replicator, 17

rank, stably dissipative graph, 31
Redheffer Reduction Algorithm, 29
reduced graph, 28, 32
reduction algorithm

polymatrix, 78
regular skeleton, 48
repelling edge, 48
replicator equation, 16–20

differential equation, 17
permanent, 19

simplectic gradient, 10
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simplectic structure, 9
skeleton character, 44
skeleton Poincaré map, 49, 50
skeleton vector field, 47
source vertex, 48
stably admissible, 21
stably dissipative matrix, 22
strong link, 30
structural set, 50

branch, 51
submatrix, 24

target vertex, 48
trimmed matrix, 34
trimming, graph, 33

vector field
regular, 51

vertex
χ-attractive, 48
χ-repelling, 48
saddle type, 48
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