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Low- and high-frequency noise from coherent two-level systems
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Recent experiments indicate a connection between the low- and high-frequency noise affecting
superconducting quantum systems. We explore the possibilities that both noises can be produced by
one ensemble of microscopic modes, made up, e.g., by sufficiently coherent two-level systems (TLS).
This implies a relation between the noise power in different frequency domains, which depends on
the distribution of the parameters of the TLSs. We show that a distribution, natural for tunneling
TLSs, with a log-uniform distribution in the tunnel splitting and linear distribution in the bias,
accounts for experimental observations.

Recent activities and progress with quantum informa-
tion systems rely on the control of decoherence processes
and at the same time provide novel tools to study their
mechanisms. Experiments with superconducting qubits
revealed the presence of spurious quantum two-level sys-
tems [1] with strong effects on the high-frequency (∼10
GHz) qubit dynamics. Other experiments [2] suggested
a connection between the strengths of the Ohmic high-
frequency noise, responsible for the relaxation of the
qubit (T1 decay), and the low-frequency 1/f noise, which
dominates the dephasing (T2 decay). The noise power
spectra, extrapolated from the low- and high-frequency
sides, cross at ω of order T . This is also compatible
with the T 2 dependence of the low-frequency part, ob-
served earlier for the 1/f noise in Josephson devices [3, 4].
Much clearer evidence for the T 2 behavior was obtained
recently [5, 6].

In this letter we point out that a set of coherent two-
level systems (or, in fact, arbitrary quantum systems
with discrete spectrum) produces both high- and low-
frequency noise with strengths that are naturally related.
We show that for a realistic distribution of parameters
tunnel TLSs (TTLS) produce noise with experimentally
detected features: the 1/f behavior at low frequencies,
the Ohmic (∝ ω) high-frequency noise, and the T 2 tem-
perature dependence of the integrated weight of the low-
frequency noise. This implies that the 1/f and Ohmic
asymptotes cross at ω ∼ T as was indeed observed in
Ref. [2] at one value of T . The distribution is log-uniform
in the tunnel splitting and linear in the bias. Microscopi-
cally, this distribution may describe double traps or “An-
dreev fluctuators” considered recently by Faoro et al. [7]
in their study of the relaxation (T1 decay) of Josephson
qubits due to the high-frequency noise. Our results are
obtained for environments with a large number of TLSs
which are weakly coupled to the qubit. A strong coupling
between a TLS and a qubit can lead to resonances [1, 2].

Ensembles of TLSs were discussed extensively in the
literature. On one hand, they produce a natural model of
1/f noise, as a result of incoherent random transitions [8],
and there is substantial experimental evidence that the

low-frequency 1/f noise in single-electron devices may
be produced by TLSs [9, 10]. In solid-state qubits,
e.g., Josephson qubits, the pure dephasing is dominated
by this noise [11, 12, 13]. On the other hand, ensem-
bles of coherent TTLSs were suggested to explain low-
temperature properties of glasses [14, 15]. Both “trans-
verse” and “longitudinal” couplings, defined below, were
discussed in relation to various physical phenomena. A
transverse coupling of phonons or electrons to the TLSs
is responsible for the absorption and emission of energy.
It was invoked in the discussions of, e.g., the phonon at-
tenuation [16] and of the low-temperature dephasing in
disordered metals [17]. On the other hand a longitudinal
coupling was found to be responsible, e.g., for the con-
ductance fluctuations [18, 19, 20]. We suggest that in
nanocircuits, e.g., solid-state qubits, both types of cou-
plings play an important part and produce noise with
related properties in various frequency ranges.

As a model we consider a set of coherent two-level
systems described by the Pauli matrices σp,j , where
p = x, y, z and j is the index of a particular TLS. We
write the Hamiltonian of the set in the basis defined by
their contributions to the relevant fluctuating quantity
(cf. Eq. (2) below);

HTLS =
∑

j

[

−1

2
(εjσz,j + ∆jσx,j) + Hdiss,j

]

. (1)

Here, in the language of TTLSs, εj are the bias energies
and ∆j are the tunnel amplitudes between two states.
Each TLS with label j is subject to dissipation due to its
own bath with Hamiltonian Hdiss,j. We do not specify
Hdiss,j , but only assume that it produces the usual relax-
ation (T1) and dephasing (T2) processes. We assume that
all the TLSs are under-damped, with Γ1,j ≡ T−1

1,j ≪ Ej

and Γ2,j ≡ T−1
2,j ≪ Ej . Here Ej ≡

√

ǫ2j + ∆2
j is the

energy splitting.
Each TLS in the ensemble contributes to fluctuations

of a physical quantity X , e.g., the gate charge, which
affect an experimentally accessible system and thus may
be detected. A qubit may serve as a convenient noise
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detector [21, 22]. E.g., in the recent experiment of Ref. [2]
qubits were used to investigate the properties of their
environment. We choose

X ≡
∑

j

vj σz,j , (2)

where vj are the coupling constants and σz,j = ±1 cor-
respond to the two states differing, e.g., by the value of
the dipole moment. The interaction of the qubit with the
TLSs is often described via a linear in X coupling to a
variable Oqubit of the qubit, i.e., Hint(X) ∝ XOqubit.

Our goal in the following is to investigate the noise
properties of X , that is we need to evaluate the (unsym-
metrized) correlator

CX(ω) ≡
∫

dt
{

〈X(t)X(0)〉 − 〈X〉2
}

eiωt . (3)

For independent TLSs the noise is a sum of individual
contributions, CX =

∑

j v2
j Cj , where

Cj(ω) ≡
∫

dt
{

〈σz,j(t)σz,j(0)〉 − 〈σz,j〉2
}

eiωt . (4)

To obtain Cj we first transform to the eigenbasis of the
TLS. This gives

HTLS =
∑

j

{

−1

2
Ejρz,j + Hdiss,j

}

, (5)

and

X =
∑

j

vj (cos θj ρz,j − sin θj ρx,j) , (6)

where tan θj ≡ ∆j/ǫj . The first term of (6) produces the
longitudinal coupling (mentioned above) while the sec-
ond term produces the transverse one. Using the Bloch-
Redfield theory [23, 24] we find readily

Cj(ω) ≈ cos2 θj

[

1 − 〈ρz,j〉2
] 2Γ1,j

Γ2
1,j + ω2

+ sin2 θj

[

1 + 〈ρz,j〉
2

]

2Γ2,j

Γ2
2,j + (ω − Ej)2

+ sin2 θj

[

1 − 〈ρz,j〉
2

]

2Γ2,j

Γ2
2,j + (ω + Ej)2

. (7)

In thermal equilibrium 〈ρz,j〉 = tanh(Ej/2T ). The first
term, due to the longitudinal part of the coupling, de-
scribes random telegraph noise of a thermally excited
TLS. We have assumed Γ1,j ≪ T , so that this term is
symmetric (classical). The second term is due to the
transverse coupling and describes absorption by the TLS,
while the third term describes the transitions of the TLS
with emission. We observe that TLSs with Ej ≫ T
contribute to CX only at (positive) ω = Ej . Indeed

their contribution at ω = 0 is suppressed by the ther-
mal factor 1 − 〈ρz,j〉2 = 1 − tanh2(Ej/2T ). Also the
negative frequency (emission) contribution at ω = −Ej

is suppressed. These high-energy TLSs remain always in
their ground state. Only the TLSs with Ej < T are
thermally excited, performing real random transitions
between their two eigenstates, and contribute both at
ω = ±Ej and at ω = 0. Such a multi-peaked structure
of Cj(ω) was recently discussed in various contexts, e.g.,
in Refs. [25, 26, 27]. Note that the separation of the
terms in Eq. (7) into low- and high-frequency noise is
meaningful provided the typical width Γ1,j of the low-ω
Lorentzians is lower than the high frequencies of interest,
which are defined, e.g., by the qubit’s level splitting or
temperature.

For a dense distribution of the parameters ǫ, ∆, and v
we can evaluate the low- and high-frequency noise. For
positive high frequencies, ω ≫ T , we obtain

CX(ω) ≈
∑

j

v2
j sin2 θj

2Γ2,j

Γ2
2,j + (ω − Ej)2

≈ N

∫

dǫd∆dv P (ǫ, ∆, v) v2 sin2 θ · 2πδ(ω − E) ,

(8)

where N is the number of fluctuators, P (ǫ, ∆, v) is the
distribution function normalized to 1, E ≡

√
ǫ2 + ∆2,

and tan θ = ∆/ǫ. Without loss of generality we take
ǫ ≥ 0 and ∆ ≥ 0. At negative high frequencies (ω <
0 and |ω| > T ) the correlator CX(ω) is exponentially
suppressed.

On the other hand, the total weight of the low-
frequency (up to ω >∼ Γ1) noise follows from the first
term of (7). Each Lorentzian contributes 1. Thus we
obtain

∫

low freq.

dω

2π
CX(ω)

≈
∫

low freq.

dω

2π

∑

j

v2
j cos2 θj

[

1 − 〈ρz,j〉2
] 2Γ1,j

Γ2
1,j + ω2

≈ N

∫

dǫd∆dv P (ǫ, ∆, v) v2 cos2 θ
1

cosh2 E
2T

.

(9)

Here we could disregard the contribution of the last two
terms for Ej ∼ Γ1,j. Equations (8) and (9) provide the
general framework for further discussion.

Next we investigate possible distributions for the pa-
rameters ǫ, ∆, and v. We consider a log-uniform distri-
bution of tunnel splittings ∆, with density P∆(∆) ∝ 1/∆
in a range [∆min, ∆max]. This distribution is natural
for TTLSs as ∆ is an exponential function of an al-
most uniformly distributed parameter, e.g., tunnel bar-
rier height [15]. It is also well known to provide for
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the 1/f behavior of the low-frequency noise [8]: the re-
laxation rates are, then, also distributed log-uniformly,
PΓ1

(Γ1) ∝ 1/Γ1, and a sum of many Lorentzians of width
Γ1 centered at ω = 0 adds up to the 1/f noise. We fur-
ther assume that the distribution of v is uncorrelated
with ε and ∆.

First, we assume that the temperature is lower than
∆max, T < ∆max. For the high-frequency part, T < ω <
∆max, taking the integral over ∆ in Eq. (8), we find that

CX(ω) ∝ 1

ω

∫ ω

0

Pε(ε)dε . (10)

This is consistent with an Ohmic behavior CX ∝ ω only
for the linear density Pε(ε) ∝ ε.

Importantly, this distribution P (ε, ∆) ∝ ε/∆ leads at
the same time to the T 2 ln(T/∆min) behavior of the low-
frequency weight (9), consistent with experimental obser-
vations [3, 4, 5, 6]. If the low-frequency noise has a 1/f
dependence, the two parts of the spectrum would cross
around ω ∼ T [2].

A remark is in order concerning this crossing. It is not
guaranteed that the spectrum has a 1/f dependence up
to ω ∼ T . Rather the high-frequency cutoff of the low-
frequency 1/f noise is given by the maximum relaxation
rate of the TLSs, Γ1,max ≪ T , as we assumed. Then
the extrapolations of the low-frequency 1/f and high-
frequency Ohmic spectra cross at this ω ∼ T .

To fix the coefficients, we introduce the normalization
constant A, so that P (ǫ, ∆) = Aǫ/∆. Then, at high
positive frequencies, T < ω < ∆max, we obtain

CX(ω) ≈ π〈v2〉NAω . (11)

For the total weight of the low-frequency noise we obtain

∫

low freq.

dω

2π
CX(ω) ≈ 4 ln(2) 〈v2〉NAT 2

[

ln
T

∆min

]

.(12)

Thus we obtain a numerical factor which determines pre-
cisely the point of crossing of the two spectra.

In the opposite limit, T ≫ ∆max, the high/frequency
noise depends on the detailed shape of the cutoff of
P∆(∆) at ∆max. As an example, for a hard cutoff the
Ohmic spectral density implies that Pε ∝ ε3, and the low-
frequency weight scales with T 4. For a 1/f low-frequency
behavior, the spectra would cross at ω ∼ T 2/∆max ≫ T ,
in disagreement with the result of Ref. [2].

Interestingly, the linear ω dependence at high frequen-
cies and the T 2 dependence of the low-frequency noise
can be obtained from a whole class of distributions, e.g.,
for P (ǫ, ∆) = f(ǫ/∆), with arbitrary, not too divergent
(as a function of θ) function f . Presented as a function
of energy E and angle θ, it becomes (we have used the
Jacobian dǫd∆ → EdEdθ)

P (E, θ) = E f(cot θ) , (13)

i.e., it is linear in E. This linearity ensures both the linear
ω dependence at high frequencies and the T 2 dependence
of the integrated weight of the low-frequency noise.

In particular one can take P (ǫ, ∆) ∝ (ǫ/∆)s with any
exponent s satisfying −1 ≤ s ≤ 1, and with both ∆max

and ǫmax higher than the relevant frequency ω. This in-
cludes a uniform distribution of both ∆ and ǫ at all rele-
vant energies, i.e., s = 0. For ensembles with −1 < s < 1,
including the uniform distribution with s = 0, high- and
low-frequency noise is created by the same fluctuators.
On the other hand, s = 1 is the limiting case in which
the low-frequency noise is dominated by the fluctuators
with θ ≪ 1, while the high-frequency noise by all other
fluctuators. Yet, even in this case the strengths of the
high- and low-frequency parts of the spectrum are re-
lated.

For the uniform distribution (s = 0) we obtain different
numerical coefficients. We introduce an experimentally
accessible constant α, such that CX(ω ≫ T ) = 2παω.
Then, for s = 1 (P ∝ ǫ/∆) we obtain from Eqs. (11)
and (12) that the total weight of the low-frequency noise
is given by

∫

l.f.
dω
2π

CX(ω) ≈ 8 ln(2)αT 2 ln(T/∆min). On
the other hand, for the uniform distribution, s = 0, we
obtain

∫

l.f.
dω
2π

CX(ω) ≈ 4 ln(2)αT 2.
We would like to emphasize that the relation between

low- and high-frequency noise is more general, i.e., it is
not unique to an ensemble of two-level systems. Consider
an ensemble of many-level systems with levels |n〉 and
energies En such that the coupling is via an observable
which has both transverse and longitudinal components.
By a transverse component we mean the part constructed
with operators |n〉〈m|, where n 6= m, while the longitu-
dinal component is built from the projectors |n〉〈n|. If
the system is under-damped, that is, if the absorption
and emission lines are well defined, the correlator of such
an observable will have (Lorentzian-like) contributions
at ω = En − Em as well as at ω = 0. As an example
we could consider an ensemble of an-harmonic oscillators
with X =

∑

j vjxj , where xj are the oscillator’s coor-
dinates. Due to the anharmonicity xj acquires a lon-
gitudinal component, in addition to the usual transverse
one. Thus a relation between the low- and high-frequency
noise would emerge naturally with details depending on
the ensemble statistics.

It is useful to relate our phenomenological results to
the recent work of Faoro et al. [7], where they considered
physical models of the fluctuators, which could couple
to and relax qubits. They considered three models: (I)
a single electron trap in tunnel contact with a metallic
gate, (II) a single electron occupying a double trap, and
(III) a double trap that can absorb/emit a Cooper pair
from the qubit or a superconducting gate. In all models
a uniform distribution of the trap energy levels was as-
sumed. One, then, can show that the distribution for the
two-level systems corresponding to the models II and III
are linear in the energy level splitting, P (ǫ) ∝ ǫ. Since
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the switching in these models is tunneling dominated, we
find that P (∆) ∝ 1/∆. Therefore, both models II and
III are characterized by distribution P (ǫ, ∆) = Aǫ/∆, de-
scribed above, and hence can naturally account for the
experimentally observed low- and high-frequency noises.
In contrast, in the model of uniformly distributed single-
electron traps (model I), we find that for small tunnel
rates, the high-frequency noise is inversely proportional
to frequency rather than Ohmic [7].

In this letter we did not address the question of the
statistics of the low-frequency noise, nor the associated
problem of a particular decay law of the dephasing pro-
cess. These statistics will depend on the distribution of
the coupling strengths vj . For certain distributions the
individual strongly coupled fluctuators may be impor-
tant [28, 29], and the statistics is non-Gaussian. For
ensembles of many weakly coupled fluctuators Gaussian
statistics emerges [11, 30].

To conclude, we have shown that an ensemble of co-
herent two-level systems with the distribution function,
P (ǫ, ∆) ∝ ǫ/∆, produces Ohmic high-frequency noise
and, at the same time, 1/f low-frequency noise with
strength which grows with temperature as T 2. The two
branches of the noise power cross at ω ∼ T in accor-
dance with the experimental observation [2]. A relation
between low- and high-frequency parts of the spectrum is
a general property of ensembles of coherent systems with
discrete energy levels.
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