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A TiO2 thin �lm deposited on a 90∘ rotated 42∘45� ST-cut quartz substrate was applied to fabricate a Love wave ultraviolet
photodetector. TiO2 thin �lms were grown by radio frequency magnetron sputtering. �e crystalline structure and surface
morphology of TiO2 thin �lmswere examined using X-ray di�raction, scanning electronmicroscope, and atomic forcemicroscope.
�e e�ect of TiO2 thin �lm thickness on the phase velocity, electromechanical coupling coe�cient, temperature coe�cient of
frequency, and sensitivity of ultraviolet of devices was investigated. TiO2 thin �lm increases the electromechanical coupling
coe�cient but decreases the temperature coe�cient of frequency for Love wave propagation on the 90∘ rotated 42∘45� ST-cut
quartz. For Love wave ultraviolet photodetector application, the maximum insertion loss shi and phase shi are 2.81 dB and 3.55
degree at the 1.35-�m-thick TiO2 �lm.

1. Introduction

Titanium dioxide (TiO2) is a wide gap semiconductor and
has three kinds of crystallography structures named anatase,
brookite, and rutile. Anatase phase has the most photocat-
alytic activity due to its larger band gap energy (3.2 eV)
and rutile phase has higher refractive index and compact
structure [1, 2]. TiO2 was intensively investigated on various
�elds due to its strong mechanical and chemical stability,
high dielectric constant, excellent photoelectric activity, and
diverse nanostructures [3–5]. Ever since Fujishima et al.
demonstrated photocatalytic activity of TiO2[6], it became
themost popularmaterial for photocatalysis applications that
can be applied to decomposite of a large variety of organic and
inorganic compounds into environmentally friendly com-
pounds. �e optical absorption energies for photocatalytic
activity of TiO2 have been modi�ed from the ultraviolet to
the visible and near infrared by doping [7, 8]. �e various
surface morphologies and nanostructures of TiO2 thin �lms
were grown to increase the absorption ability for optical
devices applications [9]. TiO2 thin �lm can be synthesized
using various approaches, such as chemical vapor deposition

(CVD) [10], sol-gel process [11], pulsed laser deposition [12],
hydrothermal method, and magnetron sputtering [13–15].

Surface acoustic wave (SAW) devices have been widely
applied in wireless communication components, sensors, and
actuators [16, 17]. Love wave is the one type of SAWs, which
is a shear horizontal polarized wave, that has the highest
sensitivity in a liquid environment among all known acoustic
sensors due to the waveguiding e�ect [18, 19]. Love waves
propagate in a layered structure consisting of a substrate and
a layer on top of it. �e layer acts as a guide, with the elastic
waves generated in the substrate being coupled to the surface
guiding layer [18].

Leaky waves of LiTaO3 and LiNbO3 and surface skim-
ming bulk waves (SSBW) of ST-cut quartz have been
used as substrates for Love wave devices applications [20–
22]; typically ZnO, fused silica (SiO2), and polymethyl-
methacrylate (PMMA) thin �lms have been used to construct
the layered structure for the Love wave sensor [18, 23, 24].
SSBW transmitted on ST-cut quartz has higher wave velocity
than other substrates. ZnO thin �lm is an excellent guiding
layer for Love wave devices applications because it is a
piezoelectricmaterial and can be deposited as various surface
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morphologies and nanostructures [25, 26]. But ZnO �lm
presents a poor stability in the acid or alkaline solutions.
TiO2 thin �lms and TiO2 nanowires have been applied for
various types of UV photodetectors [10, 27], but the reports
of Love wave type were few. �e requirements of guiding
layer for a Love wave device application are being rigid,
dense, and stable and having low radiation loss. Although
TiO2 is not a piezoelectric material, its strong mechanical
and chemical stability, excellent photoelectric activity, and
ease of synthesizing the various surface morphologies with
nanostructures provide the potential as the guiding and
sensing layer for Love wave sensors applications.

2. Experimental

�e Love wave devices were fabricated on ST-cut (42∘45�)
quartz substrates (12mm × 13mm × 0.5mm) with a propa-
gation direction perpendicular to the crystallographic �-axis
(90∘ rotated). �e input and output interdigital transducers
(IDTs) consisted of 30 �nger pairs with an electrode width
of 10 �m and separation of 10 �m, yielding a periodicity
of 40 �m. �e IDT aperture was 4mm and the center to
center of separation was 6.2mm. �e IDTs were made of
200 nm sputtered titanium. Aer the contact electrode of
IDTs with a protection, the TiO2 �lms were deposited by RF
magnetron sputtering using a TiO2 target (99.9%). In the �lm
deposition process, sputtering power was 350W, sputtering
pressure was 1.33 Pa, O2/Ar ratio was 0.25, distance between
substrate and target was 70mm, and the substrate was not
heated.�e deposition rates were controlled at approximately
170 nm/hour. Figure 1 presents the structure and pattern of
the Love wave device.

�e crystalline structure and orientation of the TiO2
�lms were examined by X-ray di�raction (XRD) (Shimadzu
XRD-6000). �e surface morphology of the TiO2 �lms was
analyzed using �eld-emission scanning electron microscopy
(FESEM) (Hitachi S4800-I) and atomic force microscopy
techniques (DI D3100). Frequency response, phase of trans-
mitted signals, wave velocities, electromechanical coupling
coe�cients, UV responses, and temperature coe�cients of
frequency of Love wave devices were measured by the
network analyzer (Agilent E5062A). �e error bars were
calculated as two devices with the same parameters for
measuring three times, respectively.

3. Results and Discussion

3.1. Crystalline Structure and Surface Morphology. Figure 2
presents the XRD patterns of TiO2 thin �lms with di�erent
thicknesses deposited on quartz substrates. �e TiO2 thin
�lm at 1.35-�m thickness shows an anatase structure and
the major re�ection planes are (101), (004), (112), (200), and
(211), respectively.�e �lms at 0.50- and 1.60-�m thicknesses
present an amorphous structure. Figure 3 shows the SEM
images of TiO2 �lms with various thicknesses. �e surface
morphology is transferred greatly due to the �lms’ thickness.
�e 0.50-�m thick TiO2 thin �lm has a smooth surface and
a small columnar size. When thickness reaches 0.85 and

Output IDT

Quartz

Input IDT

TiO2 thin �lm

(a) Top view

Output IDT
Quartz

Input IDT

TiO2 thin �lm

(b) Cross-sectional view

Figure 1: Structure of the Love wave device.
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Figure 2: XRD patterns of TiO2 thin �lms with various thicknesses.

Table 1: �e root mean square values and phase velocities of TiO2

thin �lms deposited on quartz substrate with various thicknesses.

�ickness
(�m)

Root mean square value
(nm)

Phase velocity
(m/s)

0.50 0.47 4907

0.85 2.84 4814

1.35 3.34 4787

1.60 5.87 4725

2.50 10.81 4356

1.35 �m, the polyhedrons with a sharp shape are grown on
the surface and the columnar size increases obviously. �e
surface roughness of �lms turns into rough with increasing
thickness. �e root mean square values of surface roughness
are presented in Table 1.

3.2. Love Wave Device with TiO2 Guiding Layer. Figure 4
shows the frequency response and phase of transmitted signal
(S21) for device with a 1.6-�m thick TiO2 �lm. �e phase
velocity of a blank ST-cut (42∘45�) quartz for X-propagation
is 5060m/s; the phase velocity decreases with increasing
thickness of TiO2 thin �lm and approaches 4356m/s for
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(a) �ickness of 0.50 �m
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(d) �ickness of 1.60 �m

Figure 3: SEM images of TiO2 thin �lms with various thicknesses.
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Figure 4: Frequency response and phase of transmitted signal (S21) of 1.6-�m thick TiO2 �lm.
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Figure 5: Electromechanical coupling coe�cients of devices with
di�erent thicknesses of TiO2 thin �lms.

the 2.5-�m thick TiO2 �lm deposited. �e phase velocities
versus �lms thicknesses are shown in Table 1.

�e electromechanical coupling coe�cient (�2) was
obtained as follows:

�2 = �4�
Ga

� ,
(1)

where � is the number of IDT �nger pairs and Ga and �
are radiation resistance and susceptance, respectively [28].
Figure 5 shows the electromechanical coupling coe�cients
of devices with di�erent thicknesses of TiO2 thin �lms.
Although TiO2 thin �lm is not a piezoelectric material, the
electromechanical coupling coe�cients of devices increase
with increasing thicknesses due to the waveguide e�ect and
the maximum value is 0.38% at the 1.6-�m thick TiO2 �lm.
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Figure 6: Temperature coe�cients of frequency of devices with
di�erent thicknesses of TiO2 thin �lms.

�e temperature coe�cients of frequency (TCF) were
calculated by substituting the center frequencies at 30, 50, and
70∘C into the following equation:

TCF = � (70
∘C) − � (30∘C)
40 × � (50∘C) . (2)

Figure 6 shows the TCFs of devices with di�erent thicknesses
of TiO2 thin �lms. �e 90∘ rotated 42∘45� ST-cut quartz
reported in the literature showed a relatively high TCF about
+30 ppm/∘C [16]. �is TCF value decreases by means of a
TiO2 layer with a low TCF value and reduces to +6.6 ppm/∘C
at 2.5-�m thick TiO2 �lm.

3.3. Characteristics of the LoveWave Ultraviolet Photodetector.
�e band gap of TiO2 thin �lm with anatase phase is about
3.2 eV; carriers’ concentrations are increased when the TiO2
thin �lm is exposed to UV illumination. When Love wave
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Figure 7: Insertion loss shis of devices with di�erent thicknesses
of TiO2 thin �lms aer 365 nm UV illumination for 30 seconds.
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Figure 8: Phase shis of devices with di�erent thicknesses of TiO2
thin �lms aer 365 nm UV illumination for 30 seconds.

is transmitted in a guiding layer, the variations in electrical
properties of the guiding layer a�ect the characteristics of
wave propagation sensitively. �e wave velocity will decrease
when the guiding layer becomes a higher conducting �lm
due to the capacitance increasing and insertion loss of trans-
mission signal will shi due to the variation of impedance
[16]. Figure 7 shows the insertion loss shis with di�erent
thicknesses of TiO2 thin �lms aer 365 nm UV illumination
for 30 seconds. �e maximum change is 2.81 dB at the 1.35-
�m thick TiO2 �lm. �e main vibration and transmission
of Love wave is in the interface between the guiding layer
and substrate. �e over thick guiding layer may be reducing
and slowing the variations of conductivity in the interface.
Figure 8 shows the phase shis with di�erent thickness of
TiO2 thin �lm aer 365 nm UV illumination for 30 seconds.
�e maximum phase shi is 3.55 degree at the 1.35-�m thick
TiO2 �lm. Compare ZnO thin �lm of our previous results
as the same structure and IDT pattern, the maximum phase
shi of 1.0-�m thick ZnO �lm aer 30 seconds under 365 nm

UV illumination was below 1 degree [23]. �e TiO2 thin �lm
provides the good potential for Love wave UV photodetector
application.

4. Conclusions

�e Love wave ultraviolet photodetector that used TiO2
thin �lm and 90∘ rotated 42∘45� ST-cut quartz substrate
was proposed. �e e�ect of thickness of TiO2 thin �lm on
the phase velocity, electromechanical coupling coe�cient,
temperature coe�cient of frequency, and ultraviolet sensi-
tivity of device was investigated. Although TiO2 thin �lm is
not a piezoelectric material, the electromechanical coupling
coe�cient increases from 0.10% of blank quartz substrate to
0.38% at the 1.6-�m thick TiO2 �lm deposited due to the
waveguiding e�ect. �e temperature coe�cient of frequency
decreases with increasing thickness of TiO2 thin �lm. �e
ultraviolet sensitivity is a�ected sensitively by the thickness
of the TiO2 thin �lm; the maximum insertion loss shi and
phase shi are 2.81 dB and 3.55 degree at the 1.35-�m thick
TiO2 �lm.
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