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Abstract

Cancer driver genes, i.e., oncogenes and tumor suppressor genes, are involved in the

acquisition of important functions in tumors, providing a selective growth advantage, allow-

ing uncontrolled proliferation and avoiding apoptosis. It is therefore important to identify

these driver genes, both for the fundamental understanding of cancer and to help finding

new therapeutic targets or biomarkers. Although the most frequently mutated driver genes

have been identified, it is believed that many more remain to be discovered, particularly for

driver genes specific to some cancer types. In this paper, we propose a new computational

method called LOTUS to predict new driver genes. LOTUS is a machine-learning based

approach which allows to integrate various types of data in a versatile manner, including

information about gene mutations and protein-protein interactions. In addition, LOTUS can

predict cancer driver genes in a pan-cancer setting as well as for specific cancer types,

using a multitask learning strategy to share information across cancer types. We empirically

show that LOTUS outperforms five other state-of-the-art driver gene prediction methods,

both in terms of intrinsic consistency and prediction accuracy, and provide predictions of

new cancer genes across many cancer types.

Author summary

Cancer development is driven by mutations and dysfunction of important, so-called can-

cer driver genes, that could be targeted by specific therapies. While a number of such can-

cer genes have already been identified, it is believed that many more remain to be

discovered. To help prioritize experimental investigations of candidate genes, several

computational methods have been proposed to rank promising candidates based on their

mutations in large cohorts of cancer cases, or on their interactions with known driver

genes in biological networks. We propose LOTUS, a new computational approach to

identify genes with high oncogenic potential. LOTUS implements a machine learning

approach to learn an oncogenic potential score from known driver genes, and brings two

novelties compared to existing methods. First, it allows to easily combine heterogeneous
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sources of information into the scoring function, which we illustrate by learning a scoring

function from both known mutations in large cancer cohorts and interactions in biologi-

cal networks. Second, using a multitask learning strategy, it can predict different driver

genes for different cancer types, while sharing information between them to improve the

prediction for every type. We provide experimental results showing that LOTUS signifi-

cantly outperforms several state-of-the-art cancer gene prediction software.

Introduction

In our current understanding of cancer, tumors appear when some cells acquire functionalities

that give them a selective growth advantage, allowing uncontrolled proliferation and avoiding

apoptosis [1, 2]. These malignant characteristics arise from various genomic alterations includ-

ing point mutations, gene copy number variants (CNVs), translocations, inversions, deletions,

or aberrant gene fusions. Many studies have shown that these alterations are not uniformly dis-

tributed across the genome [3, 4], and target specific genes associated with a limited number of

important cellular functions such as genome maintenance, cell survival, and cell fate [5].

Among these so-called driver genes, two classes have been distinguished in the literature: tumor

suppressors genes (TSGs) and oncogenes (OGs) [6, Chapter 15]. TSGs, such as TP53 [7], partici-

pate in defense mechanisms against cancer and their inactivation by a genomic alteration can

increase the selective growth advantage of the cell. On the contrary, alterations affecting OGs,

such as KRAS [8] or ERBB2 [9], can be responsible for the acquisition of new properties that

provide some selective growth advantage or the ability to spread to remote organs. Identifying

driver genes is important not only from a basic biology point of view to decipher cancer

mechanisms, but also to identify new therapeutic strategies and develop precision medicine

approaches targeting specifically mutated driver genes. For example, Trastuzumab [10] is a

drug given against breast cancer that targets the protein precisely encoded by ERBB2, which

has dramatically improved the prognosis of patients whose tumors overexpress that OG.

Decades of research in cancer genomics have allowed to identify several hundreds of such

cancer genes. Regularly updated databases such as the Cancer Gene Census (CGC) [11], pro-

vide catalogues of genes likely to be causally implicated in cancer, with various levels of experi-

mental validations. Many cancer genes have been identified recently by systematic analysis of

somatic mutations in cancer genomes, as provided by large-scale collaborative efforts to

sequence tumors such as The Cancer Genome Atlas (TCGA) [12] or the International Cancer

Genome Consortium (ICGC) [13]. Indeed, cancer genes tend to be more mutated than non-

cancer genes, providing a simple guiding principle to identify them. In particular, the COS-

MIC database [14] is the world’s largest and most comprehensive resource of somatic muta-

tions in coding regions. It is now likely that the most frequently mutated genes have been

identified [15]. However, the total number of driver genes is still a debate, and many driver

genes less frequently mutated, with low penetrance, or specific to a given type of cancer are

still to be discovered.

The first methods to identify driver genes from catalogues of somatic mutations simply

compared genes based on somatic mutation frequencies, which was proved to be far too basic

[16]. Indeed, mutations do not appear uniformly on the genome: some regions of the genome

may be more affected by errors because they are more often transcribed, so that some studies

actually overestimated the number of driver genes because they were expecting lower mutation

rates than in reality. Mathematically, they were formulating driver prediction as a hypothesis

testing problem with an inadequate null hypothesis [17]. Several attempts have been made to
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adequately calibrate the null hypothesis, like [16] or [18], where it is assumed that mutations

result from a mixture of several mutational processes related to different causes.

A variety of bioinformatics methods have then been developed to complete the list of pan-

cancer or cancer specific driver genes. Globally, they fall into three main categories. First, a

variety of “Mutation Frequency” methods such as MuSiC [19] or ActiveDriver [20] identify

driver genes based on the assumption that they display mutation frequencies higher than those

of a background mutation model expected for passenger mutations. However, this background

rate may differ between cell types, genome positions or patients. In order to avoid such poten-

tial bias, some methods like MutSigCV [21] derive a patient-specific background mutation

model, and may take into account various criteria such as cancer type, position in the genome,

or clinical data. Second, “Functional impact” methods such as OncodriveFM [22] assume that

driver genes have higher frequency of mutations expected to impact the protein function (usu-

ally missense mutations) than that observed in passenger genes. Third, “Pathway-based” meth-

ods consider cancer as a disease in which mutated genes occupy key roles in cancer-related

biological pathways, leading to critical functional perturbations at the level of networks. For

example, DriverNet [23] identifies driver genes based on their effect in the transcription net-

works. Although these methods tend to successfully identify the most frequently mutated

genes, their overall prediction overlap is modest. Since they rely on complementary statistical

strategies, one could recommend to use them in combination, as CompositeDriver allows us

to do [24]. The results of some of these tools are available at the Driver DB database [25].

Some methods integrate information on mutation frequency and functional impact of

mutations, or other types of data such as genome position, copy number variations (CNVs) or

gene expression. The underlying idea is that combining data should improve the prediction

performance over tools that use a single type of information. For example, TUSON [26] or

DOTS-Finder [27] combine mutation frequencies and functional impact of mutations to iden-

tify OGs and TSGs. Also in this category, the 20/20+ method [28] encodes genes with features

based on their frequency and mutation types, in addition to other biological information such

as gene expression level in difference cancer cell lines [29] or replication time. Then, 20/20+

predicts driver genes with a random forest algorithm, which constitutes the first attempt to use

a machine learning method in this field. In [28], the authors benchmark 8 driver gene predic-

tion methods based on several criteria including the fraction of predicted genes in CGC, the

number of predicted driver genes and the consistency. Three methods proved to perform simi-

larly on all criteria, and better than the five others: TUSON, MutSigCV, and 20/20+, validating

the relevance of combining heterogeneous information to predict cancer genes.

In the present paper, we propose a new method for cancer driver gene prediction called

Learning Oncogenes and TUmor Suppressors (LOTUS). Like 20/20+, LOTUS is a machine

learning-based method, meaning that it starts from a list of known driver genes in order to

“learn” the specificities of such genes and to identify new ones. In addition, LOTUS presents

two unique characteristics with respect to previous work in this field. First, it combines three

types of features likely to contain relevant information to predict cancer genes (mutation fre-

quency, functional impact, and pathway-based informations). This integration of heteroge-

neous information is carried out in a unified mathematical and computational framework

thanks to the use of kernel methods [30], and allows in principle to integrate other sources of

data if available, such as transcriptomic or epigenomic information. More precisely, in our

implementation, we predict cancer driver genes based not only on gene mutations features

like “Mutation Frequency” and “Functional Impact” methods do, but also on known protein-

protein interaction (PPI) network like “Pathway-based” methods do. Indeed, the use of PPI

information is particularly relevant since it has been reported that proteins encoded by driver

genes are more likely to be involved in protein complexes and share higher “betweenness”

LOTUS: A machine learning algorithm for the prediction of cancer driver genes

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007381 September 30, 2019 3 / 27

https://doi.org/10.1371/journal.pcbi.1007381


than a typical protein [26]. Moreover, it has been successfully used by HotNet2 [31] to detect

gene pathways enriched in driver genes, and in [32] for cancer driver prediction. Second,

LOTUS can predict cancer genes in a pan-cancer setting, as well as for specific cancer types,

using a multitask learning strategy [33].

Although many efforts are devoted to identify cancer-specific genes based on experimental

approaches, in in-silico approaches, the pan-cancer setting has been adopted by most available

prediction methods, since more data are available to train models when gathering all cancer

types. Prediction of drivers for specific cancer types has been less explored so far, because the

number of known driver genes for a given cancer is often too small to build a reliable predic-

tion model, and because the amount of data such as somatic mutations to train the model is

smaller than in the pan-cancer setting. However, the search for cancer specific driver genes is

relevant, because cancer is a very heterogeneous disease: different tumorigenic processes seem

to be at work in different tissue types, and consequently, each cancer type probably has its own

list of driver genes [15]. LOTUS implements a multitask algorithm that predicts new driver

genes for a given cancer type based on its known driver genes, while also taking into account

the driver genes known for other types of cancer according to their similarities with the con-

sidered type of cancer. Such approaches are of particular interest when the learning data are

scarce in each individual tasks: they increase the amount of data available for each task and

thus perform statistically better. To our knowledge, while a similar approach was used to pre-

dict disease genes across general human diseases [34], this is the first time a multitask machine

learning algorithm is used for the prediction of cancer driver genes.

We compare LOTUS to five state-of-the art cancer prediction methods. We show that

LOTUS outperforms the state-of-the-art in its ability to identify novel cancer genes, and clarify

the benefits of heterogeneous data integration and of the multitask learning strategy to predict

cancer type-specific driver genes. Finally, we provide predictions of new cancer genes accord-

ing to LOTUS, as well as supporting evidence that those predictions are likely to contain new

cancer genes.

Results

LOTUS, a new method for pan-cancer and cancer specific driver gene
prediction

We propose LOTUS, a new method that predicts cancer driver genes. LOTUS is a machine

learning-based method that estimates a scoring function to rank candidate genes by decreasing

probability for them to be OGs or TSGs, given a training set of known OGs and TSGs. The

score of a candidate gene is a weighted sum of similarities between the candidate gene and the

known driver genes, where the weights are optimized by a one-class support vector machine

(OC-SVM) algorithm. The similarities between genes are calculated based on gene features

that are derived from the analysis of somatic mutation patterns in the genes (see Materials ans

methods section for a description of these features), or from the relative positions of genes in a

PPI network, or from both; the mathematical framework of kernel methods allows to simply

combine heterogeneous data about genes (i.e., patterns of somatic mutations and PPI informa-

tion) in a single model.

Another salient feature of LOTUS is its ability to work in a pan-cancer setting, as well as to

predict driver genes specific to individual cancer types. In the later case, we use a multitask

learning strategy to jointly learn scoring functions for all cancer types by sharing information

about known driver genes in different cancer types. We test both a default multitask learning

strategy, that shares information uniformly across all cancer types, and a new strategy that

shares information across cancer types according to their degree of similarity. More details

LOTUS: A machine learning algorithm for the prediction of cancer driver genes
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about the mathematical formulation and algorithms implemented in LOTUS are provided in

the Material and Methods section.

In the following, we assess the performance of LOTUS first in the pan-cancer regime, i.e. in

the single task setting, and compare it to five state-of-the-art methods (TUSON, MutSigCV,

20/20+, MUFFINN and DiffMut), and second in the cancer type specific regime, where we

illustrate the importance of the multitask learning strategies.

Cross-validation performance for pan-cancer driver gene prediction

We first study the pan-cancer regime, where cancer is considered as a single disease, and

where we search for driver genes involved in at least one type of cancer. Several computational

methods have been proposed to solve this problem in the past, and we compare LOTUS with

five well-known state-of-the-art methods [28]: MutSigCV [21], which is a frequency-based

method, TUSON [26], 20/20+ [28], which combines frequency and functional information,

MUFFINN [32] and DiffMut [35], which takes the mutation patterns of genes into account.

As explained in theMaterials and methods section, to perform a fair comparison between

different methods we use different training databases for LOTUS adapted to each competing

methods. We measure the performance of each method in terms of consistency error (CE),

which estimates the mean number of non-driver genes that a given prediction method ranks

higher than known driver genes; hence the smaller the CE the better the method. The results

in terms of cross-validated CE for OG and TSG prediction are presented in Table 1 for

TUSON and MUFFINN, in Table 2 for 20/20+ and DiffMut, and in Table 3 for MutSigCV.

When analyzing these results, one should keep in mind that the total number of cancer driver

genes is still a subject of debate, but it is expected to be much lower than the size of the test set

(which depends on the method but is of the order of 18, 000), and it should rather be in the

range of a few hundreds. Therefore, CE above a few thousand can be considered as poor per-

formance results.

Table 1. Comparison of TUSON, MUFFINN and LOTUS in the pan-cancer cross-validation regime. This table
shows the mean cross-validated CE for OG and TSG prediction by TUSON, MUFFINN and LOTUS, trained on the
TUSON database.

Driver type nMethod TUSON MUFFINN LOTUS

OG 3,286 1,924 990

TSG 626 678 127

https://doi.org/10.1371/journal.pcbi.1007381.t001

Table 2. Comparison of 20/20+, DiffMut and LOTUS in the pan-cancer cross-validation regime. This table shows
the mean cross-validated CE for OG and TSG prediction by 20/20+, DiffMut and LOTUS, trained on the 20/20+
database.

Driver type nMethod 20/20+ DiffMut LOTUS

OG 1,831 4,254 782

TSG 845 2,537 468

https://doi.org/10.1371/journal.pcbi.1007381.t002

Table 3. Comparison of MutSigCV and LOTUS in the pan-cancer cross-validation regime. This table shows the
mean cross-validated CE for OG and TSG prediction by MutSigCV and LOTUS, trained on the MutSigCV database.

Driver type nMethod MutSigCV LOTUS

OG 6,294 1,929

TSG 7,232 2,990

https://doi.org/10.1371/journal.pcbi.1007381.t003
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These results show that LOTUS strongly outperforms all other algorithms in term of CE,

for both TSG and OG predictions. More precisely, for OG predictions, LOTUS is about three

times better than MutSigCV and TUSON, twice better than 20/20+ and MUFFINN, and five

times better than DiffMut, in terms of CE. For TSG predictions, the reduction in CE with

LOTUS is two-fold compared to MutSigCV and 20/20+, and five-fold compared to TUSON,

MUFFINN DiffMut. Note that the performance is overall much better in the first two experi-

ments, which are also easier because they provide larger mutational data.

It is interesting to note that, for all methods except in the MutSigCV experiment, the perfor-

mances obtained for OG do not reach those obtained for TSG, suggesting that OG prediction

is a more difficult problem than TSG prediction. This reflects the fundamental difference

between TSG mutations and OGmutations: the first lead to loss-of-function and can pile up,

while the second are gain-of-function mutations and have a much more subtle nature. In addi-

tion, gain-of-function can also be due to overexpression of the OG, which can arise from other

mechanisms than gene mutation. One way to improve the OG prediction performance may be

to include descriptors better suited to them, such as copy number. Moreover, as mutations

affecting OGs are not all likely to provide them with new functionalities, many mutations on

OGs present in the database and used here might not bear information on OGs. Therefore, rel-

evant information on OGs is scarce, which makes OG prediction more difficult. In addition,

the data themselves might also contribute to difference in performance between TSG and OG

prediction. For example, in the case of the TUSON train set, although the TSG and OG train

sets both contain 50 genes, the mutation matrix that we used to build the gene features con-

tains 13, 525 mutations affecting TSGs and 7, 717 mutations affecting OGs. Therefore, the data

are richer for TSG, which might contribute to the difference in prediction performance.

The benefits of combining mutations and PPI informations

LOTUS, 20/20+, MutSigCV, DiffMut, MUFFINN and TUSON differ not only by the algo-

rithm they implement, but also by the type of data they use to make predictions: in particular,

TUSON and 20/20+ use only mutational data while LOTUS uses PPI information in addition

to mutational data. To highlight the contributions of the algorithm and of the PPI information

to the performance of LOTUS, we ran LOTUS with Kgenes equal to Kmutation or KPPI, i.e., with

only mutation information, or only PPI information.

The results are presented in the first two columns of Tables 4 and 5, respectively for OG

and TSG. The last column of these tables recalls the performance obtained when mutation and

PPI information are both used (values reported from Tables 1, 2 and 3).

These results show that, both for OG and TSG, using both mutation and PPI information

dramatically improves the prediction performance over using only one of them. This under-

lines the fact that mutation and PPI bear complementary information that are both useful for

the prediction tasks. The performances obtained with only PPI information are similar for OG

Table 4. Performance of LOTUS for OG prediction with different gene kernels.

Train set n Kernel Kmutation KPPI Kdegree Kmutation

+ Kdegree

Kmutation

+ KPPI

TUSON datasets 2,904 1,574 1,659 1,553 990

20/20 datasets 2,453 1,642 1,774 1,628 782

MutSig datasets 2,292 1,450 1,306 1,274 1,929

This table shows the CE of LOTUS for OG prediction in the pan-cancer setting, with different gene kernels (columns) and different gold standard sets of known OGs

and mutations (rows).

https://doi.org/10.1371/journal.pcbi.1007381.t004
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and TSG, which seems to indicate that this information contributes similarly to both predic-

tion tasks. On the contrary, the performances obtained using only mutation information are

much better for TSG than for OG. This is consistent with the above comment that mutation

information is more abundant in the database and more relevant in nature for TSG than for

OG. It is also consistent with the fact that using Kmutation alone outperforms using KPPI alone

for TSGs, while the opposite is observed for OGs.

A possible issue with PPI network-based models is that they may be subject to study bias,

in the sense that cancer genes tend to be more studied and thus have higher degree in the PPI

network. Hence learning an association between cancer genes and degree in a PPI network

may be problematic since this is not purely a biological feature, and we may not be able to

extrapolate the model to new, less studied cancer genes. This concern is supported by the

observation that the gene rank computed by LOTUS with PPI kernel significantly correlates

with the gene degree in the PPI network (Fig 1). This correlation only slowly decreases when

one removes the top genes in the list, which indicates that this phenomenon can not only be

attributed to a few genes (as opposed to, e.g., supplementary Figure 22 in [31]).

To assess whether the good performance of LOTUS using PPI is only due to the gene degree

information, we performed two further experiments. First, we ran LOTUS with the kernel

Table 5. Performance of LOTUS for TSG prediction with different gene kernels.

Train set n Kernel Kmutation KPPI Kdegree Kmutation

+ Kdegree

Kmutation

+ KPPI

TUSON datasets 393 1,413 1,965 1,669 127

20/20 datasets 971 2,460 2,994 2,392 468

MutSig datasets 4,335 4,017 4,253 3,818 2,990

This table shows the CE of LOTUS for TSG prediction in the pan-cancer setting, with different gene kernels (columns) and different gold standard sets of known OGs

and mutations (rows).

https://doi.org/10.1371/journal.pcbi.1007381.t005

Fig 1. Correlation between gene degree and LOTUS rank. This plot shows the Spearman’s rank correlation between gene degrees in the PPI network
and LOTUS ranks (when trained with the 20/20 dataset), as a function of howmany top-ranked TSGs (left) and OGs (right) are removed before
computing the correlation.

https://doi.org/10.1371/journal.pcbi.1007381.g001
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Kdegree defined by:

ðKdegreeÞi;j ¼ didj;

where di is the degree of i in the PPI network. This allows LOTUS to capture in its model a lin-

ear function of the degree. We see in Tables 4 and 5 that the degree kernel has in almost all

cases worse performance than the PPI kernel, which confirms that the number of neighbors

alone contains less relevant information in relation with the driver prediction problem than

the PPI kernel does. Second, we trained LOTUS with a PPI kernel derived from a randomized

PPI network, where we kept the network structure but randomly shuffled the genes while

approximately preserving their degree. For that purpose, we binned the genes in 20 groups of

roughly equal sizes, by decreasing degree in the network, and randomly shuffled the genes

within each group. After this random shuffling, each gene has approximately the same degree

as in the initial PPI network, but not the same neighborhood. We repeated the random shuf-

fling 100 times and computed the performance of LOTUS with the corresponding PPI kernels.

We observed that the performance was worse with the randomized PPI network than with the

original PPI network in 95% of the cases, confirming that LOTUS with the PPI kernel uses

more than the mere degree information to predict cancer genes.

Furthermore, we examined the first predictions (excluding already known driver genes) of

LOTUS with the 20/20 datasets, when both the mutation and the PPI kernels are used. Among

the first 50 TSGs (described by the number of frameshift, LOF and splice mutations), 26 have

less than 3 mutations of each kind, 4 predicted TSGs even having no mutation at all. This dem-

onstrates that LOTUS predictions strongly benefit from the PPI information, and that some of

these genes would have never been detected using mutation data only.

Finally, note that gene lengths and PPI-network degrees are not used explicitly as features

by LOTUS, although these characteristics correlate with our predictions. Hence, LOTUS

retrieves implicit relevant characteristics of cancer driver genes from the mutations and the

PPI-network.

Performance on CGCv86 prediction in the pan-cancer regime

We now evaluate the generalization properties of the different methods on new unseen data

as external test set. This could mitigate the potential bias in the evaluation of the performance

of TUSON, DiffMut and 20/20+ based on cross-validation experiments, as in the previous

paragraph. For that purpose, we evaluate the performance of the different methods when pre-

dicting supposedly “difficult” new cancer genes (an independent test set), which have only

been added recently in CGCv86. We train on the one hand LOTUS, MUFFINN and TUSON

with the TUSONmutation database and driver gene train sets, and on the other hand

LOTUS, DiffMut and 20/20+ with the 20/20 mutation database and driver gene train sets.

Then, we make predictions on the remaining genes in COSMIC, and count how many driver

genes in CGCv86 appear among the 20, 50 and 100 first predictions. Note that the driver

genes from the train sets were excluded from the predictions. The results are shown in Tables

6–9 and are illustrated by corresponding receiver operating characteristic (ROC) curves in

Figs 2 and 3.

First, we observe that TUSON outperforms LOTUS in almost all these experiments. Sec-

ond, LOTUS outperforms DiffMut and MUFFINN in all experiments. Third, LOTUS is better

than 20/20+ for TSG detection, and the contrary holds for OGs. Generally speaking, the first

predictions of TUSON and 20/20+ are more reliable than LOTUS’s, but, as shown in Figs 2

and 3, LOTUS outperforms all the methods when all genes are considered, and not only the

first 20 to 100 genes.
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The good performance of TUSON and 20/20+ for the top ranked genes compared to those

of LOTUS could be explained by the fact that, all genes in CGCv86 so far have been reported

through analysis of mutation data (cf. CGC web page: ‘The Cancer Gene Census (CGC) is an

ongoing effort to catalogue those genes which contain mutations that have been causally impli-

cated in cancer’). This interpretation would also explain why LOTUS hardly agrees with the

other methods when comparing the top ranked genes. Indeed, for the 20 top predictions of

LOTUS (excluding training sets), the intersection with TUSON consists only in two TSGs and

one OG, the intersection with DiffMut consist of one TSG and two OGs, and the intersection

with 20/20+ consists in four TSGs and one OG. Since LOTUS and MUFFINN are the only

Table 9. Performance of different methods trained on the 20/20+ database for OG prediction in CGCv86.

Method n Number of predictions 20 50 100

LOTUS 3 5 9

DiffMut 2 3 4

20/20+ 10 15 20

For each method (row) trained on the 20/20+ database, the table shows the number of recently added OG in CGCv86

predicted among the top k predictions, for k = 20, 50 or 100 (columns).

https://doi.org/10.1371/journal.pcbi.1007381.t009

Table 6. Performance of different methods trained on the TUSON database for TSG prediction in CGCv86.

Method n Number of predictions 20 50 100

MUFFINN 3 6 13

LOTUS 5 10 19

TUSON 13 25 35

For each method (row) trained on the TUSON database, the table shows the number of recently added TSG in

CGCv86 predicted among the top k predictions, for k = 20, 50 or 100 (columns).

https://doi.org/10.1371/journal.pcbi.1007381.t006

Table 7. Performance of different methods trained on the TUSON database for OG prediction in CGCv86.

Method n Number of predictions 20 50 100

MUFFINN 3 5 11

LOTUS 3 7 16

TUSON 7 11 12

For each method (row) trained on the TUSON database, the table shows the number of recently added OG in

CGCv86 predicted among the top k predictions, for k = 20, 50 or 100 (columns).

https://doi.org/10.1371/journal.pcbi.1007381.t007

Table 8. Performance of different methods trained on the 20/20+ database for TSG prediction in CGCv86.

Method n Number of predictions 20 50 100

LOTUS 4 10 16

DiffMut 1 4 10

20/20+ 7 9 16

For each method (row) trained on the 20/20+ database, the table shows the number of recently added TSG in

CGCv86 predicted among the top k predictions, for k = 20, 50 or 100 (columns).

https://doi.org/10.1371/journal.pcbi.1007381.t008
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methods, among those considered here, that use network information in addition to mutation

data, this could explain less overlap between their predictions and those of the other methods,

and a lower overlap with CGC for the top ranked genes, since no PPI information was used to

establish the CGC database.

To underpin this hypothesis, we computed the total number of non-silent mutations for the

20, 50 and 100 first predictions for all method, i.e., the top-ranked genes not belonging to the

training sets. The result in Tables 10 and 11 show that predictions from LOTUS have lower

mutations rates than those of TUSON, 20/20+ and DiffMut, especially for TSGs. This demon-

strates that LOTUS relies less on mutation data than these methods. Similarly, MUFFINN,

Fig 2. ROC curves of different cancer gene prediction methods trained on the TUSON database. ROC curves of different methods for TSG (left)
and OG (right) prediction when trained on the TUSON database, and evaluated on the discovery of cancer genes recently added in CGCv86.

https://doi.org/10.1371/journal.pcbi.1007381.g002

Fig 3. ROC curves of different cancer gene prediction methods trained on the 20/20 database. ROC curves of different methods for TSG (left) and
OG (right) prediction when trained on the 20/20 database, and evaluated on the discovery of cancer genes recently added in CGCv86.

https://doi.org/10.1371/journal.pcbi.1007381.g003
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that also uses network information, tends to rank genes with fewer mutations on top of the

list.

Analysis of new driver genes predicted by LOTUS

We tested the ability of LOTUS to make new driver gene predictions. We trained LOTUS with

the CGCv86 train set, made predictions over the complete COSMIC database (19,320 genes

including the training sets). The complete results are given in S1 Table. Complete analysis of

the predicted OGs and TSGs rankings is out of the scope of this paper. However, we consid-

ered the 22/21 best ranked TSGs and OGs, and made bibliographic search in order to look for

independent information that could validate these predictions.

For the 22 best ranked predicted OGs, we found abundant literature reporting their impli-

cation in various cancers. It is not possible to make a full review for each of these genes, but we

group them based on their global functions and focus on some examples.

Twelve out of the 22 best ranked genes are related to transcription regulation, a mechanism

that is invariably perturbed in cancer. These 12 genes are involved at various levels of tran-

scription regulation: chromatin remodeling (PYGO1, PYGO2, EP300, DOT1L), transcription

factors or repressors (MSEI1, MSEI2, MSEI3, TFEC, NKX2-2, ZIK1), transcription regulation

via miRNA (DROSHA, ELF1). For all these genes, a corpus of publications confirm their role

in promoting diverse types of cancers. For example, PYGO1 is involved in colorectal cancer

[36], while PYGO2 was shown to be a tumor promoter in mice [37]. MSEI1, MSEI2, and

MSEI3 are involved in the etiology, progression and metastatic evolution of some cancer types

such as prostate cancer [38], or leukemia [39, 40]. DROSHA is involved in the miRNA

Table 10. Total number of non-silent mutations in the top predicted genes by different methods trained on the

TUSON database.

Driver type nMethod TUSON LOTUS MUFFINN

20 first OG 2 3 4

50 first OG 3 3 2

100 first OG 3 3 7

20 first TSG 30 7 4

50 first TSG 14 5 2

100 first TSG 11 5 4

This table shows the total number of non-silent mutations in the top-ranked genes predicted by different method

trained on the TUSON database (columns), for both OG and TSG (rows).

https://doi.org/10.1371/journal.pcbi.1007381.t010

Table 11. Total number of non-silent mutations in the top predicted genes by different methods trained on the

20/20+ database.

Driver type nMethod DiffMut 20/20+ LOTUS

20 first OG 25 1 1

50 first OG 17 1 1

100 first OG 11 1 1

20 first TSG 25 11 2

50 first TSG 18 9 3

100 first TSG 14 6 3

This table shows the total number of non-silent mutations in the top-ranked genes predicted by different method

trained on the TUSON database (columns), for both OG and TSG (rows).

https://doi.org/10.1371/journal.pcbi.1007381.t011
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depletion observed in lung cancer, and alterations in this gene was shown to have a remarkable

impact in lung cancer [36].

Eight other best ranked OGs belong to signaling pathways known to play a role in cancer.

Among them, FGF6 and FGF5 are growth factors from the fibroblast growth factors signaling

pathway, which are well known players contributing to tumor progression [41]. Similarly

MOB3B (or MOB1) is a pivotal kinase player in the Hippo tumor suppressor pathway, and

mutations in this gene is associated to prostate cancer susceptibility and agressive tumors [42].

Although not exhaustive, these findings indicate that the best ranked oncogenes predicted

by LOTUS are realistic OG for some cancer types.

As for OGs, for the 21 best ranked TSGs, we found many publications indicating their role

in cancer, and strikingly, APOM is actually a known TSG for hepatocellular carcinoma [43].

We will group some of the other TSGs based on their function, and discuss a few examples.

Five genes are involved in DNA repair, a role closely related to genome maintenance and can-

cer [44, 45], and were shown to have a protective role in various types of cancer (only one

paper is cited by gene, but many others confirm this role): EXO1 [46], ERCC1 [47], GTF2H1

[48], MDC1 [49], and DGCR8 [50].

Three genes are involved in immune system response to cancer, which clearly indicates that

they bear a protective role: PDCD1 [50], KLRG1 [51], and MUC16 [52].

For six other genes of various functions, we found recent publications indicating that they

could potentially act as TSGs: SPTA1, GALNT5, PIWIL1, PIWIL4, SNX5, ADAM6. Mutations

in SPTA1 was found to play a role in glioblastoma [53]. The expression of the 5 other genes

were found to be repressed by over-expressed non-coding RNA or by aberrant methylation of

the promoter: GALNT5 in gastric cancer [54], ADAM6 in lung adenocarcinoma [55], PIWIL1

and PIWIL4 in lung adenocarcinoma [56] and renal cell carcinoma [57]. Loss or decreased

expression SNX5 promotes thyroid cancer progression [58].

Intriguingly, 3 of the best 21 ranked predicted TSGs, bibliographic search provided clues

that they indeed play a role in cancer, but that they would rather behave as OG. These genes

are CENPU [59], FXYD2 [60], ANXA9 [61]. In fact, the literature provides other examples of

genes able to switch from oncogenes to tumor suppressor genes, depending on the context

[62], which could be the case for these genes. In most cases, the cited papers (and others)

observe that over-expression of these genes are observed in various types of cancers. One

assumption could be that variations of their levels of expression might lead to switch between

TSG and OG roles.

Interestingly, among the 50 best ranked TSGs, 4 genes are not mutated (CENPU, AEBP2,

CDX1, ZNF652), and 22 genes are rarely mutated, less than 3 times. Such cases are not

observed among the top ranked OGs. Indeed, in the case of TSG, decrease in expression or

gene deletion leads to the same effect, i.e. loss of function, as deleterious mutations within the

gene sequence. A TSG that loses its function based on default in expression cannot be retrieved

by prediction methods based only on mutations, and LOTUS probably classified these rarely

mutated genes probably according to their interactions in the PPI network. The case of

CENPU is already discussed above. We could confirm that CDX1 is a known TSG [63]. Silenc-

ing of AEBP2 with long non coding RNA is associated to melanoma [64], while its deletion is

observed in myeloid leukemia [65]. Similarly, silencing of ZNF652 by miRNA is involved in

lymphoma [66], while some genetic variants of this gene lead to higher risks of prostate cancer

[67]. Concerning the 22 rarely mutated TSGs, 9 of them are already discussed above, and most

of the others are known to play a role in cancer. As an example, TNIP2 may be a TSG in pan-

creatic tumors, since it was shown that inhibition of MiR-1180, a short non coding mi-RNA

over-expressed in pancreatic cancer targeting TNIP2, inhibited cell proliferation [68].
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Taken together, these results show that, among the top TSG and OG ranked by LOTUS,

many genes are indeed involved in cancer, and that LOTUS predictions correspond to relevant

genes that are reliable candidates as cancer driver genes, at least for some tumor types.

Identification of cancer-specific driver genes with multitask LOTUS

In this section, we do not consider cancer as a single disease, but as a variety of diseases with

different histological types that can affect various organs. Indeed, an important question in

cancer research is to identify driver genes for each type of cancer. One way to solve this prob-

lem is to use a prediction method that is trained only with driver genes known for the consid-

ered cancer. Such single-task methods may however display poor performance because the

number of known drivers per cancer is often too small to derive a reliable model. Indeed,

scarce training data lead to a potential loss of statistical power as compared to the problem of

identification of pan-cancer driver genes where data available for all cancers are used.

In this context, we investigate two multitask versions of LOTUS, where we predict driver

genes for a given cancer based on the drivers known for this cancer but also on all driver genes

known for other cancer types. For a given cancer type, this may improve driver genes predic-

tion by limiting the loss of statistical power compared to the aforementioned single-task

approach.

For that purpose, we derive a list of 30 cancer diseases from the 20/20 mutation dataset as

explained in Methods. This complete list is available in S2 Table. As expected, many cancer

types have only few known cancer genes (Fig 4).

Since we want to evaluate the performance of LOTUS in a cross-validation scheme, we only

consider diseases with more than 4 known driver genes in order to be able to run a 2-fold

cross-validation scheme. This leads us to keep 27 cancer types for TSG prediction and 27 for

OG prediction. Note however that, for each cancer type, prediction are made while sharing all

the driver genes known for the 30 diseases, according to their similarities with these cancer

types.

The 2-fold cross-validated CE of LOTUS for the 27 considered cancer types is presented in

Table 12 (for TSG) and Table 13 (for OG). We compare four variants of LOTUS, as explained

Fig 4. Number of cancer genes per cancer type. This plot shows the distribution of the number of TSGs (left) and OGs (right) per cancer type. For
example, 3 cancer types have 0 to 5 TSG, 6 other cancer types have 6 to 10 TSG, etc.

https://doi.org/10.1371/journal.pcbi.1007381.g004
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in Methods: (1) single-task LOTUS treats each disease in turn independently from the others

using only the mutation data related to the considered disease to calculate gene features, and

only the driver genes known for this disease are used to train the algorithm; (2) Aggregation

LOTUS is also a single-task version of LOTUS, but gene features are calculated using the com-

plete mutation database of gene mutations in all cancers. In addition, for each disease, the

train set consists of known drivers for all the other cancers and have of the drivers known for

the considered disease. Then the prediction performance are calculated for the other half of

known drivers for this disease, which constitute the test set in the 2-fold cross validation

scheme. Therefore, Aggregation LOTUS is a single-task algorithm that uses much richer infor-

mation than the basic Single-task LOTUS; (3 and 4) Two multitask versions of LOTUS use

either a standard multitask strategy that does not take into account the relative similarities

Table 12. Cross-validated CE for DiffMut and LOTUS prediction of disease specific TSGs in the single- and multitask settings.

Disease Number of TSGs DiffMut Single-Task LOTUS Aggregation LOTUS Multitask LOTUS Multitask LOTUS2

ALL 38 7,122 1,431 783 709 631

Astrocytoma 17 7,605 2,612 49 38 0

BladUroCarc 9 4,852 2052 173 138 115

BreastAdeno 34 3,250 1,837 801 770 778

CLL 21 4,253 1,336 895 894 921

Colorectal 53 7,600 3,640 911 870 825

EndomCarc 18 5,831 1,222 89 82 59

GliobMulti 24 4,776 2,771 166 191 153

HNSC 24 5,819 3,051 681 571 595

Kidney Cancer 19 6,133 2,766 2,512 2,474 2,474

LAML 56 5,947 1,936 1,483 1,451 1,328

LiverHepCarc 10 3,768 602 221 156 172

Low-Grade Glioma 17 6,047 2,712 49 38 0

LungAdeno 30 6,773 4,712 339 341 323

LungSquaCarc 16 6,829 3,868 53 57 25

LungSmallCarc 28 8,883 5,746 58 68 17

Lymphoma B-Cell 37 6,383 1,754 2,238 2,284 2,252

Medulloblastoma 14 6,692 1,123 265 247 230

Melanoma 31 6,719 2,467 459 365 233

Multiple Myeloma 7 5,165 2,871 3,754 3,871 3,683

Ovarian 22 6,481 2,632 724 627 593

PancAdeno 13 3,140 1,777 140 118 123

ProstAdeno 7 6,565 2,345 457 371 514

Rhabd 6 4,871 1,957 181 111 26

Soft-Tissue Sarcoma 23 8,572 4,447 2,008 1,992 1,970

StomAdeno 17 6,530 2,878 331 319 322

ThyrCarc 8 10,352 2,834 1,222 1,325 1,538

For 27 cancer types (rows) with a given number of known TSG (second column), this table shows the performance in terms of cross-validate CE of different methods for

TSG prediction, including DiffMut (column 3) and different variants of single- and multitask LOTUS (columns 4 to 7). ALL stands for Acute Lymphocytic Leukemia,

BladUroCarc for Bladder Urothelial Carcinoma, BreastAdeno for Breast Adenocarcinoma, CLL for Chronic Lymphocytic Leukemia, EndomCarc for Endometrial

Carcinoma, GliobMulti for Glioblastoma Multiform, HNSC for Head and Neck Squamous Cell Carcinoma, LAML for Acute Myeloid Leukemia, LiverHepCarc for

Liver Hepatocellular Carcinoma, LungAdeno for Lung Adenocarcinoma, LungSquaCarc for Lung Squamous Cell Carcinoma, LungSmallCarc for Lung Small Cell

Carcinoma, PancAdeno for Pancreatic Adenocarcinoma, ProstAdeno for Prostate Adenocarcinoma, Rhabd for Rhabdomyosarcoma, StomAdeno for Stomach

Adenocarcinoma and ThyrCarc for Thyroid Carcinoma.

https://doi.org/10.1371/journal.pcbi.1007381.t012
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between diseases (Multitask LOTUS), or a more refined multitask strategy where driver gene

information is shared between cancer types according to their similarity based on biological

information (Multitask LOTUS2). Finally, we compare these performances with those of Diff-

Mut, as a single-task method using only the mutation data related to the considered disease, as

for single-task LOTUS.

For most diseases (25/27 for TSG, 27/27 for OG), single-task LOTUS and DiffMut lead to

the worst CE, confirming the difficulty to treat each cancer type individually, due to the small

number of known driver genes and to the smaller mutation database available for each cancer

type type. Interestingly, Aggregation LOTUS often leads to a strong improvement in perfor-

mance. This shows that different cancer types often share some common mechanisms and

driver genes, and therefore, simply using all the available information as in a pan-cancer para-

digm improves the performance of driver gene prediction for each disease. However, in many

cases, the multitask LOTUS and LOTUS2 algorithms lead to an additional improvement over

Aggregation LOTUS, LOTUS2 leading in general to the best results (in 17 types out of 27 for

TSG prediction, and in 17 types out of 27 for OG prediction). On average, the decrease in CE

Table 13. Cross-validated CE for DiffMut and LOTUS prediction of disease specific OGs in the single- and multitask settings.

Disease Number of OGs DiffMut Single-Task LOTUS Aggregation LOTUS Multitask LOTUS Multitask LOTUS2

ALL 52 8,479 2,649 1,232 1,269 1,145

Astrocytoma 13 7,847 2,894 75 63 13

BladUroCarc 10 5,324 1,578 210 139 140

BreastAdeno 19 2,672 1,371 852 806 792

CLL 19 4,582 3,821 1,537 1,501 1,462

Colorectal 23 4,043 3,376 818 784 758

EndomCarc 8 5,112 1,671 122 128 105

GliobMulti 22 4,915 2,539 143 128 106

HNSC 23 4,539 2,917 1,305 1,500 1,504

Kidney Cancer 11 5,774 1,903 543 600 763

LAML 56 4,990 2,623 1,418 1,408 1,307

Low-Grade Glioma 10 3,753 1,541 46 33 3

LungAdeno 26 4,510 2,038 84 79 40

LungSmallCarc 6 3,243 2,129 1,061 666 864

LungSquaCarc 24 5,737 1,641 67 54 17

Lymphoma B-Cell 34 4,765 2,424 1,712 1,714 1,669

Medulloblastoma 5 7,165 58 93 34 25

Melanoma 35 3,377 1,925 1,576 1,550 1,525

Multiple Myeloma 9 3,466 2,870 1,823 1,877 2,026

Neuroblastoma 5 5,298 3,830 2,078 2,077 2,101

Ovarian 12 6,371 3,606 1,256 869 870

PancAdeno 6 1,464 1,142 498 426 302

ProstAdeno 13 6,523 2,451 955 1,599 1,475

Rhabd 7 8,265 1,978 172 104 30

Soft-Tissue Sarcoma 38 8,886 2,480 2,424 2,466 2,444

StomAdeno 10 2,235 750 85 127 97

ThyrCarc 8 8,407 2,656 547 612 494

For 27 cancer types (rows) with a given number of known OG (second column), this table shows the performance in terms of cross-validate CE of different methods for

OG prediction, including DiffMut (column 3) and different variants of single- and multitask LOTUS (columns 4 to 7). The abbreviations of cancer types are explained

in the legend of Table 12.

https://doi.org/10.1371/journal.pcbi.1007381.t013
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between Aggregate LOTUS and LOTUS2 is of 20% for OG and 18% for TSG. The improve-

ment in performance observed between Aggregate LOTUS and LOTUS2 shows that, besides

some driver mechanisms common to many cancers, each cancer presents some specific driver

mechanisms that can only be captured by prediction methods able to integrate some biological

knowledge about the different diseases. The above results show that multitask algorithms

allowing to share information between cancers according to their biological similarities such

as LOTUS2, rather than on more naive rules, better capture these specific driver genes. They

also show that the kernel Kdiseases = Kdescriptors built on disease descriptors contains some rele-

vant biological information to compare diseases.

To measure how different the predictions of LOTUS2 are for each cancer type, we com-

pared the first 50 predictions for each type. Aggregating all predictions for TSGs (respectively

OGs) results in 210 genes (respectively 224 genes), which shows that various cancer types

share some drivers, but that the prediction lists are different. Indeed, some drivers with high

penetrance (such as TP53) are expected to be found in most cancer types, whereas other driv-

ers are more specific to given organs or cell types, in particular since all genes are not expressed

in all cell types.

In addition, multitask algorithms based on task descriptors (here, disease descriptors)

appear to be promising in order to include prior knowledge about diseases and share informa-

tion according to biological features characterizing the diseases.

Finally, note that we did not try to run TUSON, MutSigCV, MUFFINN or 20/20+ to search

for cancer specific driver genes in the single-task setting (they cannot be run in the multi-task

setting). Indeed, according to the results of pan-cancer studies in the single-task setting, they

do not perform as well as single-task LOTUS. Considering that single-task LOTUS and Diff-

Mut were far from reaching the performance of multi-task LOTUS for prediction of cancer

specific driver genes, TUSON, MutSigCV, MUFFINN and 20/20+ are not expected to reach

these performance either.

Discussion

Our work demonstrates that LOTUS outperforms several state-of-the-art methods on all tested

situations for driver gene prediction. This improvement results from various aspects of the

LOTUS algorithm. First, LOTUS allows to include the PPI network information as indepen-

dent prior biological knowledge. In the single-task setting, we proved that this information has

significance for the prediction of cancer driver genes. Because LOTUS is based on kernel

methods, it is well suited to integrate other data from multiple sources such as protein expres-

sion data, information from chip-seq, HiC or methylation data, or new features for mutation

timing as designed in [69]. Further development could involve the definition of other gene

kernels based on such type of data, and combine them with our current gene kernel, in order

to evaluate their relevance in driver gene prediction.

We also showed how LOTUS can serve as a multitask method. It relies on a disease kernel

that controls how driver gene information is shared between diseases. Interestingly, we showed

that building a kernel based on independent biological prior knowledge about disease similar-

ity leads on average to the best prediction performance with respect to single-task algorithms,

and also with respect to a more generic and naive multitask learning strategy that does not

incorporate knowledge about the cancer types. Again, the kernel approach leaves space for

integration of other types and possibly more complex biological sources of information about

diseases. Our multitask approach thus allows to make prediction for cancer types with very

few known driver genes, which would be less reliable with the single-task methods. We consid-

ered here only diseases with at least 4 known driver genes, in order to perform cross-validation
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studies, which was necessary to evaluate the methods. However, it is important to note that in

real-case studies, at the extreme, both versions of multitask LOTUS could make driver gene

prediction for the 30 cancer types, including those for which no driver gene is known.

LOTUS is a machine learning algorithm based on one-class SVM. In fact, the most classical

problem in machine learning is binary classification, where the task is to classify observations

into two classes (positives and negatives), based on training sets P of known positives andN

of known negatives. Driver gene detection can be seen as binary classification of TSGs vs. neu-

tral genes, and of OGs vs. neutral genes. However, although the P set is composed of known

driver genes, it is not straightforward to build theN set because we cannot claim that some

genes cannot be drivers. Thus, driver gene detection should rather be seen as binary classifica-

tion problem with only one training set P of known positives. This problem is classically called

PU learning (for Positive-Unknown), as opposed to PN learning (for Positive-Negative).

The classical way to solve PU learning problems is to choose a setN of negatives among the

unlabeled data and apply a PN learning method. For example, one can consider all unknown

items as negatives (some of which may be reclassified afterwards as positives), or randomly

choose bootstrapped sets of negatives among the unknown, like in [34]. Both methods assume

that a minority of the unlabeled items are in fact positives, which is expected for driver genes.

The one-class SVM algorithm [70] can also be used as a PU learning method, in which a

virtual item is chosen as the training set of negatives. We preferred this approach because in

preliminary studies, we found that it had slightly better performances than PU learning meth-

ods and was also faster.

For LOTUS, as for all machine learning algorithm, the set of known driver genes is critical:

if this set is poorly chosen (i.e., if some genes were wrongly reported as driver genes, or more

likely, if the reported genes are not the best driver genes), the best algorithm might not mini-

mize the CE. To circumvent this problem, we propose two new approaches for future develop-

ments: one could build a multi-step algorithm that iteratively removes some genes from the

positive set and labels them as unknown, and relabel as positives some of the best ranked

unknown genes. We believe that such an algorithm would make the set of positives converge

to a more relevant list. Alternatively, one could assign (finite) scores to the known driver genes

before performing classification and increment these scores at each step.

Materials andmethods

Pan-cancer LOTUS

LOTUS is a new machine learning-based method to predict new cancer driver genes, given a

list of know ones. In the simplest, pan-cancer setting, we consider a list of N known driver

genes {g1, . . ., gN}, and the goal of LOTUS is to learn from them a scoring function f(g), for any

other gene g, that predicts how likely it is that g is also a cancer gene. Since TSGs and OGs have

different characteristics, we treat them separately and build two scoring functions fTSG and fOG
that are trained from lists of know TSGs and OGs, respectively.

LOTUS learns the scoring function f(g) with a one-class support vector machine

(OC-SVM) algorithm [70], a classical method for novelty detection and density level set esti-

mation [71]. The scoring function f(g) learned by a OC-SVM given a training set {g1, . . ., gN}

of known cancer genes takes the form:

f ðgÞ ¼
XN

i¼1

aiKðgi; gÞ ; ð1Þ

where α1, . . ., αN are weights optimized during the training of OC-SVM [70], and K(g, g0) is a
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so-called kernel function that quantifies the similarity between any two genes g and g0. In other

words, the score of a new gene g is a weighted combination of its similarities with the known

driver genes.

The kernel K encodes the similarity among genes. Mathematically, the only constraint that

Kmust fulfill is that it should be a symmetric positive definite function [30]. This leaves a lot of

freedom to create specific kernels encoding prior knowledge about relevant information to

predict driver genes. In addition, one can easily combine heterogeneous information in a sin-

gle kernel by, e.g., summing two kernels based on different sources of data. In this work, we

restrict ourselves to the following basic kernels, and leave for future work a more exhaustive

search of optimization of kernels for cancer gene prediction.

• Mutation kernel. Given a large data set of somatic mutations in cohorts of cancer patients,

we characterize each gene g by a vector FmutationðgÞ 2 R
3 encoding 3 features. For OG predic-

tion the three features are the number of damaging missense mutations (defined as in [26] as

mutations with a Polyphen2 score larger than 0.447), the total number of missense muta-

tions, and the entropy of the spatial distribution of the missense mutations on each gene. For

TSG prediction, the features are the number of frameshift mutations, the number of LOF

mutations (defined as the nonsense and frameshift mutations), and the number of splice site

mutations. These features were calculated as proposed by [26]. We chose them because they

were found to best discriminate OGs and TSGs by the TUSON algorithm [26] and were also

all found among the most important features selected by the random forest algorithm used

by the 20/20+ method [28]. Given two genes g and g0 represented by their 3-dimensional vec-

tors F(g) and F(g0), we then define the mutation kernel as the inner product between these

vectors:

Kmutationðg; g
0Þ ¼ FmutationðgÞ

>
Fmutationðg

0Þ :

Notice that using Kmutation as a kernel in OC-SVM produces a scoring function (1) which is

simply a linear combination of the three features used to define the vector Fmutation.

• PPI kernel. Given an undirected graph with genes as vertices, such as a PPI network, we

define a PPI kernel KPPI as a graph kernel over the network [72, 73]. More precisely, we used

a diffusion kernel of the form KPPI = expM(−L), where L = I − D
−1/2 AD−1/2 is the normalized

Laplacian of the graph and expM is the matrix exponential function. Here I is the identity

matrix, A stands for the adjacency matrix of the graph (Ai,j = 1 if vertices i and j are con-

nected, 0 otherwise) and D for the diagonal matrix of degrees (Dii ¼
Pn

j¼1
Aij). Intuitively,

two genes are similar according to KPPI when they are close and well connected through sev-

eral routes to each other on the PPI network, hence learning a OC-SVM with KPPI allows to

diffuse the information about cancer genes over the network.

• Integrated kernel. In order to train a model that incorporates informations about both muta-

tional features and PPI, we create an integrated gene kernel by simply averaging the muta-

tion and PPI kernels:

Kgeneðg; g
0Þ ¼ ðKmutationðg; g

0Þ þ KPPIðg; g
0ÞÞ=2 :

While more complex kernel combination strategies such as multiple kernel learning could

be considered, we restrict ourselves to this simple kernel addition scheme to illustrate the

potential of our approach for heterogeneous data integration.
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Multitask LOTUS for cancer type-specific predictions

The pan-cancer LOTUS approach can also be used for cancer-specific predictions, by restrict-

ing the training set of known cancer driver genes to those genes known to be driver in a partic-

ular cancer type. However, for many cancer types, only few driver genes have been validated,

creating a challenging situation for machine learning-based methods like LOTUS that rely on

a training set of known driver genes to learn a scoring function. Since cancer driver genes of

different cancer types are likely to have similar features, we propose instead to learn jointly

cancer type-specific scoring functions by sharing information about known driver genes

across cancer types, using the framework of multitask learning [33, 34]. Instead of starting

from a list of known driver genes, we now start from a list of known (cancer gene, cancer type)

pairs of the form {(g1, d1), . . ., (gN, dN)}, where a sample (gi, di) means that gene gi is a known

cancer gene in disease di. Note that a given gene (and a given cancer type) may of course

appear in several such pairs.

The extension of OC-SVM to the multitask setting is straightforwardly obtained by creating

a kernel for (gene, disease) pairs of the form:

Kpairððg; dÞ; ðg
0; d0ÞÞ ¼ Kgeneðg; g

0Þ � Kdiseaseðd; d
0Þ ;

where Kgene is a kernel between genes such as that used in pan-cancer LOTUS and Kdisease is a

kernel between cancer types described below. We then simply run the OC-SVM algorithm

using Kpair as kernel and {(g1, d1), . . ., (gN, dN)} as training set, in order to learn a cancer type-

specific scoring function of the form f(g, d) that estimates the probability that g is a cancer gene

for cancer type d.

The choice of the disease kernel Kdisease influences how information is shared across cancer

types. One extreme situation is to take the uniform kernel Kuniform(d, d
0) = 1 for any d, d0. In

that case, no distinction is made between diseases, and all known cancer driver genes are

pooled together, recovering the pan-cancer setting (with the slight difference that genes may

be counted several times in the training set if they appear in several diseases). Another extreme

situation is to take the Dirac kernel KDirac(d, d
0) = 1 if d = d0, 0 otherwise. In that case, no infor-

mation is shared across cancer types, and the joint model over (gene, disease) pairs is equiva-

lent to learning independently a model for each disease, as in the single-task approach.

In order to leverage the benefits of multitask learning and learn disease-specific models by

sharing information across diseases, we consider instead the following two disease kernels:

• First, we consider the standard multitask learning kernel:

Kmultitaskðd; d
0Þ ¼ ðKuniformðd; d

0Þ þ KDiracðd; d
0ÞÞ=2 ;

which makes a compromise between the two extreme uniform and Dirac kernels [33]. Intui-

tively, for a given cancer type, prediction of driver genes is made by assigning twice more

weight to the data available for this cancer than to the data available for all other cancer

types.

• Second, we test a more elaborate multitask version where we implement the idea that a given

cancer might share various degrees of biological similarities with other cancers. Therefore,

known driver genes for other cancers should be shared with those of the considered cancer

based on this similarity. Hence, we create a specific disease kernel Kcancer(d, d
0) to capture

how similar two cancer types are. To create Kcancer, we first represent each cancer type as a

43-dimensional binary vector as follows. The first 12 bits correspond to a list of cancer type

characteristics used in COSMIC to describe tumors: adenocarcinoma, adenoma, blastoma,

carcinoma, glioma, leukemia, lymphoma, medulloblastoma, melanoma, myeloma,
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rhabdomyosarcoma, sarcoma. The last 31 components correspond to localization character-

istics also used in COSMIC to describe tumors: adrenal glands, astrocytes, B-cell, bladder,

bone, breast, cervix, central nervous system, colon, ducts, endometrium, eye, head and neck,

heart, kidney, liver, lung, lymphocytes, mucosa, muscle, nerve, oesophagus, ovary, pancreas,

prostate, salivary glands, skin, soft tissue, squamous cell, stomach, T-cell, thyroid. A disease

might be assigned one or several types and be associated to one or several locations. For

example, Melanoma is associated with a single type (“melanoma”) and four localizations

(“skin”, “mucosa”, “eye” and “head and neck”), so that Melanoma is described by a vector

with five 1’s and thirty-eight 0’s. For each disease, we construct the list of binary features by

documenting every disease in the literature. The corresponding vectors encoding the consid-

ered disease are given in S3 Table. Finally, ifCðdÞ 2 R43 denotes the binary vector represen-

tation of disease d, we create the disease kernel as a simple inner product between these

vectors, combined with the standard multitask kernel, i.e.:

Kcancerðd; d
0Þ ¼ ðCðdÞ

>
Cðd0Þ þ Kuniformðd; d

0Þ þ KDiracðd; d
0ÞÞ=3 :

Data

When comparing LOTUS to TUSON and MUFFINN, we use a dataset of somatic mutations

collected from COSMIC [14], TCGA (http://cancergenome.nih.gov/) and [18], that was used

in [26]. This dataset contains a total of 1, 195, 223 mutations across 8, 207 patients affecting 18,

843 genes.

When comparing LOTUS to DiffMut and 20/20+, we use a dataset of somatic mutations

borrowed from [28]. This dataset contains a total of 729, 205 mutations across 7, 916 patients

affecting 19, 320 genes.

When comparing LOTUS to MutSigCV, we use an example dataset available on GenePat-

tern. This dataset contains a total of 137, 343 mutations across 177 patients of lung squamous

cell carcinoma affecting 16, 885 genes.

We obtained the PPI network from the HPRD database release 9 from April 13, 2010 [74].

It contains 39, 239 interactions among 7, 931 proteins. As for known pan-cancer driver genes,

we consider three lists in our experiments: (i) the TUSON train set, proposed in [26], consists

of two high confidence lists of 50 OGs and 50 TSGs extracted from CGC (release v71) based

on several criteria, in particular excluding driver genes reported through translocations; (ii)

the 20/20 train set, proposed in [28] to train the 20/20+ method, contains 53 OGs and 60

TSGs; finally, (iii) the CGCv86 train set consists of two broader lists that we extracted from

CGC release v86 of the COSMIC database: we consider as OGs the genes annotated as “onco-

gene”, “oncogene, TSG”, “oncogene, fusion”, “oncogene, TSG, fusion”, and as TSGs the genes

annotated as “TSG”, “oncogene, TSG”, “TSG, fusion”, “oncogene, TSG, fusion”. For cancer

type-specific lists of driver genes, we only consider the CGCv86 train sets. We distinguished 30

diseases based on the available annotations describing patients in the mutation matrix, only

merging “Kidney Chromophobe”, “Kidney Papillary Cell Carcinoma” and “Kidney Clear Cell

Carcinoma” into “Kidney Cancer”, “DLBCL” and “Lymphoma B-Cell” into “Lymphoma

B-Cell” and neglecting the unspecific “CARC”. The names of these diseases and their numbers

of associated TSGs and OGs can be found in S2 Table. For each of the resulting diseases, 0 to

56 TSGs/OGs were known in CGCv86. We considered only diseases with at least 4 known

TSGs or OGs available, in order to have enough learning data points to perform a two-fold

cross-validation scheme, which led us to consider 27 diseases for TSG prediction and 27 for

OG prediction.
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Comparing different methods

Among LOTUS, TUSON, 20/20+, DiffMut, MUFFINN and MutSigCV, we can distinguish on

the one side, the unsupervised methods MutSigCV, MUFFINN and DiffMut that score candi-

date genes independently of any training set of known drivers, and the supervised methods

LOTUS, TUSON and 20/20+ that make predictions based on a training set of known driver

genes.

In addition, all methods use gene descriptors that are calculated based on a mutation data-

bases, and therefore, changing the mutation database will change the prediction performance.

In order to make fair comparison between LOTUS and the other five methods, we per-

formed several experiments in which LOTUS is trained with the training set of the TUSON

(respectively 20/20+) paper when compared to TUSON and MUFFINN (respectively 20/20+).

In addition, in all experiments, the gene features calculated for LOTUS and MUFFINN were

based on the same mutation databases as those used by the other methods in their respective

papers.

Therefore, for a fair comparison between LOTUS, MUFFINN and TUSON, we use the

mutation database available on the website of the authors along with their training sets of OGs

and TSGs provided in [26]. We evaluate the performance of LOTUS on this dataset by 5-fold

cross-validation repeated twice (see Methods). For TUSON, we use the prediction results avail-

able in [26] and evaluate the CE as the mean number of non-driver genes that are ranked

before known driver genes of the TUSON train sets. Finally, we downloaded and re-ran

MUFFINN.

For a fair comparison between LOTUS and 20/20+, we use the mutation database of 20/20

+ and the training sets of OGs and TSGs provided by the authors on their website [28]. We

evaluate the performance of LOTUS as above. However we note that the 20/20+ score itself is

obtained by a bootstrap procedure similar to our cross-validation approach [28].

For a fair comparison between LOTUS and MutSigCV, we use the example mutation data-

base available only for lung squamous cell tumours. Since MutSigCV does not use a train set of

driver genes, we trained LOTUS with known OGs and TSGs available in CGCv86 for lung

squamous cell tumours. MutSigCV provides a ranked list of genes that does not distinguish

TSG and OG. Therefore, the CE is obtained by averaging the numbers of non-driver genes

ranked before each driver genes in the train sets used for LOTUS.

Finally, for a fair comparison between LOTUS and DiffMut, we use the 20/20+ mutation

dataset for both methods. LOTUS is trained with the 20/20+ training sets of OGs and TSGs.

We run DiffMut using the latest version of the algorithm, and we compute the CE related to

the 20/20+ training sets of OGs and TSGs.

Experimental protocol

To assess the performance of a driver gene prediction method on a given gold standard of

known driver genes, we score all genes in the COSMIC database and measure how well the

known driver genes are ranked. For that purpose, we plot the ROC curve, considering all

known drivers as positive examples and all other genes in COSMIC as negative ones, and

define the consistency error (CE) as

CE ¼ #N � ð1� AUCÞ;

where #N is the number of negative genes, and AUC denotes the area under the ROC curve.

In other words, CEmeasures the mean number of “non-driver” genes that the prediction

method ranks higher than known driver genes. Hence, a perfect prediction method should

have CE = 0, while a random predictor should have a CE near #N =2.
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To estimate the performance of a machine learning-based prediction method that estimates

a scoring function from a training set of known driver genes, we use k-fold cross-validation for

each given gold standard set of known driver genes. In k-fold cross-validation, the gold stan-

dard set is randomly split into k subsets of roughly equal sizes. Each subset is removed from

the gold standard in turn, the prediction method is trained on the remaining k − 1 subsets, and

its CE is estimated considering the subset left apart as positive examples, and all other genes of

COSMIC not in the gold standard set as negative examples. A mean ROC curve and mean CE

is then computed from the k resulting ROC curves. This computation is repeated several times

to consider several possibly different partitions of the gold standard set.

Tuning of parameters

Each version of LOTUS depends on a unique parameter, the regularization parameter C of the

OC-SVM algorithm. Each time a LOTUS model is trained, its C parameter is optimized by

5-fold cross-validation on the training set, by picking the value in a grid of candidate values

{2−5/2, 2−4/2, . . ., 25/2} that minimizes the mean CE over the folds.

Other driver prediction methods

We compare the performance of LOTUS to five other state-of-the-art methods: MutSigCV

[21], which is a frequency-based method, TUSON [26] and 20/20+ [28] that combine fre-

quency and functional information, MUFFINN [32] and DiffMut that analyses mutation pro-

files on genes.

MutSigCV searches driver genes among significantly mutated genes which adjusts for

known covariates of mutation rates. The method estimates a background mutation rate for

each gene and patient, based on the observed silent mutations in the gene and noncoding

mutations in the surrounding regions. Incorporating mutational heterogeneity, MutSigCV

eliminates implausible driver genes that are often predicted by simpler frequency-based mod-

els. For each gene, the mutational signal from the observed non-silent counts are compared to

the mutational background. The output of the method is an ordered list of all considered

genes as a function of a p-value that estimates how likely this gene is to be a driver gene.

TUSON uses gene features that encode frequency mutations and functional impact muta-

tions. The underlying idea is that the proportion of mutation types observed in a given gene

can be used to predict the likelihood of this gene to be a cancer driver. After having identified

the most predicting parameters for OGs and TSGs based on a train set (called the TUSON

train set in the present paper), TUSON uses a statistical model in which a p-value is derived

for each gene that characterizes its potential as being an OG or a TSG, then scores all genes in

the COSMIC database, to obtain two ranked lists of genes in increasing orders of p-values for

OGs and TSGs.

The 20/20+ method encodes genes based on frequency and mutation types, and other bio-

logical information. It uses a train set of OGs and TSGs (called the 20/20 train set in the pres-

ent paper) to train a random forest algorithm. Then, the random forest is used on the

COSMIC database and the output of the method is again a list of genes ranked according to

their predicted score to be a driver gene [28]. We did not implement this method, so we

decided to evaluate its performance only on its original training set: the 20/20 dataset. More-

over, we applied the same method to compute the CE as for MutSigCV and TUSON, which

should actually give an advantage to 20/20+, since it is harder to make predictions in a cross-

validation loop using a smaller set of known driver genes.

DiffMut uses a dataset of somatic mutations and a dataset of healthy genomes, but no train-

ing sets of known driver genes. It compares the mutation profiles on a gene in the mutation
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dataset with the nucleotide variation profile in the healthy genomes, and computes for every

gene a score that allows to rank all genes according to their potential as OG or TSG.

MUFFINN uses a dataset of somatic mutations and extracts the number of non-synony-

mous mutations per gene. Then, it computes a score (either DNmax or DNsum) and propa-

gates these scores on a functional gene network (either HumanNet or STRING). The final

scores are used to compute four different rankings for all genes. Among these four possibilities,

we systematically used the version that yields the best result for MUFFINN,. Note however

that, in practice, the user would not know which version should be preferred.

Code and data availability

We implemented LOTUS and performed all experiments in R using in particular the kernlab

package for OC-SVM [75]. The code and data to reproduce all experiments are available at

https://github.com/LOTUSproject/LOTUS.

Supporting information

S1 Table. TSG and OG rankings for LOTUS with the 20/20, the TUSON and the CGC v86

datasets. Note that the training sets were removed every time.
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S2 Table. List of cancer types. Cancer types derived from annotations in the 20/20 mutation

dataset along with their numbers of associated OG and TSG.
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