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LOVE WAVES IN STRATIFIED MONOCLINIC MEDIA
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Abstract. A mathematical model for analysis of Love waves propagating in stratified
anisotropic (monoclinic) media is presented; this model is based on a newly developed
Modified Transfer Matrix (MTM) method. Closed form dispersed relations are obtained
for media consisting of one or two orthotropic layers lying on orthotropic substrate.
Conditions for existence of Love waves are analyzed. Horizontally polarized shear sur-
face waves of non-Love type are constructed. A numerical algorithm is worked out for
obtaining dispersion relations for Love waves propagating in stratified media containing
a large number of layers.

1. Introduction. Love [1] has shown that under certain conditions surface waves
with horizontal transverse polarization can propagate in a system composed of a layer
contacting with a substrate, of which both were assumed to be elastic and isotropic.
As is typical for other surface waves, it was supposed that in the substrate Love wave
attenuated with depth. Along with Rayleigh waves, Love waves play an important part
in transmitting seismic energy in earthquakes, and quite often these waves are recoded
at the seismic activity and explosions.

The displacement field corresponding to Love wave can be represented in the form

J uj(x) = m(Cie~ir'yiX' + C2eirT1*')eir'<n'x_ct)

\u2(x) - m(c3ei7"r2x')etr(n x-ct\

where Ui and U2 refer to the displacements in the layer and substrate respectively; m is
the unit amplitude (polarization) vector, assumed to be normal to both the direction of
propagation n and unit normal v to the interface surface; x' = v-x is the coordinate along
a direction determined by the vector v (it will be assumed further that x' is negative in
the substrate); r is the wave number; c is the phase speed; t is time; and the unknown
(complex) coefficients Ck are determined up to a multiplier by the traction-free boundary
conditions at the outer plane boundary:

t„\x'=h = v- Ci • • • Vxui = 0, (1.2)
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and the contact-type conditions at the interface (x' — 0):

{v • Ci • VxUi = v ■ Co ■ 'VXU2
(1.3)

U] = u2.

Parameters 7^. k = 1,2 in (1.1) correspond to complex roots of the Christoffel equa-
tion; this equation will be introduced later. In Eqs. (1.2), (1.3), Ca-, k = 1,2 are the
fourth-order elasticity tensors related to the layer and substrate respectively and h is the
thickness of the layer.

Remark 1.1. According to representation (1.1) attenuation with depth in the sub-
strate is ensured by the Christoffel parameter 72 with negative imaginary part; this will
be assumed.

The following proposition takes place:

Proposition 1.1.
1) Love waves can arise in an isotropic layer and the contacting substrate if and only

if the phase speed satisfies the following relation:

c'f < c < C2 , (1.4)

where cl = , / —, k = 1, 2 velocities of the transverse bulk waves in a layer and substratek y pki '

respectively, and /u- and pu are the corresponding Lame's constants and densities.
2) Dispersion relation between the phase speed c and frequency w admits the following

representation:

/ 2 \ ~1/2

w = £f^-ih V /'1

/

V
arctan — I —.2 1X2 + nn ,n = 0,1,2  (l.E

Corollary 1.
a) At the fixed frequency ui there is a finite number of Love waves propagating with

different phase speeds c E (c'f; cj).
b) At the fixed phase speed c G (cf;c^) there is denumerable number of Love waves

propagating with different frequencies w.

Corollary 2. No Love waves can propagate if ef > .

Dieulesaint and Royer [2] have shown that Love waves can also propagate in a system
composed of anisotropic layer lying 011 a substrate, both of which possess axes of elastic
symmetry of the fourth- or sixth-order in the transverse direction coinciding with the
amplitude vector 111. For such a system, condition of propagation and the dispersion
relation resemble relations (1.4) and (1.5). Some modifications of the Dieulesaint and
Royer approach for surface waves in the transversely isotropic layer and substrate can
be found in a recent paper [3].

For stratified medium containing more than one layer 011 a substrate, there are 110
analytical solutions similar to (1.5). Love waves in such a medium can be studied nu-
merically by applying two different matrix approaches originally developed for analysis
of Lamb waves propagating in isotropic layers and substrates. These approaches are
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known as the Transfer Matrix (TM) method (sometimes this method is referred to as
the Thomson-Haskell method due to their originators [4, 5]), and the Global Matrix
(GM) method proposed in [6, 7]. The TM-method is based on the successive solutions
of the contact-type boundary conditions at the interfaces and constructing the corre-
sponding transfer matrices; this method will be discussed in detail later. The origin of
the GM-method is based on the solution of ordinary differential equations with piecewise
continuous coefficients for the layered structure, resulting in construction of the special
"global" matrix.

Since it appeared, the GM-method proved to be more numerically stable than its
rival, especially for the case of high frequencies and large thickness of some layers. This
situation is known as the "large /d-problem", where / is frequency and d, is thickness
of a layer. Some improvements of the TM-method towards its better numerical stability
were suggested also. Mainly, these improvements are based 011 rearranging the secular
equations and corresponding matrices in such a way that they do not form an ill-posed
problem. Dunkin [8] delivers one of the first approaches in that direction; see also [9]—[11].
However, the TM-method being applied to analysis of Love waves in media with relatively
small number of layers yields to the GM-method in numerical stability, but performs the
latter in computation speed; see [12, 13] for discussions. The problem becomes more
complicated when we arrive at a medium composed of a large number of layers. Because
of the necessity to analyze degeneracy of the determinants of the rank 2n + 1 where n is
the number of layers, the GM-method becomes useless for studying Love waves in media
with relatively large number of layers (due to numerical errors the determinants become
highly oscillating in the vicinity of zeroes). To improve this situation, decomposition of
the global matrix and analysis of the smallest eigenvalues of the global matrix rather
than analyzing the determinant was proposed in [14].

In the present paper, the Modified Transfer Matrix (MTM) method is being developed
for analysis of Love waves propagating in stratified anisotropic media with monoclinic
symmetry. This method appears to be rather fast, as is typical for all realizations of
the TM-method, and at the same time it possesses good numerical stability due to (i)
choosing floating origins for the displacement fields in layers, and (ii) using a modified
representation for Love waves in layers based on hyperbolic functions. As will be demon-
strated, the MTM method can equally be applied to obtaining analytical solutions for
media containing one or two layers, and to numerical analysis of Love waves propagating
in stratified media containing a large number of layers.

It will also be shown that representation (1.1) is not valid for the case of multiple
roots of the Christoffel equation, and the correct representation for such a case will be
constructed, yielding surface waves of non-Love type. The MTM method will also be used
for obtaining secular equations for surface waves with horizontal shear polarization and
propagating in laminated plates with the traction-free, clamped, and mixed boundary
conditions.
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2. Basic notations. In the subsequent analysis both layers and the substrate are
assumed to be homogeneous and linearly hyperelastic. Equations of motion for homoge-
neous anisotropic elastic medium can be written in the form

A(dx,dt)u = divx C • 'VJru — pii = 0 (2.1)

where elasticity tensor C is assumed to be positive definite:

VA (A ■ C ■ -A) ee V .1, 1,„„ > 0. (2.2)
A€sym(R3<g)R3), A^O . 7—'

i.j.m.n

Remark 2.1. a) The other assumption concerns symmetry of the elasticity tensor. It
will be assumed further that all the regarded materials possess planes of elastic symmetry
coinciding with the sagittal plane m-x = 0. This assumption is provided by the elasticity
tensor belonging to the monoclinic system, and it is equivalent to vanishing all of the
decomposable components of the tensor C having odd number of entries of vector m
(in the orthogonal basis in R3 generated by vector m and any two orthogonal vectors
belonging to the sagittal plane). For monoclinic symmetry, the elasticity tensor in the
regarded basis has 13 independent decomposable components; see [15].

b) It will be shown later that assuming monoclinic symmetry provided a sufficient
condition for the surface tractions acting on any plane v ■ x = const to be collincar with
vector m.

Following [16. 17], a more general representation for Love wave than (1.1) will be
considered:

mf{irx')ei,{nx-ct), (2.3)

where x' = v ■ x as in (1.1): / is the unknown scalar function; the exponential multiplier
in (2.3) corresponds to propagation of plane wave front along direction n with the phase
speed c; and r is the wave number. Substituting representation (2.3) into Eq. (2.1) and
taking into account Remark 2.l.a. yields the following differential equation:

f(irx')(m <g> v ■ C • -v 0 m)d%, + (m ® v • C ■ n ® m + m ® n • C ■ u 0 m)<9x' +
(m ® n ■ -C • -n <g> m — pc2)

= 0. (2.4)

The characteristic equation for the differential equation (2.4), known also as the
Christoffel equation, has the form:

(m®i/--C--;/<g>m)72 + (mig>f •-C ■ ■n®m + m<gin--C •-1/(8)111)7 +(migin ■-C ■-nSm — pc2)

= 0. (2.5)

The left-hand side of Eq. (2.5) represents a polynomial of degree 2 with respect to the
Christoffel parameter 7. and thus, for the regarded elastic symmetry only two partial
waves composing Love wave in a layer can be present.

3. Displacements and surface tractions in the substrate. In the following anal-
ysis it is assumed that the medium consists of n layers lying on a substrate; the lower
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index n+ 1 will be referred to as the substrate. Since the displacement field in the sub-
strate must attenuate with depth, the appropriate root of Eq. (2.5) should be complex
and with negative imaginary part; see Remark 1.1.

The following proposition takes place:

Proposition 3.1. Attenuation with depth in the monoclinic substrate is possible, if and
only if the phase speed c belongs to the (non-empty) speed interval:

^ fo; (m8 ° ■ C„+1 ■ 8 m - - °i™<" nC"» ' "> , p.l,\ V V (m® V • -Cn+1 • -V® m) J J' y '

where for any second-order tensor A: sym(A) = i(A +A(). For the speed interval (3.1)
the corresponding Christoffel parameter 7n+i is complex with negative imaginary part:

m • sym(n • Cn+i ■ v) ■ m
7n+l = _ p ~m ® v ■ -C„+i • -v ® m

_ . / m ® n • -Cn+i ■ n ® m - pn+ic2 _ / m ■ sym(n • Cn+i ■ u) ■ m \ J
V m <gi v ■ -C,l+i • v ® m \ m ® v ■ -Cn+i ■ -v 0 m )

Proof. Direct analysis of roots of Eq. (2.5) reveals that these roots are complex, pro-
vided the corresponding discriminant is negative, and this gives the upper bound in (3.1).
It remains to show that the radicand in (3.1) is positive. But, this flows out from the
analysis of the quadratic polynomial:

P{x) = m ® (.xv + n) • -Cn+i • -(n + xv) ® m. (3.3)

The right-hand side in (3.3) is positive at any real x, due to the assumed positive definite-
ness of the elasticity tensor. Condition of non-existence of real roots of this polynomial
completes the proof, since the discriminant of this polynomial coincides (up to a multi-
plier -(/9„+1)-1/2) with the upper bound in (3.1). Expression (3.2) is obtained by solving
Eq. (2.5). " □

COROLLARY 1. Parameter 7^+1 cannot be multiple root of the Christoffel equation (2.5).

Proof flows out from non-vanishing discriminant in (3.2), which is necessary for at-
tenuation of the surface wave with depth. □

Corollary 2. If the regarded material possesses another plane of elastic symmetry with
the unit normal coinciding with vector n or v (such a material is necessarily orthotropic),
then the admissible speed interval becomes:

c£(0 ;t£+1), (3.4)

where c^+1 is the speed of the transverse bulk wave in substrate propagating in direction
n and having amplitude vector m. For the regarded case the corresponding Christoffel
parameter 7„+i is purely imaginary:

. /m®n--Cn+1 • ■n®m-/9„+1c2
7n+i = —i\  ^   ■ 3.5U m ® v ■ ■Cn+1 • v ® m
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Proof. For such a material the term (sym(m ® n ■ -Cn+i • u <g> m)) in (3.2) vanishes,
since it contains odd entries of vectors n and v. Now, it is sufficient to note that the
remaining radicand in (3.1) coincides with the speed cj+1. The rest of this proof flows
out from Eq. (2.5). □

Representation (1.1) for the substrate leads to the following field of surface tractions
acting on the plane v • x = 0:

tn+i(x)|„.x=o = irC2n+i(ln+\{v ■ Cn+1 ■ -v®m) + (v-Cn+1 ■ -n<g)m))eir(nx~ct). (3.6)

Proposition 3.2. Surface traction field (3.6) is collinear with vector m.

Proof. Flows out from the assumed monoclinic symmetry with respect to vector m.
which ensures even number of entering vector m in the decomposable components of the
tensor Cn+i in the basis generated by vectors m, v, n. Thus, both vectors (;/-C7l+i ••i^®m)
and (u • C„+i • n <8> m) in the right-hand side of (3.6) are collinear with vector m. □

4. Displacements and surface tractions in layers. In this section the lower index
k (1 < k < n) is referred to as the corresponding layer.

4.1. Aliquant roots. For aliquant roots of the Christoffel equation and orthotropic
material with the principle elasticities coinciding with vectors m, n and v, representation
(1.1) remains valid. Still, for the current analysis, which includes a more general case of
monoclinic materials, it is desirable to modify representation (1.1) in the following way:

ufc(x) = m(C2fc-i sinh{irakx') + C2k cosh(irakx'))ezri0kx'+n'x'ct), (4.1)

where 7k = &k + Pk, and

ctk =
Im (g> n ■ Ck ■ n <S> m — pkc2 /m ■ sym(n • Ck ■ v) ■ "

= —

m (S> v ■ -Ck ■ v ® m \ m ® v • -Ck ■ -v ® m

m • sym(n • Cfc • v) ■ m
(4.2)

m 0 v ■ -Ck ■ -v ® m

Thus, a.k is real or imaginary depending on the value of the phase speed, and /3k is real
and independent of c.

Taking into account (4.1), the corresponding surface tractions acting on the plane
v ■ x = x' are:

/ / {v-Ck-v® m)(afc cosh(irakx') + /3k sinh(irakx'))+ \ „ \
\ (u ■ Cfc • -n ® m) smh(irakx') J 2k 1

/ (u ■ Cfc ■ v ® m)(ak sinh(irakx') + f3k cosh(irakx'))+ \
\ \ (v ■ Cfc • -n ® m) cosh(irafca:') ) 2k J

tfc(x') = ir

x eir(0kx'+n-x-ct) ^ (4.3)

Proposition 4.1. Surface tractions (4.3) are collinear with vector m.

Proof is analogous to the proof of Proposition 3.2. □
Taking into account (4.3) and the fact that v ■ Ck ■ n® m = 0, /3k = 0, and jk = ak for

the orthotropic material with axes of elastic symmetry coinciding with vectors m. n, and
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v, we arrive at the following expression for the surface tractions acting in the orthotropic
layer:

tfc(x') = ir~ik(y • Cfc ■ v ® m)(C2k-i cosh(ir~/kx') + C2k sinh(ir7fcx'))eir(n x"ct). (4.4)

4.2. Multiple roots. Representation (4.1) for Love waves in a layer becomes incorrect
when multiple roots of the Christoffel equation arise; see [16, 17] where appearing multiple
roots are analyzed in detail for the case of Rayleigh waves.

Multiple roots arise when parameter ak in (4.2) vanishes. This allows us to formulate
the following proposition:

Proposition 4.2. a) The phase speed at which multiple roots arise is:

/ , / (m ■ sym(n ■ Cfc ■ v) ■ m)2 \
c = \ p~1 I m <g) n ■ -Cfc • n <g> rn —  ). (4.5)

y \ m <g> v ■ -Cfc ■ v ® m J

b) The corresponding Christoffel parameter 7fc (necessarily real) is:

7t = -ms''m(°rCt "I""- <«>
m ® v ■ -Cfc • -v <S> m

c) Representation for the displacement field corresponding to multiple roots is:

ufc(x) = m(C2fe_! + irx'C2k)e"^x'+nx-ct\ (4.7)

d) The corresponding surface tractions on the plane v ■ x = x' are:

t„W) = ir( ■Ct • ■" f + (1 + "V)C2t)+ \ (4 8)
\ (i/ • Cfc ■ -n <g> m)(C2fc-i + irx C'2k) )

Proof. Conditions a) and b) flow out from considering vanishing discriminant in (3.2).
Condition c) corresponds to the general solution of Eq. (2.4) at multiple roots; see [16]—

[18]. □

Proposition 4.3. Surface tractions (4.8) are collinear with vector m.

Proof is analogous to the proof of Proposition 3.2. □
Remark 4.1. Surface wave (4.7) corresponding to appearing multiple roots will be

referred to as non-Love wave.

5. Modified Transfer Matrix Method.
5.1. Transfer matrices. According to Propositions 4.1 and 4.2, scalar amplitudes of

the displacements and surface tractions acting in the k-th layer on the plane v ■ x = x'
can be represented in the form

Uk(x')\ A/r / /\ fC2k-l«*) r^-urj' (5'1)
where Ufc(x') = |ufc(x/)e'-lr^n x_ct) |; tk{x') = |tfc(x/)e"""(n x-ct'| are the corresponding
scalar amplitudes, and Mfc is a 2 x 2 matrix. Taking into account expressions (4.1), (4.3),
(4.5), and (4.6), matrix Mfc takes the form:
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a) Aliquant, roots

Mk(z')

* (ir) —1 sinh(irafcx')

(m ® v Ck ■ •„® Zk*Jf) +
(m ® v • Ck ■ n ® m) sinh(iro:/cx )

(ir) 1 cosh (iroc^x')
, ^ ~ / sinh(irQti ) + \
m (g> v ■ -Ck. ■ v (g) m) K K , +* y\ 0^ cosh(trakx') )

(m v ■ ■ n ig> m) cosh(ira/ea:/)

x lre"-ffk*' (5.2)

and
b) Multiple roots

/ I (^r) X' \ ir-v, t'
•Mfc(x ) I /(l+ir7fcx')(m®i/--Ct+ \ J • (®-3)

\ V (m0,i>"Cfc ••n<S>m) / \ zra;*(m(g)i/--Cfc--n®rri) / /

Note that according to (4.2) /\ in (5.2) is independent of the phase speed c. The
following proposition takes place:

Proposition 5.1. For both aliquant and multiple roots, matrices M*. are nonsingular
at any real x'.

Proof. At first we observe that the exponential multipliers elr@kX in (5.2) and elrikX
in (5.3) are not zero at any x'; then direct verification shows that matrices in the right-
hand sides of (5.2), (5.3) are not degenerate at any x! (the determinant for the matrix
(5.2) is — Qfc(m ® v ■ -Cfc • -v ® m)errl3,':c with at ^ 0, since the roots are aliquant: for
the matrix (5.3) the corresponding determinant is (m <g> v ■ -Cfc • -v <g> m)etr7t:E ). This
completes the proof. □

Now, by the use of transfer matrices Mfc, the displacements and surface tractions on
the interface between the n-th layer and the substrate can be represented in terms of the
unknown coefficients C\ and C-2 only:

un{-hn/2)
tn(-hn/2)

) = (jJ.(Mfc(—W2) ■ \hk/2))^ ■ Mi(—/ij/2) • (5.4)

where hk, k = 1,,n is the thickness of the corresponding layer.
5.2. Boundary conditions at the outer boundary. Expressions (4.3), (4.8) allow us to

formulate condition for the traction-free outer surface of the first layer in the following
manner:

t1(h1/2) = B1(h1/2)-C = 0 (5.5)

where 11 is the scalar amplitude of the surface tractions; Bi{h,\/2) = (Xi(h\/2)\ Yi(/ii/2));
and C = (Ci;C2). Components X\{h\/2) and Y\(h\/2) take the form:
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a) Aliquant roots

X^hx/2) =

Yiifn/2) =

x ire

(m ® v • -Ci ■ v ® m)(ai cosh(irai/ii/2) + Pi sinh(zrai/ii/2)) +
(m <g) v ■ -Ci • n ® m) sinh(«rai/ii/2)

x ireir0lhl/2

(m ® v ■ -Ci • v ® m)(ai sinh(irai/ii/2) + (3\ cosh(irai/ii/2)) +
(m <g> v ■ -Ci ■ n ® m) cosh(irai/ii/2)

0irf3ihi/2

(5.6)
b) Multiple roots

Xi(h\/2) = (71(111 (81 v ■ -Ci • -i/ ® m) + (m ® v ■ -Ci • n (g> m))ireir'1lhl^2

Yi(h\/2) = ((1 + ir^xhi/2)(m ® v ■ -Ci • -v <8> m) + irh\/2(m ® v ■ -Ci ■ n ® m))
x ireir"yihl/2.

(5.7)

Now, Eq. (5.1) allows us to express (up to a multiplier) coefficients C\ and C2 in terms
of the following equation:

T\{h\/2) x (7 = 0, (5.8)
where

Tiih/2) = (-Yl(hl/2)-Xl(hl/2)). (5.9)
It is clear from (5.8) that two-dimensional vector Ti(h\/2) is collinear with vector C.

5.3. Boundary condition at the interface between the n-th layer and the substrate.
Contact boundary conditions at this interface can be expressed in the form:

Vn(-hn/2)-Wn+1( 0) = 0, (5.10)

where

Vn(-hn/2) = (un(-hn/2), tn(-hn/2)) (5.11)

and

Wn+1( 0) = (-tn+1(0),un+i(0)). (5.12)

I11 (5.12), tn+i(0) = |t„+i(0)e_lr^n'x_c^| and t„+1(0) is defined by (3.6). Taking into
account (5.11), (5.12), condition (5.10) expresses collinearity of the vectors Vn and
(un+i(0), f„+i(0)), the latter is equivalent to continuity of the displacements and sur-
face tractions across the interface. In (5.12) it is assumed that in the local coordinate
system for the substrate, the interface plane is represented by the equation v ■ x = 0.

5.4. Secular equation for Love waves. Taking into account Eqs. (5.4), (5.8), (5.10),
and (5.12), the secular equation for the MTM-method can be written in the form:

Wn+1(0) • ^ (f[ Mk{-hk/2) ■ M l\hk/2)^j • Mx(—/n/2) j • T^/2) = 0. (5.13)

Equation (5.13) is the secular equation that we are seeking for Love waves.
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5.5. Secular equation for horizontally polarized shear waves in laminated plates. In this
section we derive secular equations for horizontally polarized shear waves propagating in
a laminated plate containing n layers (n > 1). Outer surfaces of the plate are assumed
to be traction-free, clamped, or mixed (one outer surface is traction-free and the other
is clamped).

a) Laminated plate with free outer surfaces. For such a plate, boundary conditions at
the outer surfaces are as follows:

|t1(ft1/2) = fC1.Vu = 0

\tn(-hn/2) = v ■ C„ • Vu = 0.

Applying the MTM method and exploiting arguments similar to those used in the pre-
vious section yields the secular equation in the form:

Tni-hn/2) ■ M~\hn/2) ■ ̂ J[Mk(-hn/2) ■ M^(hk/2)^ ■ M^-Zn/2) • T^/2) = 0,

(5.15)
where two-dimensional vectors T\ and Tn corresponding to boundary conditions (5.14)
are:

T1(h1/2) = (-Y1(h1/2)-X1(h1/2))
(5.16)

Tn(-hn/2) = (.Xn(-hn/2)-,Yn(-hn/2)).

Components Xk, Yk) k = l,n in (5.16) are defined by (5.6), (5.7).
b) Laminated plate with clamped outer surfaces. For such a plate, boundary conditions

on the outer surfaces become:

f».«../2) = 0 (51?)
\un(—hn/2) = 0.

As before, applying the MTM method yields the secular equation in the form:

Dn{-K/2) ■ M~\hj2) • (j[Mk(-hn/2) ■ M k\hk/2)j ■ M1(-/i1/2) ■ DM 2) = 0,

(5.18)
where vectors Di(h\/2), Dn(—hn/2) have the form:

DM 2) = (-U1(h1/2)-,S1{h1/2))

Dn(-hn/2) - (Sn(—hi/2); Un(—hn/2)).

In (5.19) components Sk; Uk, k — \,n for aliquant roots according to (4.1) are:

Sk{±hk/2) — ±smh(irakhk/2)
(5.20)

Uk(±hk/2) - cosh(irakhk/2)

with ak defined by (4.2).
Components Sk; Uk, k = l,n for multiple roots according to (4.7) have the form:

Sk{±hk/2) = 1
(5-21)

Uk(±hk/2) = ±irhk/2.
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c) Laminated plate with one clamped and one traction-free outer surface. For such a
plate, boundary conditions are:

= ° (5.22)

\un(-hn/2) = 0,

where it is assumed that the upper surface of the plate is traction-free and the bottom
is clamped. For this case the secular equation is:

Dn(-hn/2) ■ M~l{hn/2) ■ Qj Mk{-hn/2) ■ M^(hk/2)\ ■ M^-^/2) ■ 2) = 0.

(5.23)
Modification of Eq. (5.23) for the case when the upper surface is clamped and the bottom
is traction-free is obvious.

Remark 5.1. The left-hand sides of secular equations (5.13), (5.15), (5.18), and (5.23)
can be regarded as implicit equations with respect to wave number r at the fixed phase
frequency cj, and vice versa. Using in these equations the following relation:

r =—, (5.24)
c

where u is the phase frequency, we arrive at equations yielding the dispersion relations
in terms of phase frequency and phase speed.

6. Some analytical solutions.
6.1. An orthotropic layer on orthotropic substrate. Let vectors v, n, and m coincide

with the principle elasticities of both the layer and the substrate. For these orientations
the Christoffel parameters ^yk become

fc+1. /m <g> n • -Cfc • n <g> m - pkc27fc = (-l)fc+1zJ ~ " , k=l,2. (6.1)
y m ® u ■ -Cfc • -v ® m

In (6.1) and further in this subsection, index 1 is referred to as the layer, and 2 is referred
to as the substrate.

Remark 6.1. a) Expression (6.1)i shows that multiple roots for the layer can arise
only at the phase speed coinciding with the speed of the transverse bulk wave propagating
in the direction defined by the vector n and polarized in the m direction.

b) Although some analytical results for one orthotropic layer lying on an orthotropic
substrate were obtained in [2], no explicit dispersion equation has been derived yet.

Scalar amplitude of the surface tractions t\{x') = |ti(x/)e_ir(n'x_ct)| acting on a plane
v ■ x = x' in the layer is as follows:

a) Aliquant roots

ti(x') = (g> v ■ -C^ • -v <g> m)(Ci cosh(ir7ia;') + C2 sinh^^a:')). (6.2)

b) Multiple roots (71 = 0)

11 = ir(m ® v ■ Ci • -u <g» m)C2. (6.3)
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Scalar amplitude of the surface tractions ^(0) = |t2(0)e~ir(n x^ct^| acting on the
interface plane v ■ x = 0 in the substrate is as follows:

^2(0)|,y.x=o = ?r72x(m ®v--C2--v® m)C3. (6.4)

Proposition 6.1. No Love wave can propagate in a system composed of a single or-
thotopic layer lying on an orthotropic substrate when multiple roots in the Christoffel
equation for the layer arise.

Proof. Expressions (4.5), (6.1) show that multiple roots 71 for the layer can only
be zeros. For such a case the traction-free boundary conditions (5.7), (5.8) along with
expression (6.3) yield

C2 = 0. (6.5)
Interface boundary condition (5.10) along with (6.3)-(6.5) result in

C-s = 0. (6.6)
But the latter condition implies that there are 110 displacements at the interface, and
this leads to:

Ci = 0. (6.7)
Conditions (6.5)-(6.7) complete the proof, since at all zeros Cfc, k = 1,2,3, 110 surface
wave propagates. □

Excluding multiple roots, we can confine ourselves to the aliquant roots. Applying
(5.2) to the orthotropic layer yields

M , _ / sinh(ir7ix')  cosh(ir71a:') \ ,g g\
1 y ir7i(m {g> v ■ Ci ■ -v ® m) cosh(ir7ix') 17-71 (m ® v ■ -Ci ■ -v ® m) sinh(ir7ia:/) J

Up to a scalar multiplier ir7i(m <S> v ■ Ci ■ -v <S> m), vector T\ defined by (5.9) admits
representation:

Ti{hi/2) — (—sinh(ir7ifti/2); cosh(ir7ifti/2)). (6-9)

Similarly, vector W2 defined by (5.12) is:

W2 = (—irj2^ ® v • -C2 • -v® m; 1). (6.10)

Substituting (6.8)-(6.10) into Eq. (5.13) after some transformations yields

us = —— ^arctan f/^2 J + nnj , n = 0,1, 2,..., (6-11)

where Cfe = 7fc(m ® v • -Cfc • -v ® m), k = 1,2.

Proposition 6.2. a) In the regarded system a Love wave can propagate if and only if
the phase speed belongs to the interval c £ (cj; c2) (for this speed interval all the roots
of the Christoffel equation for the layer are aliquant).

b) At the fixed frequency us there is a finite number of Love waves propagating with
different phase speeds c £ (cf; c2), where

V Pk
are the speeds of the corresponding shear bulk waves.
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c) At the fixed phase speed c g (c[; cj) there is a denumerable number of Love waves
propagating with different frequencies to.

Proof. To prove a), assume that cj < c^; then the corresponding speed interval is
not empty. Analysis of expression (6.11) shows that at the phase speed belonging to the
interval the Christoffel parameter 71 defined by (6.l)i is negative real, while 72
defined by (6.2)2 is purely imaginary with negative imaginary part. Substituting these
7fc, k = 1,2 into (6.11) results in positive values for the phase frequency to. Supposing
now that c < cj leads to

UJ = ~\^\h~itanh 1 ( h )' (6'U,)
It is clear that (6.11') gives negative values for u, which is impossible. Thus, statement
a) is proved. Other statements flow out directly from analysis of (6.11). □

Corollary. No Love waves can propagate if cf > c|\

6.2. Two orthotropic layers on orthotropic substrate (aliquant roots). Adopting the
developed notation, we arrive at the following expression for multiplication of the transfer
matrices:

M2(—ft2/2) ■ M^(h2/2) ■ Mi(—hi/2) = (an °12) , (6.13)
\a21 ^22/

ail = -i ^cos(^2)sin(i^i) + ^ sin(£2) cos(^i)^ ,

where

ai2 = cos(£2) cos(|^i) - y- sin(£2) sin(^i),
S2

«2i = ~ir£2 ^sin(£>) sin(^i) - ^ cos(£2) cos(|£i)^ , ^6'14')

a-22 = r(2 ^sin(^2)cos(i^i) + ^ cos(£2) sin(±£i) J ,

tk = Hkh-k, Cfc = 7fc(m®^- -Cfe • ̂ ®m), k — 1,2,3.

In (6.14) indices 1 and 2 are referred to as layers and index 3 is referred to as the
substrate.

Expressions (6.9) and (6.10) for vectors T\ and W3 remain the same, but with the
obvious change of indices. Substituting (6.13), (6.14) into Eq. (5.13) yields the secular
equation in the form:

sin£2 ^cos£i + sin£i j - cos£2 cos£i - ^ sin^1^ = 0. (6.15)

In contrast to the previous case, there is no general explicit solution for Eq. (6.15)
which would resemble (6.11).

6.3. Two orthotropic substrates with an orthotropic layer between them. Taking into
account Corollary 1 from Proposition 3.1, we must exclude considering multiple roots for
both half-spaces. On the other hand, according to Remark 6.1a, multiple roots for the
layer arise if and only if the phase speed coincides with the speed of the transverse bulk
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wave and the corresponding Christoffel parameter 72 vanishes. Now, applying arguments
analogous to those used in proof of Proposition 6.1, we arrive at

Proposition 6.3. No Love wave can propagate in a system composed of two orthotropic
half-spaces and an orthotropic layer between them when multiple roots in the Christoffel
equation for the layer arise.

Excluding multiple roots, in the remaining part of this section we will consider the
case of aliquant roots. Assuming that in both substrates surface waves attenuate with
depth, we are forced to regard the phase speed belonging to the interval

c < min(c^; cj) (6.16)

where, as before, c[, df stand for velocities of bulk horizontally polarized shear waves
propagating in a direction defined by the vector n. Condition (6.16) ensures the Christof-
fel parameters 71,73 to be imaginary.

Remark 6.2. Attenuation with depth in the "upper" half-space (when x' —* +00) is
achieved by choosing 71 with positive imaginary part.

Taking the limit hi —> 00 in Eq. (6.15) and keeping in mind Remark 6.2 yields the
desired dispersion relation:

lu = C, ( arctan ( i ^2jf 3 ] + n7T ] , n = m, m + 1, m + 2,... . (6-17)
72/12 V V C2 - C1C3 J )

Parameter m appearing in the right-hand side of (6.17) is chosen for obtaining positive
values for the frequency uj. Later in this subsection this parameter will be specified
explicitly. It is obvious that at £i = 0 (vacuum), dispersion relation (6.17) transforms
into relation (6.11).

Proposition 6.4. a) In the regarded system, a Love wave can propagate if and only if
the phase speed belongs to the interval

ce(#;min(cf\cf)). (6.18)
b) At the fixed frequency u there is a finite number of Love waves propagating with

different phase speeds belonging to interval (6.18).
c) At the fixed phase speed from the interval (6.18), there is a denumerable number

of Love waves propagating with different frequencies to.

Proof, a) If c > min(c^,c^), then no Love wave can propagate, since attenuation in
the contacting substrates cannot be achieved. Suppose now that c < min(cf; c^; cj);
then all the Christoffel parameters 7^ become imaginary:

71 = +»l7il-; 72 = ±i|72|; "3 = b's!- (6.19)
In (6.19) Remark 6.2 is taken into consideration. Substituting (6.19) into (6.17) yields:

•tanh"1 (6-20)
\i2\h2 VIC2I2 + iCiIIC3I

Thus, the right-hand side of (6.20) is negative, while the phase frequency w should be
positive.
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Now it remains to show that at the phase speed satisfying (6.18), the corresponding
u) is positive. For this speed interval

7i = +i|7i|; 72 = ±|72|; 73 = -i|73| (6-21)

(72 is real). Substituting (6.21) into (6.17) yields

"°hk(arcta°(ili'-ioi'fci)+")■ »=•».'»+1.™+2.-. <«7')
where the integer parameter m appearing in the right-hand side of (6.17') satisfies the
following equation:

m = -Ent (it-1 arctan (!&!p&L±M) ) . ,6.22)

Equation (6.22) ensures the phase frequency w to be positive. In (6.22) Ent(...) stands
for the integer part.

Proofs of assertions b) and c) are obvious. □

Corollary. No Love waves can propagate if qf > min(cf, cj).

Remark 6.3. Results obtained in this subsection are important for practical appli-
cations, since they lead to a better understanding of the phenomenon of developing
high frequency waveguides for Love waves propagating in a layer contacting with two
substrates. These results also generalize conditions for the existence of surface waves
resembling Stoneley waves, but with the horizontal shear polarization (Stoneley waves
propagate on the interface between contacting half-spaces and attenuate with depth in
both half-spaces).

7. Numerical solution. In this section we apply the developed MTM method for
obtaining dispersion relations for Love waves propagating in a medium containing 10
alternating layers lying on a single crystal silicone (Si) substrate with orientation [100];
this crystal belongs to the orthorhombic (cubic) class of elastic symmetry. Mechanical
properties of silicon needed for computations are as follows:

C1212 = 79.913GPa; p = 2339.9kg/m3. (7.1)

Alternating layer coatings are silicon carbide (SiC):

C1212 = 122.80GPa; p = 3100 kg/m3, (7.2)

and silicon nitride (SiaN^:

C1212 = 61.447GPa; p = 3290kg/m3. (7.3)

These coatings (both isotropic) are quite often used in microelectronics. All the param-
eters in (7.1)-(7.3) are evaluated at room temperature.

In our computational model, each layer had 10 nanometers thickness, which is typical
in some advanced microelectronic devices. Such a small thickness, however, is enough
for using equations of continuum mechanics, since about 100 atoms can be placed along
the depth of a layer.
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Fig. 1. Dispersion curves

Numerical implementation of the MTM method used in this section is based on a
search of the zeros of Eq. (5.13) at a given value of the phase speed c £ (0;c^+1). The
first N zeros, representing phase frequency to (see Remark 5.1), were searched in the
interval (0; oo) with the successive refinement. Computer code was based on the high
precision numerical package, allowing us to retain up to 512 decimal digits in mantissas.

The first several dispersion curves for the regarded medium are plotted in Fig. 1.
Vertical dashed lines in Fig. 1 refer to velocities of the corresponding transverse bulk
waves.

Then, to check sensitivity of the developed method to identify properties of layers and
the substrate, we increased by 10% the thickness of a particular layer, leaving the other
layers unaltered, and applying the MTM method, calcidated the difference

Au>k{c) = u)k(c) - lo(c) (7.4)

between the lower branch of the dispersion curve u>k(c) for a medium with the disturbed
fc-th layer, and the lower branch u>(c) for the undisturbed medium. These data are
plotted in Fig. 2.a. Analogous results are obtained at the simultaneous increase by 10%
of the density and shear modulus of a particular layer and the substrate. These data are
presented in Fig. 2.b.

The obtained data reveal that even for the most distant layers and the substrate there
is a possibility of determining variation of their properties due to a quite noticeable
change of the lower branches of the dispersion curves.
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Fig. 2. Variation of the lower branch of the dispersion curve due to:
a) 10% thickness increase; b) simultaneous 10% increase of density
and shear modulus;
(1) - 7th layer; (2) - 9thlayer; (3) -10thlayer; (4) -substrate.
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