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ABSTRACT This paper presents a novel Transformer-based facial landmark localization network named
Localization Transformer (LOTR). The proposed framework is a direct coordinate regression approach
leveraging a Transformer network to better utilize the spatial information in a feature map. An LOTR model
consists of three main modules: 1) a visual backbone that converts an input image into a feature map,
2) a Transformer module that improves the feature representation from the visual backbone, and
3) a landmark prediction head that directly predicts landmark coordinates from the Transformer’s repre-
sentation. Given cropped-and-aligned face images, the proposed LOTR can be trained end-to-end without
requiring any post-processing steps. This paper also introduces a loss function named smooth-Wing loss,
which addresses the gradient discontinuity of the Wing loss, leading to better convergence than standard
loss functions such as L1, L2, and Wing loss. Experimental results on the JD landmark dataset provided
by the First Grand Challenge of 106-Point Facial Landmark Localization indicate the superiority of LOTR
over the existing methods on the leaderboard and two recent heatmap-based approaches. On the WFLW
dataset, the proposed LOTR framework demonstrates promising results compared with several state-of-the-
art methods. Additionally, we report an improvement in the performance of state-of-the-art face recognition
systems when using our proposed LOTRs for face alignment.

INDEX TERMS Artificial neural networks, computer vision, deep learning, face recognition, image
processing, machine learning.

I. INTRODUCTION
Landmark localization focuses on estimating the position of
each predefined key point in an image. For face landmark
localization, these key points represent different attributes
of a human face, e.g., the contours of the face, eyes, nose,
mouth, and eyebrows. Over the past decade, face recogni-
tion systems have leveraged these landmarks for alignment,
making face landmark localization an intrinsic part of these
systems [1]–[9]. Apart from face alignment (e.g., [10], [11]),
face landmark localization also aids in solving problems
like face animation [12], 3D face reconstruction [13]–[15],
synthesized face detection [16], emotion classification [17],
[18], and facial action unit detection [19]. Although facial
landmark localization is a substantial area of research in
computer vision, given its wide range of applications, it is
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a challenging task owing to its dependency on variations in
face pose, illumination, and occlusion [1], [20].

Since its formulation, various statistical approaches have
been proposed, such as Active Shape Model (ASM) [21] and
Active Appearance Model (AAM) [22], to solve the face
landmark localization problem. These models take in prior
information about a face (e.g., the face shape or texture)
and subsequently fine-tune the model parameters from the
provided face image. In addition, research has also been done
in training patch-based detectors and component detectors to
predict each landmark on local patches and anatomical com-
ponents on a face image, respectively [23]–[27]. However,
due to the lack of global contextual information, the landmark
configurations from these approaches are constrained on the
face shape.

Since the early 2010s, different variants of Convolu-
tional Neural Networks (CNNs) have been developed, as an
alternative to the aforementioned approaches, due to their
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FIGURE 1. The overview of localization transformer (LOTR). It consists of three main modules: 1) a visual backbone, 2) a transformer
network, and 3) a landmark prediction head.

ability to extract contextual information from an image.
Two approaches, namely coordinate regression and heatmap
regression, have been widely adopted with a CNN variant as
a backbone.

In coordinate regression, fully-connected layers are added
at the end of a CNN to predict each landmark’s coordi-
nates. Notable works include [28], [29], and [30] which
proposed multi-level cascaded CNNs to localize facial land-
marks. Combining coordinate regression with multi-level
cascaded CNNs has been instrumental in predicting the facial
landmarks. In these frameworks, the early levels aim to
learn about a rough estimate of the landmarks, while the
deeper levels seek to fine-tune the prediction. The main
caveat of these approaches is the high architectural com-
plexity, thereby increasing inference time. To address this
complexity issue, [31] and [32] utilized multi-task learning
to obtain lighter yet more robust models. However, most
regression-based approaches suffer from spatial information
loss due to the compression of feature maps before the
fully-connected layers [1].

Recently, heatmap-based approaches (e.g., [1], [33]–[35])
have extensively been used for face landmark localization
as they better utilize spatial information to boost the perfor-
mance compared with coordinate regression methods. These
methods predict spatial probability maps wherein each pixel
is associated with the likelihood of the presence of a landmark
location. Additionally, these approaches lead to better con-
vergence than coordinate regression techniques and achieve
state-of-the-art performance on several benchmark datasets.
However, these approaches usually rely on a computationally

intense post-processing step to convert heatmaps into pre-
dicted landmarks, resulting in an increase in the inference
time [1]. Therefore, tackling this issue is the primary moti-
vation behind this paper.

Although the coordinate regression methods mentioned so
far may suffer from the issue of spatial information loss,
they offer an end-to-end solution at a lower computational
complexity than heatmap-based approaches. In this work,
we re-investigate the direct coordinate regression approach
for facial landmark localization but exploit a more sophisti-
cated neural network architecture, i.e., the Transformers [36],
to address the issue of spatial information loss. A Transformer
network is a sequence transduction model comprising an
encoder-decoder architecture that utilizes attention mecha-
nisms. With the scaling successes in natural language pro-
cessing (NLP) achieved by Transformers, researchers have
developed different variations of the Transformer framework
for computer vision tasks. One such variant is Detection
Transformer (DETR) [37] which performs objection detec-
tion. Inspired by DETR, we propose a Transformer-based
facial landmark localization network named Localization
Transformer (LOTR). As shown in Fig. 1, LOTR consists of
three main modules: 1) a visual backbone, 2) a Transformer
network, and 3) a landmark prediction head. Firstly, LOTR
adopts a CNN with optional upsampling layers to convert an
input image into a feature map and reshapes it to a sequence
of tokens, each representing a pixel in the feature map. The
Transformer module then accepts this feature sequence and
a fixed-length landmark queries as input, and produces a
sequence of tokens as output. Finally, the prediction head,
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which is a Position-wise Feed-Forward Network (PFFN),
transforms each token into its corresponding landmark’s
coordinates. Given cropped-and-aligned face images as input,
the proposed LOTR can be trained end-to-end without requir-
ing any post-processing step.

The key contributions of this research are summarized as
follows:

• We propose a Transformer-based landmark localiza-
tion network named Localization Transformer (LOTR).
Unlike the heatmap-based approaches, LOTR does not
require any additional post-processing or heatmap repre-
sentation, reducing computational complexity and yield-
ing a more efficient network. To the best of our knowl-
edge, this is the first research investigating the use of
Transformers in the direct regression of landmarks.

• We demonstrate that the proposed LOTR frame-
work detects facial landmarks accurately. Experimen-
tal results indicate the superiority of the proposed
LOTR over other algorithms on the leaderboard of the
First JD-landmark localization challenge and two recent
heatmap-based methods [1], [34]. On another bench-
mark,WFLWdataset [38], the results show the proposed
LOTR method is comparable with several state-of-the-
art methods.

• We further analyze the model size and inference time
of the different variants of the LOTR framework.
Compared with a heatmap-based method [1] and a
CNN-based direct coordinate regression method, the
proposed LOTR outperforms both of these methods in
terms of prediction accuracy, model size, and computa-
tional complexity.

• We also investigate the effect of standard loss functions
on model training and propose a modified loss function,
namely smooth-Wing loss, which addresses gradient
discontinuity and training stability issues in an existing
loss function called the Wing loss [39]. Experimental
results show improved performance for the LOTR mod-
els trained with the proposed smooth-Wing loss.

• We report an improvement in state-of-the-art face recog-
nition performance on several benchmark datasets,
such as CFP-FP [40], CPLFW [41], IJB-B [42], and
IJB-C [43], using five naive landmarks extracted from
the predictions of our proposed LOTR models for face
alignment.

The remaining of this paper is organized as follows:
Section II provides more detail of related work. Section III
presents the proposed method, i.e., LOTR. Section IV
explains how experiments were setup and discusses the
results. Section V concludes the paper.

II. RELATED WORK
A. DIRECT COORDINATE REGRESSION
As discussed in Section I, direct coordinate regres-
sion was widely adopted to solve landmark localization
problems in the early research period. Regression-based

approaches [28], [30]–[32], [39], [44], [45] typically use
a CNN along with a dense layer at the end to predict the
landmark locations. Usually, the choice of loss for coor-
dinate regression is either mean-absolute error (L1 loss)
or mean-squared error (L2 loss). Recently, Feng et al. [39]
introduced a new loss function called Wing loss for robust
facial landmark localization using regression, discussed in
Section II-E. Furthermore, Dong et al. [45] trained a facial
landmark localization model with style-aggregated images
from a generative adversarial module along with the original
images to increase the robustness of the variance of image
styles.

Despite the advancement in regression-based techniques
for landmark localization, spatial information loss remains
one major drawback for this approach. This research
addresses this limitation by inserting a Transformer network
between a CNN backbone and the fully-connected layers
to preserve spatial information by leveraging a positional
encoding, discussed in Section III.

B. HEATMAP REGRESSION
As an alternative to coordinate regression methods, heatmap
regression approaches tackle the spatial information loss
issue by generating spatial probability maps. A spatial prob-
ability map is a heatmap with pixel values corresponding
to the probability of a landmark being in a certain location.
Recent heatmap regression approaches (e.g., [33], [35], [38],
[46], [47]) have demonstrated state-of-the-art performance on
facial landmark localization.

A common practice for generating a ground-truth heatmap
for each landmark is to compute a probability map (e.g., [48],
[49]) by fitting a bivariate Gaussian function with an offset
relative to the landmark, which is defined as:

G(x, y) = exp
[
−

(x − x0)2 + (y− y0)2

2σ 2

]
, (1)

where (x, y) is any location on the heatmap and (x0, y0)
represents the ground-truth coordinates of a landmark. A sim-
ple approach to obtain a predicted landmark location from
a heatmap during inference is using the argmax opera-
tion; however, the heatmap’s resolution becomes a limit-
ing factor. Recent approaches have proposed efficient ways
to obtain sub-pixel localization [50], [51]. For instance,
Zhang et al. [51] proposed to fit a heatmapwith the following
formulation to obtain a predicted landmark location:

G(x, µ,6) =
exp(− 1

2 (x− µ)
T6−1(x− µ))

2π |6|
1
2

, (2)

where x = (x, y) is any location on the heatmap, µ repre-
sents an estimated location of the landmark, and 6 is the
co-variance matrix between the x and y coordinates.

Earp et al. [1] exploited this sub-pixel inference with inter-
mittent shuffling of upsampling layers and a bag of tricks
to achieve the second rank on the JD-landmark-2 validation
set [52]. While successfully preserving spatial information
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and achieving state-of-the-art performance on facial land-
mark localization, heatmap regression methods suffer from
high computational post-processing complexity in converting
heatmaps into landmark coordinates.

Xiong et al. [34] proposed a vectorization approach in
which each set of vector labels represents a ground-truth
landmark’s position using a quasi-Gaussian distribution. This
proposed distribution is a Gaussian density function enhanc-
ing the distribution peak with an additional constant θ while
being bounded by a threshold 3σ . This method also converts
a predicted heatmap into a set of vectors that encode spatial
information. Although this vectorization technique leads to a
reduction in post-processing complexity, like other heatmap
regression methods, this approach also hinders achieving
an end-to-end pipeline due to a post-processing step during
inference.

C. TRANSFORMER-BASED HEATMAP APPROACH
Lan et al. [53] proposed an approach that combines a Trans-
former encoder with heatmap regression. They mainly
focused on reducing the quantization error that occurs from
down-sampling operations. The authors named the pro-
posed architecture Heatmap in Heatmap (HIH), which takes
advantage of two heatmap categories: integer and deci-
mal heatmaps. An integer heatmap is a probability map
extracted from a CNN backbone, e.g., Stacked Hourglass
Network [48], which provides a rough estimate of a land-
mark’s location. On the other hand, a decimal heatmap gives
a more fine-grained offset prediction. For each landmark
location, they fitted a decimal heatmap with a bivariate Gaus-
sian density function as in (1). During inference, the final
landmark locations, in both integer and decimal heatmaps,
are computed from the maximum probability coordinates.
The authors conducted experiments comparing two different
architectures, namely a CNN and a Transformer encoder in
combination with a CNN backbone. The proposed method
outperforms the state-of-the-art algorithms (e.g., [38], [39],
[47], [54]) onWFLW-full [38] andCOFW [55] datasets. They
also reported that the HIH approach with a CNN yields more
precise landmarks than a Transformer encoder.

Even though Lan et al. [53] are the first who employ
a Transformer encoder with heatmap regression to tackle
facial localization problems, the main caveats of the heatmap
regression approach, namely the post-processing complexity
and the lack of an end-to-end pipeline, remain unaddressed.

D. DETR
Carion et al. [37] proposed a Transformer [36] framework for
end-to-end object detection. Their proposed Detection Trans-
former (DETR) framework achieves comparative perfor-
mance to Faster R-CNN [56] on the COCO dataset [57]. The
DETR framework performs the task of object detection by
combining a CNN architecture with a Transformer. It exploits
a pre-trained CNN backbone to extract a low-resolution fea-
ture map from an input image. This feature map is then
converted into a sequence and fed to an encoder model,

consisting of a Multi-Head Attention (MHA) module and
a PFFN. The MHA module aims to find the relationship
between input sequence tokens with each head computing
‘‘attention’’ by linearly projecting each token into query, key,
and value vectors. Let Q ∈ RNq×D denote a query sequence
consisting of Nq tokens of dimension D, while K and V ∈
RNkv×D denote a key and value sequences of length Nkv,
respectively. The MHA is defined as follows:

MHA(Q,K,V) = concat(H1, . . . ,HM )Wo
i , (3)

Hi = attention(QWq
i ,KWk

i ,VW
v
i ), (4)

attention(Q,K,V) = softmax(
QK>
√
D′

)V, (5)

where M is the number of heads; Wq
i , W

k
i , W

v
i ∈ RD×D′ ,

and Wo
i ∈ RD×D are learnable projection matrices; and

D′ = D/M . Fixed positional encoding, which encodes the
spatial positions of the learned features, is added to the input
of each attention layer [37]. The embeddings generated by
the encoder are then fed to the decoder network, which also
uses MHAmechanisms [37]. The decoder model decodes the
embeddings in parallel at each decoder layer. The decoder
output is then fed into a fixed number of PFFNs, also known
as the prediction heads, to generate a set of class predictions
and predicted bounding boxes. The DETR model predicts all
objects at once, computed in parallel. The authors trained the
model end-to-end using Hungarian loss to compare sets, per-
forming bipartite matching between predicted and ground-
truth objects.

Inspired by DETR, we propose the Localization Trans-
former (LOTR) to predict landmarks for the facial land-
mark localization task. The main differences between the two
are: 1) LOTR does not have a class prediction head since
all predicted landmarks belong to single object class, and
2) LOTR does not require the Hungarian loss since the num-
ber of landmarks is fixed.

E. WING LOSS
Several loss functions have commonly been used to train
landmark localization models, including L1 loss (L1(x) =
|x|), and L2 loss (L2(x) = 1

2x
2), and the smooth-L1 loss [58],

which is defined as:

smooth-L1(x) =


1
2
x2 if |x| < 1

|x| −
1
2

otherwise.
(6)

Feng et al. [39] reported another loss function—Wing loss—
which is superior to other loss functions for landmark local-
ization tasks. The key idea in the Wing loss is to force the
model to pay more attention to small errors to improve the
accuracy of the predicted landmarks. When prediction error
is larger than a positive threshold, the Wing loss behaves
like L1; otherwise, a logarithm function is used to compute
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FIGURE 2. Comparison of Wing loss and smooth-Wing loss (top) and their gradient (bottom) in the global view (left), at the outer threshold w (middle),
and at x equals zero (right). The parameters are set as follows: w = 10, ε = 2, and only for smooth-Wing, t = 0.01. For the Wing loss (blue dashed lines),
the gradient changes abruptly at the points |x| = w (bottom-middle) and at x = 0 (bottom-right). On the other hand, the proposed smooth-Wing loss
(orange solid lines) is designed to eliminate these gradient discontinuities.

the loss. In [39], the Wing loss is defined as follows:

wing(x) =

 w ln(1+
|x|
ε
) if |x| < w

|x|−c otherwise.
(7)

where w is the threshold, ε is a parameter controlling the
steepness of the logarithm part, and c = w−w ln(1+ w/ε).
However, as shown in Fig. 2, the Wing loss produces the

discontinuity of the gradient at the thresholdw, as pointed out
in [54], and at zero error, which might affect the stability of
training. In this work, we propose a modified Wing loss that
is smooth everywhere and investigate its effectiveness.

III. PROPOSED METHODS
A. LOCALIZATION TRANSFORMER (LOTR)
This section explains, in detail, the proposed Transformer-
based landmark localization network, named Localization
Transformer (LOTR). Since LOTR is a coordinate regression
approach that directly maps an input image into a set of pre-
dicted landmarks, it requires neither heatmap representation
nor any post-processing step. Fig. 1 illustrates an overview of
the architecture of the proposed LOTR framework. An LOTR
model consists of three main modules, which include
1) a visual backbone, 2) a Transformer network, and
3) a landmark prediction head.

The visual backbone takes an RGB image as input with
the aim to capture context and produce a feature map as
output. In this work, we exploit a pre-trained CNN such as

MobileNetV2 [59], ResNet50 [60], or HRNet [61] to com-
pute a feature map. We apply 1× 1 convolution to reduce the
channel dimension of the feature map. Since the resolution
of the feature map generated from the CNN backbone might
be very low, e.g., 6 × 6 pixels for a 192 × 192 input image,
we optionally increase the resolution by using upsampling
layers such as deconvolution.

We then utilize a Transformer network [36] to enrich the
feature representations while maintaining the global infor-
mation in the feature map. As shown in Fig. 1, the Trans-
former module is composed of a Transformer encoder and
a Transformer decoder. Since Transformers were designed
to process sequential data [36], we convert the feature map
F ∈ RW×H×C , obtained from the visual backbone, into a
sequence of tokens X0

∈ RWH×D. As shown in (8), we use a
1×1 convolution layer to reduce the channel dimension C of
each pixel in F to a smaller dimension D ≤ C , followed by
reshaping into a sequence of tokens:

X0
= reshape(conv1×1(F)). (8)

A Transformer encoder, i.e., a stack of L encoder lay-
ers, receives this sequence of tokens as input. Each encoder
layer consists of two sublayers: 1) Multi-Head Self Atten-
tion (MHSA) and 2) PFFN. Both these sublayers have resid-
ual connections and layer normalization applied to them.
As mentioned in Section II-D, the MHSA, which is a special
type of MHA that establishes the relationship between tokens
in the input sequence by computing the attention by linearly
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projecting each token into query, key, and value vectors and
subsequently using the query and key vectors to calculate the
attention weight applied to the value vectors. The output from
the MHSA sublayer (the same size as its input) is then fed
into PFFN to further transform the input sequence’s repre-
sentation. Similar to DETR [37], 2D-positional encoding is
added only to the query and key in each encoder layer. The
l-th encoder layer is defined as follows:

Xl
= encl(Xl−1,P), (9)

encl(X,P) = encl2(enc
l
1(X,P)), (10)

encl1(X,P) = LN(MHAl(X+ P,X+ P,X)+ X), (11)

encl2(X) = LN(PFFNl(X)+ X), (12)

PFFNl(X) = ReLU(Xwl
+ bl), (13)

where Xl−1 and Xl denote the input and output of the l-th
layer, respectively;P ∈ RWH×D is the trainable 2D-positional
encoding; LN denotes layer normalization; while wl and bl

are the weight and bias of the PFFN layer, respectively. These
processes repeat L times using the output from the previ-
ous encoder layers as input. The output of the Transformer
encoder is a transformed sequence XL

∈ RWH×D, the same
dimension as its input.

Following this encoding operation, the output from the
Transformer encoder is then fed into a Transformer decoder,
i.e., a stack of L decoder layers. Each decoder layer consists
of three sublayers: 1) MHSA, 2) Multi-Head Cross-Attention
(MHCA), and 3) PFFN. The first and the third are similar to
those of the encoder layers. However, the input to the first
sublayer of the first decoder layer is a sequence of landmark
queries Y0

∈ RN×D; each is an embedding of the same
dimension D. The number of landmark queries equals N ,
which is the number of landmarks to predict. In this work,
landmark queries are learnable parameters of LOTR, which
are optimized during model training. The second sublayer,
i.e., MHCA, takes the output of the first sublayer (MHSA)
and the output generated by the encoder, i.e., XL , as inputs,
and then computes the relationship between tokens in both
sequences. The third sublayer, i.e., PFFN, then processes
the output from the second sublayer. Like the Transformer
encoder, all three of these sublayers have residual connections
and layer normalization applied to them. The l-th decoder
layer is defined as follows:

Yl
= decl(Yl−1,Y0,XL ,P), (14)

decl(Y,Y0,XL ,P)= decl3(dec
l
2(dec

l
1(Y,Y

0),XL ,P)), (15)

decl1(Y,Y
0)=LN(MHAl

1(Y+Y
0,Y+Y0,Y)+Y),

(16)

decl2(Y,X
L ,P)=LN(MHAl

2(Y+Y
0,XL

+P,XL)+Y),

(17)

decl3(Y)=LN(PFFNl(Y)+ Y), (18)

where Yl−1 and Yl denote the input and output of the
l-th layer, respectively. The Transformer decoder produces
YL
∈ RN×D as output.

The landmark prediction head takes as input the sequence
YL and outputs Ẑ ∈ RN×2, which stores the predicted
x- and y-coordinates of the N landmarks. This work exploits
a simple PFFN with two hidden layers with ReLU activation.
The output layer, however, which consists of only two nodes,
is without any activation function. In particular, the predicted
landmarks Ẑ are computed as follows:

Ẑ = ReLU(YLwz
1 + bz1)w

z
2 + bz2, (19)

where wz
j and bzj are the weight and bias of the j-th layer

(j ∈ {1, 2}), respectively.
Similar to [37], the computational complexity of the

MHSA in an encoder layer grows quadratically with the
feature map size, i.e., O((WH )2D + WHD2), while that
in a decoder layer depends on the number of landmarks
instead, i.e., O(N 2D + ND2). On the other hand, the com-
plexity of MHCA in a decoder layer grows linearly with
respect to the feature map size and the number of landmarks:
O(NWHD+ (N +WH )D2).

B. SMOOTH-WING LOSS
Since the proposed LOTR predicts a fixed number of
landmarks (N ), a more complicated Hungarian loss used
in DETR [37] is not required. The proposed LOTR can
be trained end-to-end with a standard loss function given
cropped-and-aligned face images as input. In particular, dur-
ing the training phase, the predicted landmarks Ẑ generated
by LOTR are compared with the ground truth landmarks
Z ∈ RN×2 to compute the loss, which is defined as:

loss(Z, Ẑ) =
N∑
i=1

2∑
j=1

g(zij − ẑij), (20)

where the loss function g(x) can be any standard loss function
such as L1, L2, smooth-L1, orWing loss, which are described
in Section II-E. Although Feng et al. [39] reported that the
Wing loss was superior to other loss functions for landmark
localization, its major drawback is the gradient discontinuity
at the threshold w and around the zero error (Fig. 2). This
discontinuity can affect the convergence rate and the stability
of training.
In this work, we also propose a modifiedWing loss, named

smooth-Wing loss (s-wing(x)), which is given by:

s-wing(x) =


sx2 if |x| < t
|x| − c1 − c2 if |x| > w

(w+ε) ln(1+
|x|
ε
)−c2 otherwise,

(21)

s =
w+ ε

2t(ε + t)
, (22)

c1 = w− (w+ ε) ln(1+
w
ε
), (23)

c2 = st2, (24)

where t is an additional threshold (0 < t < w). When
the error is smaller than the inner threshold t , it behaves
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like L2 loss, allowing the gradient to be smooth at zero
error; otherwise, it behaves like the Wing loss. We define
the constants s, c1, and c2 to smoothen the loss at the inner
threshold t as well as at the outer threshold w. As shown in
Fig. 2 (bottom-right), the gradient of the smooth-Wing loss
changes linearly when the absolute error |x| is smaller than
the inner threshold t . Moreover, the gradient discontinuities
at |x| = w are also eliminated, as shown in Fig. 2 (bottom-
middle).

IV. EXPERIMENTS
A. DATASETS
We conducted experiments to measure the performance of the
proposed LOTR models on two benchmark datasets: 1) the
106-point JD landmark dataset [52] and 2) the Wider Facial
Landmarks in-the-Wild (WFLW) dataset [38].

The JD-landmark dataset contains images from other face
landmark datasets including as 300W [62], [63], LFPW [26],
AFW [24], HELEN [64], and IBUG [65], covering large
variation of face pose and expression. These images are
re-annotated with 106-point landmarks, which provide more
information about the face structure than any other face land-
mark dataset. The JD dataset consists of 11,393 images for
training and 2,000 images each for validation and testing.

The WFLW dataset, which is based on a well-known face
detection dataset called WIDER FACE [66], was recently
proposed to be a new benchmark for facial landmark local-
ization. The WFLW dataset consists of 10,000 faces: 7,500
for training and 2,500 as test images. Compared to other
previous datasets, the WFLW dataset is manually annotated
with 98 landmarks for each face, providing more information
on the face structure. It is an extremely challenging dataset
due to large pose, expression, and occlusion variations. It also
supplies six other annotations of face properties, including
pose, expression, illumination, make-up, occlusion, and blur.
More than 78% of images in the provided test set have
annotation with one or more, up to four, properties.

Following [1], we used a ResNet50-based face detector,
proposed by Deng et al. [67], in our pre-processing step.
In particular, we used the bounding box and a set of five
simple landmarks (i.e., eye centers, nose tip, and mouth cor-
ners) obtained from the detector to crop and align the detected
faces. We then resized each input image to 192× 192 pixels
for the JD-landmark dataset and to 256 × 256 pixels for the
WFLW dataset before feeding it to our model. The detail of
the pre-processing step is described in [1].

B. EVALUATION METRICS
Following [1], [34], [47], [54], we used the standard metrics
including the normalized mean error (NME), the failure rate,
and the area under the curve (AUC) of the cumulative distri-
bution to evaluate and compare landmark localization algo-
rithms. The NME is computed across all predicted landmarks
as follows:

NME =
1
N

N∑
i=1

||zi − ẑi||2
d

, (25)

TABLE 1. The architectures of LOTRs used in the experiments with the
JD-landmark dataset.

where N is the number of landmarks, zi and ẑi denotes the
i-th ground truth landmark and the i-th predicted landmark,
respectively, and d is a normalization factor. For the JD-
landmark dataset, following [52], the normalization factor d
was defined as

√
WbboxHbbox, whereWbbox and Hbbox are the

width and height of the bounding box enclosing all the ground
truth landmarks, respectively. While, for the WFLW dataset,
the inter-ocular distance, i.e., the distance between the outer
eye corners, was used as the normalization factor. If the NME
of a test image is above a threshold, it is considered a failure.
The failure rate is, therefore, the rate of failure cases. The
threshold was set to 8% for the JD-landmark dataset and
10% for the WFLW dataset. The AUC is computed from
the cumulative error distribution, representing the proportion
of images with NME smaller than the threshold. Therefore,
a larger AUC represents a more accurate algorithm.

C. MODEL TRAINING
Table 1 presents the configuration of three LOTR models,
namely LOTR-M, LOTR-M+, and LOTR-R+, used in the
experiments with the JD-landmark dataset. The LOTR-M
model is the base model that utilizes a MobileNetV21.0, pre-
trained on the ImageNet dataset [68], as the visual backbone,
generating a feature map of size 6 × 6 × 1280 from a
192 × 192 RGB image. We reduced the number of feature
channels to 64 by a 1 × 1 convolution, then reshaping into
a sequence of tokens. Subsequently, we used a Transformer
module with two encoder layers and two decoder layers to
process the sequence, followed by a dropout technique [69]
with a dropout rate of 0.1. Following, we used a landmark pre-
diction head, i.e., a PFFN consisting of two hidden layers with
512 nodes, with ReLU activation, followed by an output layer
with two nodes, to process each token in the output sequence
of the Transformer. In the LOTR-M+ model, to increase the
resolution of the feature map, we inserted upsampling layers
between the MobileNetV21.0 backbone and the Transformer
module. In particular, we utilized a 1 × 1 convolution to
reduce the number of channels to 256 and then applied two
deconvolution layers (128 and 64 filters, with filter size =
4×4) to increase the feature resolution to 24×24 pixels before
feeding into the Transformer. The LOTR-R+ model adopts
the same configuration as LOTR-M+, except the backbone is
changed to a pre-trained ResNet50. For the WFLW dataset,
we experimented with another model, named LOTR-HR+,
that uses the same architecture as LOTR-M+ and LOTR-R+
but exploits HRNet [61] as the backbone.
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TABLE 2. Comparison with the state-of-the-arts on the WFLW dataset.

We initialized the parameters of the LOTR models using
He’s method [70]. We used a standard normal distribution to
initialize the positional encoding and the landmark queries,
both learnable. For the landmark queries, we specifically used
a standard deviation of 10−4 for the initialization. We trained
the LOTR models using the LAMB optimizer [71] with a
base learning of 10−3 for 100 epochs while reducing the
learning rate with a factor of 0.1 at epochs 50 and 75 and
setting the batch size to 32. We used the smooth-Wing loss,
described in Section III-B, setting the inner threshold (t) to
0.01, the outer threshold (w) to 10, and the steepness control
parameter (ε) to 2 as the parameters. For data augmentation
and training tricks, we used the same steps described by [1].
We implemented the model using MXNet framework [72]
with Gluon libraries [73], using a single NVIDIA Titan X
GPU for training.

D. RESULTS ON THE WFLW DATASET
In this section, we compare the proposed LOTR with sev-
eral state-of-the-art methods, including Look-at-Boundary
(LAB) [38],Wing loss [39], adaptiveWing loss (AWing) [54],
LUVLi [47], Gaussian vector (GV) [34], and Heatmap-In-
Heatmap (HIH) [53]. As shown in Table 2, our proposed
LOTR-HR+ achieves an NME of 4.31%, clearly outperform-
ing LAB, Wing, AWing, and LUVLi methods, and yields an
AUC of 60.14%, surpassing all state-of-the-arts by a large
margin (0.44–6.91 points). While comparable with GV in
terms of NME and failure rate, our LOTR model achieves
a better AUC and does not require any post-processing step.
Although our proposed LOTR model does not surpass the
performance of HIH in terms of NME and failure rate,
it outperforms this state-of-the-art model on the AUC metric.

Fig. 3 presents sample images of each subset from the test
set of the WFLW dataset by visualizing predicted landmarks

TABLE 3. The evaluation results for different LOTR models on the
JD-landmark test set; † and ‡ denote the first and second place entries.

overlaid on the input images. In this figure, we show images
with different ranges of the NME where the first row has
NME less than 0.05; the middle row has NME in the range
of 0.05 to 0.06, and the last row has NME more than 0.06.
The figure shows the face landmark localization ability of
our model, which can accurately locate facial key points with
different variations, i.e., large pose, exaggerated expression,
extreme illumination, make-up, occlusion, and blur.

E. RESULTS ON THE JD-LANDMARK DATASET
Table 3 presents the performance of the proposed LOTR
models, evaluated on the test set of the first Grand Challenge
of 106-Point Facial Landmark Localization.1 For brevity, the
table includes only the result of the top two ranked algorithms
out of 21 algorithms submitted to the challenge.

Table 3 shows that the proposed LOTR models, including
the smallest model, i.e., LOTR-M, gain more than 3 points
in the AUC in comparison to the top two ranked algorithms
on the first challenge leaderboard. The table also compares
LOTRmodels with two recent methods based on the heatmap
regression, i.e., [1] and [34]. All of the proposed LOTR
models surpass the heatmap approach in [34] by a significant

1https://facial-landmarks-localization-challenge.github.io
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FIGURE 3. Sample images of the test set of the WFLW dataset with predicted landmarks from our model. Each column
displays the images with different subsets. Each row displays images with a different range of NMEs: < 0.05 (top),
0.05–0.06 (middle), and > 0.06 (bottom).

amount of the AUC gain (3.7–4.5 points). In comparison
with [1], our LOTR models achieve better performance using
the same backbone.While our smallest model, i.e., LOTR-M,
is comparable with the ResNet50 model by [1], our bigger
models, i.e., LOTR-M+ and LOTR-R+, surpass it by an
AUC gain of 0.15–0.65 points, showing the superiority of our
approach over theirs. Similar to [1], we also utilized a flipping
technique during inference to improve the prediction accu-
racy. In particular, we fed the original cropped-and-aligned
face images and their horizontally flipped version into the
model and averaged their corresponding predicted landmark
coordinates.

In terms of floating point operations per second (FLOPS),
the LOTR-M model uses only 0.23 GFLOPS. In contrast, the
LOTR-M+ model has 47 percent higher GFLOPS than the
former due to the presence of upsampling layers; however,
operating with only 0.44 GFLOPS. The LOTR-R+ model
uses 3.23 GFLOPSwhich is significantly higher than both the
LOTR-M and LOTR-M+models due to its heavier ResNet50
backbone.

F. EFFECT ON FACE RECOGNITION PERFORMANCE
In recent years, face recognition systems have evolved to
contain four modules: face detection, alignment, embedding,
and distance computation. Several existing face detectors
predict the location of five naive landmarks that correspond
to the center of each eye, the tip of the nose, and the corners of
the mouth. These five landmarks are used for face alignment
in accordance to the conventional five-landmark alignment

protocol (e.g., [3], [5]–[9]). In this section, we investigate
how the face alignment process using our proposed LOTR
models affects the performance of the state-of-the-art face
recognition system.

In our experiments, we first detected the face and then
used our LOTR models to obtain the 106 facial landmarks.
Following this, we extracted a subset of the five landmarks for
face alignment to make a fair comparison. We experimented
with two different face detectors, namely PyramidKey with
MobileNetV21.0 backbone proposed by Earp et al. [74] and
the publicly available RetinaFace with a ResNet50 back-
bone from Deng et al. [67]. We exploited the pre-trained
LResNet100E-IR from InsightFace2 as the face embedding
network. Table 4 shows the performance of the face embed-
ding network with different combinations of the face detec-
tors and face alignment processes on six benchmark datasets,
which include LFW [75], CFP-FP [40], CALFW [76],
CPLFW [41], IJB-B [42], and IJB-C [43]. We report the True
Acceptance Rate (TAR) @ False Acceptance Rate (FAR) =
10−4, following the protocol for IJB-B and IJB-C from Arc-
Face (see [8], [9] for more details) which incorporates both
detector score and feature normalization.

The results reported in Table 4 indicate no improvement on
LFW with either of the face detectors and the LOTR models.
However, with PyramidKey as the face detector, we see an
improvement of 1.85 and 2.47 points onCFP-FP andCALFW
with the LOTR-Mmodel while improving by 10.83 points on
the CPLFW dataset with the LOTR-R+ model, respectively.

2https://github.com/deepinsight/insightface
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TABLE 4. The performance (TAR @ FAR = 10−4) of face recognition on several benchmarks.

On the other hand, with RetinaFace as the face detector,
we see a gain of 1.52 points on CFP-FP with LOTR-M+,
while improving by 5.7 points with LOTR-R+ on CPLFW.
Similarly, with both the face detectors, we found an improve-
ment of 0.17 points with LOTR-R+ and 0.33 points with
the LOTR-M+ model on the IJB-B and IJB-C datasets. The
improvement in the TAR on CPLFW is note-worthy as this
dataset include images with large pose variations. Thereby,
the results suggest that the LOTR models are more robust to
pose variations.

G. ABLATION STUDIES
This section further studies the proposed methods in various
points, including the computational complexity and model
size, the effect of the Transformer network, the number
of Transformer encoder/decoder layers, and the proposed
smooth-Wing loss. All experiments in this section were con-
ducted on the JD-landmark dataset.

1) COMPARISON WITH A HEATMAP REGRESSION
APPROACH
To study the efficiency of the proposed LOTR models,
we measured and compared the inference time with a
heatmap-based approach. We selected the models with the
same backbones from Earp et al. [1] to serve as the baseline
since we followed the same pre-processing procedure, visual
backbone, and the bag of tricks. We reported the result in
Table 5 where we ran the models on a high computational
CPU (Intel Xeon CPU E5-2698 v4) and NVIDIA Tesla V100
SXM2 GPU with 32 GB of RAM.

In the pre-processing step, all the models used the same
face detector by Deng et al. [67] as mentioned in Section IV-
A with a processing time of 43.36±4.82 ms. Table 5 demon-
strates the inference time reduction from the baseline on the
GPU by∼4–6×, while maintaining a comparable model size
and the number of parameters. Moreover, when considering
the model with MobileNetV21.0 as a backbone, the computa-
tional time of LOTR-M and LOTR-M+, with or without the
flipping technique, is lower than the MobileNetV21.0 model
in [1] without the flipping technique. This phenomenon is
consistent with the larger visual backbone as well. Table 5
demonstrates that the LOTR-R+ model with flipping is
∼4.4× faster than the MobileNetV21.0 model with flipping
in [1] and ∼2.1× faster than that model without the flipping
technique.

This experimentation demonstrates the complexity of the
heatmap regression approach, which relies on a compli-
cated post-processing procedure to generate spatial proba-
bility maps. Furthermore, some complex operations in its
post-processing stage could not efficiently utilize GPU accel-
eration, resulting in high computational time. In contrast, the
proposed LOTRmodels use a Transformer to directly regress
the coordinates, thereby, enabling the models to reduce the
computational time as it avoids complicated post-processing
and is capable of utilizing GPU acceleration as the models
consist of only simple operations.

Inspired by Xiong et al. [34], we conducted another exper-
iment incorporating vectorization and the band pooling mod-
ule with the baseline approach [1]. We analyzed the effect on
model performance and post-processing time reduction with
vectorization. While the post-processing time significantly
drops when converting heatmaps to vectorized labels and
predictions, there is also a drop in performance. The results
indicate that the proposed LOTR models still outperform the
baseline with vectorization in terms of prediction accuracy
and inference time.

2) COMPARISON WITH A FEED-FORWARD NETWORK
ARCHITECTURE
To investigate the significance of a Transformer’s ability
in processing spatial features from the visual backbone,
we compared its performance with a baseline CNN model
with a Feed-Forward Network (FFN) replacing the Trans-
former module. For a fair comparison, we applied a 1×1 con-
volution layer after retrieving the feature map from the visual
backbone to resemble the channel dimension of the LOTR
models. We then used the FFN as a landmark prediction head
to output the coordinates of facial landmarks. For compar-
ison purposes, we experimented with MobileNetV21.0 and
ResNet50 as the visual backbones and adopted the same loss
function and training tricks as described in Section IV-C.
According to the results presented in Table 5, the perfor-

mance of the CNNs with FFN head is worse than LOTRs for
both flip and no flip setups. This drop in performance might
be due to the incapability of the FFN to capture complex
relationships between spatial features.

In contrast, the Transformer module incorporates
self-attention and cross-attention mechanisms to model this
relationship. Moreover, the use of landmark queries on the
decoder side and the positional encoding might be the reason
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TABLE 5. Comparison of prediction accuracy, inference time, and model size.

TABLE 6. Comparison of prediction accuracy (AUC) with different loss
functions.

that the LOTRs can encode abstract information of each
landmark, resulting in an improved understanding of the
models to perform direct regression. This shows that the
Transformer module is more effective than the FFN.

3) COMPARISON OF LOSS FUNCTIONS
In this section, we investigated the effect of the proposed
smooth-Wing loss, as described in Section III-B, by com-
paring it with standard loss functions (e.g., L1, L2, and
smooth-L1) and Wing loss (Section II-E). We conducted
the experiment with the same training process described
in Section IV-C. For the Wing loss, we set the threshold
w = 10 and ε = 2.

Table 6 shows the results from different loss functions on
the JD-landmark test set [52]. The results show that LOTRs
with L1 achieve comparable performance with smooth-L1,
while with L2, the proposed models’ performance is worse
than other loss functions. This result also coincides with the
results from Feng et al. [39]. Unlike L1 loss, whichmaintains
a constant gradient value across the error range, L2 produces
a smaller gradient near zero, which causes the models to
ignore small error values. Thus, L2 loss is sensitive to outliers
making it less responsive to relatively smaller errors. Conse-
quently, the models trained with L2 loss may end up omitting
small errors, which may yield inaccurate predictions.

Moreover, loss functions for landmark localization—Wing
and smooth-Wing—consistently outperform standard loss
functions. The focus of these loss functions is on a small error
range, which aids in precise landmark coordinate predictions.

Comparing the Wing loss and the proposed smooth-Wing
loss, LOTRs trained with the smooth-Wing loss outperform
those trained with theWing loss. This result shows the impact
of training stability from the smooth-Wing loss. Fig. 2 shows
an uneven gradient of Wing loss at the threshold w, which

TABLE 7. Comparison of prediction accuracy (AUC) based on varying
number of transformer layers.

may not be suitable for parameter adjustment. The proposed
smooth-Wing loss smoothens the gradient at the threshold w,
making trainingmore stable and, thus, essential for parameter
adjustment. Table 3 and 5 show that with the same visual
backbone, our LOTRs with smooth-Wing loss outperform the
heatmap-based approach in [1]. This establishes that train-
ing with the smooth-Wing loss helps the proposed LOTRs
achieve state-of-the-art performance on the JD-landmark
test set.

4) THE NUMBER OF TRANSFORMER ENCODER/DECODER
LAYERS
This section studies the impact of layers (L) in both the Trans-
former encoder and decoder. We experimented with the dif-
ferent values of L while keeping the other hyper-parameters
the same. Table 7 shows the results from the different num-
bers of encoder and decoder layers. The results show that the
LOTR models with up to three layers can accurately localize
landmarks and yield the highest AUC when L equals 2. The
models become harder to optimize as the number of layers
increases from three. The results of the deepest models, i.e.,
L equals 6, is NaN, which might be a consequence of training
instability when the number of layers becomes very large.

V. CONCLUSION
We show that our proposed LOTRs outperform other algo-
rithms, including the two current heatmap-based methods on
the JD-landmark challenge leaderboard, and are comparable
with several state-of-the-art methods on the WFLW dataset.
The results suggest that the Transformer-based direct coor-
dinate regression is a promising approach for robust facial
landmark localization.
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We evaluate and illustrate that using the LOTRs for face
alignment improves the state-of-the-art face recognition per-
formance on the standard benchmark datasets such as CFP-
FP, CPLFW, IJB-B, and IJB-C datasets.

We demonstrate how the proposed LOTR outperforms
CNN models with FFN, trained under the same conditions.
The results suggest an effective use of a Transformer network
to improve the feature representation from a visual backbone.
In contrast to other coordinate regression approaches that
suffer from spatial information loss, our LOTRs utilize the
crucial spatial information for landmark localization tasks.

We also show that the LOTRs are superior to the recently
proposed heatmap-based method by Earp et al. [1] in terms
of accuracy and inference time. Since the proposed LOTR
directly predicts landmark coordinates, it avoids any compu-
tationally intensive post-processing required by the heatmap-
based method, leading to a∼4–6× gain in speed during infer-
ence. Although Xiong et al. [34] exploited their proposed
vectorization method to reduce the post-processing time, its
downside is the reduction in prediction accuracy. The end-to-
end training behavior of the LOTRs with the smooth-Wing
loss also leads to better prediction performance when com-
pared to the heatmap-based methods.

While Feng et al. [39] reported that their proposed Wing
loss is superior over other common loss functions such as L2,
L1, and smooth-L1, we show that our proposed smooth-Wing
loss leads to better optimized models than the Wing loss
because of its gradient continuity. The results indicate an
improvement in training stability and convergence rate using
the smooth-Wing loss.
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