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Abstract

Researchers hoping to elucidate the behaviour of species that aren’t readily observed are able to do so using biotelemetry
methods. Accelerometers in particular are proving particularly effective and have been used on terrestrial, aquatic and
volant species with success. In the past, behavioural modes were detected in accelerometer data through manual
inspection, but with developments in technology, modern accelerometers now record at frequencies that make this
impractical. In light of this, some researchers have suggested the use of various machine learning approaches as a means to
classify accelerometer data automatically. We feel uptake of this approach by the scientific community is inhibited for two
reasons; 1) Most machine learning algorithms require selection of summary statistics which obscure the decision
mechanisms by which classifications are arrived, and 2) they are difficult to implement without appreciable computational
skill. We present a method which allows researchers to classify accelerometer data into behavioural classes automatically
using a primitive machine learning algorithm, k-nearest neighbour (KNN). Raw acceleration data may be used in KNN
without selection of summary statistics, and it is easily implemented using the freeware program R. The method is evaluated
by detecting 5 behavioural modes in 8 species, with examples of quadrupedal, bipedal and volant species. Accuracy and
Precision were found to be comparable with other, more complex methods. In order to assist in the application of this
method, the script required to run KNN analysis in R is provided. We envisage that the KNN method may be coupled with
methods for investigating animal position, such as GPS telemetry or dead-reckoning, in order to implement an integrated
approach to movement ecology research.
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Introduction

The use of animal attached sensors for monitoring animal

movements and behaviour is now common practice (see [1] for

review). In particular, accelerometers attached to animals allow

the measurement of animal energy expenditure [2,3,4,5], travel

speed [6,7] and behaviour [8,9] in environments which preclude

direct observation, thus saving time and field effort (for details see

[10]).

With the development of a movement ecology paradigm seeking

to integrate information of animal location, behaviour, energy

expenditure and environmental information [11], animal-attached

accelerometers show great promise as part of the movement

ecology ‘toolbox’, because they can be used to study both the

behaviour and energy of free-living animals [10,12,13]. Indeed, an

increasing number of studies are making use of accelerometers to

quantify animal behaviour [14,15,16,17]. Most of these studies

identify behaviour following the principles set out in Shepard et al.

[18]. This method requires that researchers go through the data

manually and interpret the signals according to changes in body

posture and body motion, both of which are discernable using

accelerometers [15,18]. Body posture can be detected as ‘static’

acceleration, and relates to the orientation of the accelerometer

with respect to gravity. Body motion is detected as ‘dynamic’

acceleration when the inertia produced by animal movement

registers characteristic signals on the device [18]. However,

modern accelerometer-equipped data loggers are now able to

record at rates as high as 300 Hz [19], so manual identification of

behavioural patterns in accelerometer data using this approach is

arduous and, with increases in the use and capacity of the

technology, is set to become more so.

Some formalised procedures may help with this issue. For

example, a simple method of automatic classification involves

labelling data into behaviours by a sequence of rules (i.e. do data

values exceed a given value), called thresholding: Moreau et al.
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[20] used threshold values to delineate whether goats (Capra

aegagrus hircus) were grazing or browsing (head-up or -down state)

while a similar approach was adopted by Lagarde et al. [21] in a

study of the Greek tortoise (Testudo graeca) activity. In the latter

study, a series of decision rules were designed through visual

observation of the subject animals to discriminate between five

behaviours, with high accordance between estimated and observed

behaviours [21]. However, the effectiveness of threshold methods

are limited by the need for accurate selection of threshold values in

the first instance, something that can only be achieved through

visual observation and familiarity with the subject species. This

issue was addressed by Sakamoto et al. [22] through the use of K-

means clustering, which attempts to discover behavioural modes in

the data automatically through unsupervised machine learning

without ground-truthing. Unfortunately not all behaviours were

discernible by the method, and it was limited to input from a single

acceleration axis [22].

Another approach that has shown promise is the use of Machine

Learning Algorithms (MLAs), specifically Support Vector Ma-

chine (SVM) algorithms. SVMs are a form of binary classifier,

which differentiate between behavioural modes by representing

data as points in space based on summary statistics derived from

training data (i.e. the data collected under observation which is

used to provide the machine learning algorithm with an example

of data pertaining to a given behaviour) [13]. A hyperplane (or

division) is drawn at the maximum distance (usually Euclidean

distance) between each training class, and new data are classified

according to which side of the hyperplane they fall. Because SVMs

are binary classifiers, i.e. they can only differentiate between two

classes at a time, the problem must be split into multiple binary

classifications when there are more than two behaviours, i.e.

behaviour A or all others, behaviour B or all others, etc. [13].

To our knowledge, the first study to illustrate the utility of SVMs

in the classification of accelerometer data into animal behavioural

states was Martiskainen et al. [23]. In this study, SVMs were

applied to accelerometer data obtained from dairy cows in order

to distinguish between eight routine behaviours. However, some

behaviours returned poor precision (for definition see Methods) in

some classifications, due, in part, to similarity in movement

patterns between behaviours [23]. Gao et al. [24] more recently

evaluated SVMs as a means to classify accelerometer data.

However, this method involves the use of a web-based program to

conduct the analysis, which restricts the input sample rate to 1 Hz.

Commonly, this is considered below a useful required sample rate

[24,25], as the sample rate is required to be twice that of the fastest

expected movement [26].

Nathan et al. [13] evaluated 5 machine learning algorithms

(Artificial Neural Networks, Classification and Regression Trees,

Linear Discriminant Analysis, Random Forest and Support Vector

Machine) for use in classifying acceleration derived from Griffon

vultures. Whilst all of the methods tested performed quite well (80–

90% accuracy), we would argue that their adoption by the

scientific community will be problematic because they are

conceptually complex and their efficacy relies on the proper

selection of summary statistics. One criticism that is often levelled

at machine learning algorithms is that they are ‘black box’

methods that are difficult for biologists to implement or appreciate

how classifications are derived.

In light of this, we see a need for a method for automatic

identification of behavioural modes that is accessible and

straightforward conceptually. The K – Nearest Neighbour

(KNN) algorithm [27,28] is such a method, by which new data

are classified according to the classifications of the k nearest data

points from a training set [29]. This training set can be derived

from ground-truthed data obtained under visual observation (e.g.

[30]). KNN is a form of primitive machine learning, and can be

used to classify raw acceleration data according to its position in a

3 d feature space and, compared with other MLAs, it is intuitive

and computationally simple [31]. The KNN is an established

method in data classification and has been used in numerous

fields, such as microbiology [32], security [33], forestry [34] and

hydrology [35].

The purpose of the present paper is to introduce KNN as an

easy to use and conceptually simple method for identifying animal

behavioural modes in raw tri-axial acceleration data. The method

detailed here requires no specialist coding experience or selection

of summary statistics to implement, and can handle high sample

rate data (up to 40 Hz are tested here). KNN analysis can be

carried out with the freeware program R, with the script provided

(see File S1). In order to evaluate the utility of the KNN method,

we used the algorithm in R to discern between five common

behaviours of 8 species; Human (Homo sapiens), Badger (Meles meles),

Cormorant (Phalacrocorax atriceps), Cheetah (Acinonyx jubatus),

Camels (Camelus dromedarius), Dingo (Canus lupus dingo), Kangaroo

(Macropus rufus) and Wombat (Lasiorhinus latifrons).

Methods

K-Nearest Neighbour Algorithm
The concept behind KNN is intuitive; new data points are

classed according to the classes of the points which are closest to

them in the training data. KNN is a primitive form of machine

learning that is often referred to as ‘lazy learning’ because

induction occurs during run time [36]. Figure 1 illustrates a simple

example classification. In this example, k is set to 3 so the three

nearest training data points to new points q1 and q2 determine the

classes of these points by majority vote. In this example, q1 is

classed along with the red points and q2 along with the blues.

Thus the KNN method may be separated into two stages; first, for

attribute or dimension r (the variable, in our case acceleration in g)

the Euclidean distance, d, between new data point xi and training

data point xj is calculated by the formula given in Mitchel [37];

d xi,xj
� �

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

r~1

ar xið Þ{ar xj
� �� �2

s

ð1Þ

Figure 1. Simple example illustrating KNN analysis when k=3.
Here the new data points are classed according to a majority vote of
their k nearest neighbours, so q1 is classed as red and q2 as blue. Two
variables are used in this example, although the same approach may be
used with n dimensional data such as tri-axial accelerometer data.
doi:10.1371/journal.pone.0088609.g001

Behavioural Classification K-Nearest Neighbour
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The algorithm then selects the k number of values with the least

Euclidean distance. Note that Euclidean distance is used because it

is the convention with KNN, although other distance metrics may

be used [38]. If these k nearest values (or k nearest neighbours) are

of two classes a and b, class a will be selected when the number of

points belonging to class a outnumber those of class b, or na.nb.

The KNN algorithm is present in the R package class, and also

provides the output value prob, which is the proportion of k nearest

values in the training set that belonged to the winning class.

prob~
nwc

k
ð2Þ

where nwc denotes the number of points in the winning class. In

order to improve accuracy, a threshold filter can then be applied

to the prob values to produce a minimum majority threshold.

Classifications made by the KNN that do not surpass this

threshold are discarded. In the field of machine learning,

algorithms are often evaluated through the construction of a

confusion matrix [39], a table that visually represents correct and

incorrect classifications. Through construction of a confusion

matrix it is possible to count how many true positive, false positive, true

negative and false negative classifications are made. For use in the

confusion matrix, classifications that surpass the threshold, and are

verified as correct are taken as true positive (TP). Classifications that

surpass the threshold but are verified as incorrect are taken as false

positive (FP). Classifications that were verified incorrect and did not

meet the threshold are taken as true negative (TN), and those correct

classifications that do not meet the threshold are false negative (FN).

These values are then used in order to calculate the performance

metrics, Accuracy, Precision and Recall (see Evaluation Proce-

dure).

Evaluation Data Sources
In order to evaluate KNN as a method for classifying tri-axial

accelerometer data according to behavioural modes, data were

collated from various sources (Table 1). A detailed account of

tagging procedures of cheetah, dingo, kangaroo, wombat, badger

and cormorant can be found in the source studies, given in Table 1.

These studies was carried out under a University of Queensland

Animal Ethics permit (SBS/300/12) and badger monitoring

conducted under Natural England Badger Licence No.

20112793 held by the RSPCA, UK. The Camel deployment

protocol was evaluated and approved by Lokhit Pashu-Palak

Sansthan, India. Cormorant fieldwork at Punta Leon was

conducted under permit from Organismo Provincial de Turismo,

Argentina. The experimental protocol for the human subject was

approved by the ethics committee of Swansea University, and the

participant gave written informed consent.

The tagging procedure used to obtain the data from the camel

and human are currently unpublished, and so is presented here. A

Dromedary Camel (Camelus dromedaries) of the ‘‘Mewari’’ breed

[40] was equipped with a Daily Diary data logger [10] at Lokhit

Pashu-Palak Sansthan centre, in Rajasthan, India. The device was

set to record at a sampling frequency of 40 Hz, at 12-bit

resolution. The device was attached to a collar that hung below

the neck, in order for it to become inclined if the animal raised or

lowered its head. Whilst being observed, the camel was allowed to

roam freely within a field. Behaviour was recorded for this time

period, and five behaviours selected for use in this study according

to availability of sufficient data to produce training and testing

files. These behaviours were ‘Rest’ (sternal recumbency), ‘Walk’

(locomotion on all four limbs), ‘Idle’ (motionless on all four limbs),

‘Browse’ (feeding on trees), and ‘Graze’ (feed from the ground).

Other behaviours were performed during observation periods, but

not for sufficient time or occasions to allow for inclusion in the

analysis.

A human participant was equipped with a X2 mini accelerom-

eter (Gulf Coast Data Concepts, USA) which was held between the

shoulder blades using a SilasticH harness (Dow Corning Corpo-

ration, USA). The participant was then instructed to perform the

behaviours in turn, for a duration of 60 s each. The behaviours

were ‘Stand’ (stood still and upright), ‘Lying’ (sternal recumbency),

‘Run’ (locomotory gait with ‘suspended phase’, in which neither

foot touches the ground), ‘Walk’ (locomotory gait without a

‘suspended phase’) and ‘Crawl’ (locomotion on hands and knees).

This sequence was repeated on two occasions in order to obtain

data for training and testing sets.

Evaluation Procedure
Data for five behaviours (see Table 1) from each species were

obtained on two separate occasions, one each for training and

testing the KNN algorithm. Both training and testing segments

contained 10 s each for every behaviour, equivalent to 1000 and

2000 data points at 20 and 40 Hz respectively. The raw data for

all three axis of acceleration pertaining to all 5 behaviours were

combined in a single file and labelled for use as training data for

Table 1. Descriptions of species used, behaviours performed,
and sources of data.

Species Source Sample Rate Behaviours

Sit

Cheetah Stand

Dingo Campbell et al.
2013

20 Hz Rest

Kangaroo Run

Wombat Walk

Forage

Badger Gao et al. 2013 20 Hz Rest

Run

Walk

Climb

Rest

Camel Swansea
University

40 Hz Stand

Walk

Graze

Browse

Stand

Human Swansea
University

20 Hz Lying

Walk

Run

Crawl

Dive Ascent

Cormorant Gomez-Laich
et al. 2008

20 Hz Dive Bottom

Dive Descent

Flying

Walk

doi:10.1371/journal.pone.0088609.t001

Behavioural Classification K-Nearest Neighbour
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the algorithm, and separate instances of the same behaviours were

combined for testing data and behaviour labels stored for later

verification of the results. Manual observation (human) or video

footage (captive animals) was used to find when each of the

behaviours occurred, apart from the cormorant, for which

behaviours were identified manually [15,18], a process made

particularly robust since it used other sensor data, such as

hydrostatic pressure, to help discrimination.

Results from the KNN analysis were then compared to the

actual behavioural classification of the data in order to obtain

overall accuracy. Following this, a minimum majority threshold

was applied to the results. A minimum majority threshold

represents a minimum value for the output prob, which if not

reached, results in the KNN classification being discarded.

Thresholds of 0.9, 0.8, 0.7, 0.6 and 0.5 were applied and

accuracy, precision and recall were calculated [41]. ‘Accuracy’ was

defined as a measure of the overall proportion of correctly assigned

data points, and was calculated as;

accuracy~
TNzTP

TNzTPzFNzFP
ð3Þ

‘Precision’ was defined as the proportion of positive classifica-

tions that were correct, and was calculated as;

preciscion~
TP

TPzFP
ð4Þ

‘Recall’ was the proportion of data pertaining to behavioural

modes that were classified correctly as positive, and was calculated

as;

recall~
TP

TPzFN
ð5Þ

Results

All 5 behaviours were detected using the KNN method trialled

on all species, except for the kangaroo which was not tested for the

‘Sit’ behaviour because its incidence was not discernible from the

video footage. The minimum majority threshold that yielded the

highest Accuracy, Precision and Recall differed between species

(Table 2) (a detailed breakdown of the Accuracy, Precision and

Recall scores for each species is given in Table S1). Generally, 0.7

was the threshold that produced the greatest mean accuracy across

all 8 species (mean= 0.78160.0948). The highest mean precision

was observed when the minimum majority threshold was set to 0.9

(mean=0.90260.145), and the highest Recall at 0.5

(mean=0.98460.012). In all species, increasing the minimum

majority threshold resulted in a decrease in the proportion of the

data that was classified (Table 3). Increasing the minimum

majority threshold improved accuracy for the badger and

kangaroo only and there was a negative correlation between

threshold level and accuracy for camel and wombat (Table 3).

Precision was improved for all species except in the case of the

wombat when minimum majority thresholds were increased.

There was a negative correlation between minimum majority

threshold and Recall in all species (Table 3).

Discussion

The purpose of this study was to illustrate that the KNN method

could be used to identify automatically the behavioural modes of

animals equipped with accelerometers recording at high sample

rates, and that this approach is applicable for large, complex

datasets. Our results show that animal behavioural modes can

indeed be successfully identified automatically using the KNN

method and that, with a mean Accuracy of 78%, they are

comparable to results gained using more complex automated

methods [13,24].

Despite the efficacy of machine learning algorithms for

classifying animal behaviour automatically [13,24,30], we argue

that the nature of ‘black box’ algorithms, including the selection of

numerous summary statistics, fogs the relationship between animal

movement and behavioural classification [42,43]. Other methods

such as Sparse Representation presented by Liu et al. [44] alleviate

the need for selecting summary statistics and indeed are purported

to be more accurate than KNN when used to classify human

activities. However, Liu et al. [44] were not explicit whether they

implement a thresholding filter for KNN as introduced in the

present study, but they report a much lower accuracy than that

found for humans here (Table 2). It is also relevant that whilst

Sparse Representation does not require manual selection of

summary statistics by the researcher, the method selects features

for analysis automatically and the relationship between data and

their classifications are no less opaque than for other ‘black box’

algorithms. One of the strengths of the KNN method is its

conceptual simplicity. Figure 2 shows how, if raw acceleration

values for each axis are plotted as a 3D scatter plot, the

relationship between a data point’s classification and its position

in the 3D feature space becomes evident. Understanding this link

between animal behaviours and the signals they produce is

important for interpretation, diagnostics, and elucidation of

behaviours which might have been previously unknown.

Successful implementation of the KNN method requires high

quality training data. This training data must be manually

classified in the first instance, and it must include sufficient

examples of all behavioural modes expected during device

deployment. As the KNN makes classifications based upon the

position of the data within the 3D feature space (Figure 2), these

areas must be sufficiently populated in the training data in order to

ensure that accurate classifications are made. It is anticipated that

complex behaviours, which include multiple postures or body

orientations, may require more training examples in order to

Table 2. Highest values of performance measures for KNN on
each species and the threshold values used to obtain them.

Highest Score

Species Accuracy Threshold Precision Threshold Recall Threshold

Badger 0.71 0.9 0.95 0.9 0.99 0.5

Camel 0.82 0.6 0.90 0.9 0.99 0.5

Cormorant 0.77 0.7 0.87 0.9 0.99 0.5

Cheetah 0.77 0.7 0.90 0.9 0.97 0.5

Dingo 0.83 0.6 0.97 0.9 0.98 0.5

Kangaroo 0.91 0.9 0.97 0.9 1.00 0.5

Wombat 0.76 0.5 0.77 0.9 0.97 0.5

Human 0.95 0.5 0.98 0.9 1.00 0.5

doi:10.1371/journal.pone.0088609.t002

Behavioural Classification K-Nearest Neighbour
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establish a sufficient density of data within the 3D feature space.

Additionally, it is possible that undefined behaviours may be

incorrectly classified, as KNN lacks the capacity to recognise novel

behavioural modes (c.f. [23,24,45]). In addition, the requirement

for a period of observation to obtain training data may be

problematic if few captive specimens are available e.g. the

Ethopian wolf, Canis simensis [46]. In instances such as this, it

may be possible to use similar species as surrogates in a manner

similar to Campbell et al. [30]. Despite these requirements, the

KNN methods proposed in the present study has the potential to

perform behavioural classification far faster and more objectively

than manual inspection of acceleration data [15,18].

Not all recent studies on automatic classification of acceleration

data make use of Accuracy as a sole measure of performance (e.g.

[23]), which makes comparisons between studies problematic.

Selecting performance metrics is challenging because varying the

minimum majority threshold has different effects for each species

and metric (Table 2). The optimum metric for evaluation of

classification algorithms is dependent on the questions being asked

and the importance of the various parameters are highly study

specific. For comprehensive consideration of this, the metrics are

evaluated in Powers [41]. Briefly, Accuracy takes into consider-

ation all classification outcomes; including the true negative rate

(i. e. data that are erroneously classified by the KNN is discarded

because they do not meet the minimum majority threshold). It is a

Table 3. Results of Spearman’s Rank Correlation between Minimum Majority Threshold value and the resulting performance
measures.

Proportion Classed Accuracy Precision Recall

Species r P-value r P-value r P-value r P-value

Badger 20.974 0.005 0.963 0.009 0.981 0.003 20.977 0.004

Camel 20.999 ,0.0001 20.947 0.015 0.998 ,0.0001 20.996 ,0.0001

Cormorant 20.974 0.005 20.767 0.13 0.996 ,0.0001 20.947 0.015

Cheetah 20.999 ,0.0001 20.841 0.74 0.995 ,0.0001 20.998 ,0.0001

Dingo 20.998 ,0.0001 20.859 0.62 0.99 0.001 20.994 0.001

Kangaroo 20.996 ,0.0001 0.979 0.004 0.994 0.001 20.948 0.014

Wombat 20.999 ,0.0001 20.998 ,0.0001 20.43 0.946 20.999 ,0.0001

Human 20.985 0.002 20.851 0.067 0.995 ,0.0001 20.972 0.006

doi:10.1371/journal.pone.0088609.t003

Figure 2. 3D Scatterplot showing raw tri-axial acceleration data for an Imperial cormorant (Phalacrocorax atriceps), data points are
labelled by colour according to their behavioural classification. Red – Ascent Phase of Dive, Green – Bottom Phase of Dive, Blue – Descent
Phase of Dive, Purple – Flight, Black – Walking.
doi:10.1371/journal.pone.0088609.g002

Behavioural Classification K-Nearest Neighbour
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general measure of performance for the classification method and

is a simple metric by which different algorithms may be compared.

However, when thresholding is used Accuracy values can be high

with few usable classifications made. This may occur if many

incorrect classifications (produced by the KNN) are correctly

discounted by the thresholding filter, resulting in few True Positive

classifications but many True Negatives. As a result, this may not

be the most effective performance measure for machine learning

algorithms in the context of behavioural classification. Alterna-

tively, Precision should be used, as it represents the proportion of

positive classifications that were true. We argue that this metric is

most appropriate because biological inferences are derived from

the positive results (estimations of when behaviours occur) more

often than negative ones. However, it is recommended that all

three performance metrics are reported when novel classification

methods are presented, in the interest of transparency and so that

researchers can select methods based on the requirements of their

studies.

One might assume that applying a minimum majority threshold

of 0.9 would yield the best results because this is the threshold that

consistently produced the highest Precision for all species (Table 2).

This assumption must also be tempered with the consideration

that applying a higher threshold results in more classifications

made by the KNN being discarded (Table 3). For example,

increasing the threshold for the wombat classifications from 0.5 to

0.9 produced only a 0.3% increase in Precision, yet 37.7% less of

the data set met the threshold to be classified (Table 2). This leads

us to conclude that threshold levels should be selected according to

species after a preliminary period of trial and error. We advocate

collecting some additional data during the period of observed

ground-truthing (required in any case to produce the training set)

for this purpose prior to running KNN on data derived from wild

individuals.

The KNN classification of the badger achieved the lowest

Accuracy score of all animals tested in the current study. During

visual observation, it was noted that the position of the collar on

which the accelerometer was mounted altered position. It is

possible that this movement may have produced appreciable noise

in the accelerometer data through altering the orientation of the

device when behaviours were performed. This change in device

orientation would have produced a difference in static acceleration

[18] recorded. The total acceleration experienced by the

accelerometer may be conveniently described as a product of

both static acceleration, i.e. acceleration due to gravity, and

dynamic acceleration, i.e. acceleration derived from the animal’s

movements [12]. Thus, it is possible for the animal to perform the

same movements or behaviour, but record different total

acceleration values if the device orientation is not constant

[10,18]. This difference in raw values would explain the low

accordance between training and testing data sets during KNN

analysis for the badger. This example illustrates the importance of

high fidelity in device orientation relative to animal orientation

[5,6,10].

There appeared to be lower performance of the KNN for the

wombat. It is possible this had occurred because there did not

appear to be a significant visual difference between the ‘walking’

and ‘running’ gaits other than speed in this species. Thus, it is

possible that the patterns of locomotion during these two gaits

would have produced similar patterns of acceleration data, which

would have been difficult to discern in the KNN feature space.

Accordingly, for species where discernible differences in locomo-

tory gaits are not apparent, we advocate grouping of gaits into a

single ‘locomotion’ behavioural mode in order to improve the

performance of the KNN.

KNN and the Movement Ecology ‘Toolbox’
One movement ecology paradigm aims to explain animal

movement phenomena by integrating optimality, cognitive,

random and biomechanical paradigms for animal movement into

a single framework [11]. However, one of the factors impeding

advance here pertains to the practical difficulties of recording

animal movements and quantifying the underlying motivations

[11]. It is not trivial to produce new methodologies to address this.

By developing methods to identify behavioural modes in free living

animals, Nathan [13] argued that it was possible to infer links

between the biomechanical, behavioural and ecological processes

that drive animal movement, something which is impossible to do

by recording location alone. Thus the development of a ‘Toolbox’

of methods, by which information can be collected on behaviour,

location and environmental factors, seems particularly germane.

By using the KNN method set out in the present study, it is

possible to elucidate behaviour automatically from data derived

from tri-axial accelerometers with greater ease than previously

developed methods. Putting this information into a positional

context through the use of GPS telemetry [47] or dead-reckoning

methods [6,7,48] should provide further integration of the

paradigms set out in Nathan [11]. Furthermore, the daily diary

sensory suite proposed in Wilson et al. [10] also collects

information on environmental conditions such as temperature

and depth, as well as tri-axial acceleration (for use in KNN) and

compass heading (for use in dead-reckoning), offering a means to

study behaviour, location and environment with a single archival

logger. Now that analysis methods such as that described in the

present study offer an accessible means to link behaviour to animal

position, this may be the start of a data rich era for movement

ecology [11].

Supporting Information
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