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ABSTRACT

The Juno Orbiter has provided improved estimates of the even gravitational harmonics J2 to J8 of Jupiter. To compute higher-order
moments, new methods such as the concentric Maclaurin spheroids (CMS) method have been developed, which surpass the commonly
used theory of figures (ToF) method in accuracy. This progress raises the question whether ToF can still provide a useful service for
deriving the internal structure of giant planets in the solar system. In this paper, I apply both the ToF and the CMS method to compare
results for polytropic Jupiter and for the physical equation of state H/He-REOS.3-based models. An accuracy in the computed values
of J2 and J4 of 0.1% is found to be sufficient in order to obtain the core mass safely within 0.5 M⊕ numerical accuracy and the
atmospheric metallicity within about 0.0004. ToF to the fourth order provides that accuracy, while ToF to the third order does not
for J4. Furthermore, I find that the assumption of rigid rotation yields J6 and J8 values in agreement with the current Juno estimates,
and that higher-order terms (J10 to J18) deviate by about 10% from predictions by polytropic models. This work suggests that ToF 4
can still be applied to infer the deep internal structure of giant planets, and that the zonal winds on Jupiter reach less deep than 0.9 RJ.
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1. Introduction

The theory of figures (ToF; Zharkov & Trubitsyn 1978) to third
or fourth order, hereafter labeled respectively ToF 3 and ToF 4,
is commonly used to compute the gravity field of the gas gi-
ant planets in the solar system (e.g., Saumon & Guillot 2004;
Helled 2011; Leconte & Chabrier 2012; Nettelmann et al. 2012;
Helled & Guillot 2013; Miguel et al. 2016). While a theory to
nth order allows for computation of the gravity field in terms of
the gravitational harmonics up to J2n only, Jupiter’s gravity field
before the current Juno mission was also measured up to J6 only.
Thus, third or fourth order theories seemed sufficient. Moreover,
it is the low-order harmonics J2 and J4 that are particularly sen-
sitive to the internal density distribution; they allow for deriva-
tion of the interior structure parameters core mass and envelope
metallicity. Hence for a long time, the observational data of grav-
ity field theories (e.g., ToF) and planet-interior parameters of
interest formed a closed system.

This convenient situation has changed with the arrival of the
Juno spacecraft at Jupiter. Juno’s sensitivity limit makes it pos-
sible to measure the rigid-rotation contribution to the gravita-
tional harmonics up to J14 (Kaspi et al. 2010). High-order mo-
ments yield clues to the properties of the zonal winds as the
flows influence the density distribution, which in turn is the
source function of the gravitational potential. Differential rota-
tion due to zonal flows is predicted to entirely dominate the J2n
for n ≥ 14, while it is predicted to be within a factor of ten of
the prediction for a rigidly rotating planet for J8−J12 (Hubbard
1999; Kaspi et al. 2010; Cao & Stevenson 2017). Since the wind
contribution ∆Jwind

2n is obtained by subtracting the theoretical
values for a rigidly rotating planet from the observed ones

(Jobs
2n = Jrigid

2n + ∆Jwind
2n ), it is also important to have accurate

knowledge of the rigid-rotation contribution.

For that purpose, Hubbard (2013, hereafter H13), devel-
oped the concentric Maclaurin spheroids (CMS) method. This
method yields demonstratively good agreement with the exact
Bessel solution for an n = 1 polytrope model of Jupiter. Devi-
ations have been found to be about 5 × 10−5 in J2 to 2 × 10−4

in J20 (Wisdom & Hubbard 2016), or to be of the order of
2 × 10−3 (Cao & Stevenson 2017). However, comparison of the
exact Bessel solution to the ToF 3 results (H13; Wisdom 1996)
has led to the conclusion that ToF 3 is insufficiently accurate
for modeling Jupiter (Wisdom 1996). This raises the question
of what accuracy in the low-order moments is desired for infer-
ring Jupiter’s internal density distribution, and which methods
can provide that.

The classical view of a Jupiter-like gas giant is that of
a well-defined core embedded into an H/He-rich envelope,
in which case one can search for the mass of the core and
the heavy element mass fraction of the envelope and use
the measured planet radius and J2 value to determine both
(Militzer et al. 2008). However, recent gas giant formation mod-
els challenge that simple picture. Simultaneous accretion of gas
and planetesimals might naturally lead to a gas-enriched, that
is, diluted core (Venturini et al. 2016), where the metallicity is
predicted to decrease outward as a result of the slow convec-
tive timescale compared to the accretion rate during formation
(Helled & Stevenson 2017); a diluted core may remain perma-
nent due to the inhibition of convection once a compositional
gradient has become established (Vazan et al. 2016). Diluted
cores have been found to enhance the predicted atmospheric
metallicity of Jupiter models (Fortney & Nettelmann 2010).
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Fig. 1. Resulting J2 values of polytropic models of rigidly rotating Jupiter for q = 0.089195487 (left) as in H13 and Wisdom & Hubbard (2016),
and for q = 0.088570679 (right) as in Wisdom (1996). Blue symbols: using ToF to fourth order, blue lines: respective fit curves, light blue: same
as blue but using ToF 3, red symbols: using CMS method. Reference values are in black; black circle: CMS results of H13 for N = 512, horizontal
black lines: unknown value of N, in particular: thick black lines: Bessel/CLC results of Wisdom & Hubbard (2016), thin black lines: ToF 3 results
of H13 and Wisdom (1996). The vertical black arrow shows the current Juno uncertainty of J2 (Folkner et al. 2017), here arbitrarily placed. The
x-axis is number of radial grid points N.
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Fig. 2. Same as Fig. 1 but for J4. The ToF 3 result of Hubbard (2013) exceeds the shown range of J4 values.

In this paper, the uncertainty in the computed values for the
low-order harmonics J2, J4, J6 due to application of ToF 3 and
ToF 4 is estimated by using the n = 1 polytrope model (Sect. 2);
the corresponding uncertainty in the derived core mass and en-
velope metallicity of Jupiter is estimated in Sect. 3. Finding this
uncertainty to be small for ToF 4, I use this method in Sect. 4 to
compute physical equations of state (EOS)-based Jupiter mod-
els that are designed to match the low-order harmonics J2 and
J4 from Juno’s first two low-periapse polar orbits around Jupiter
(Folkner et al. 2017). Models are presented both for solid cores
and for diluted cores, as well as for deep zonal wind correc-
tions as proposed by Cao & Stevenson (2017). For some of the
Jupiter models, I compute the high-order moments using the
CMS method (Sect. 5), thereby providing the first prediction of
the high-order J2n values for a model of an adiabatic, rigidly
rotating Jupiter that matches the measured low-order moments.
Conclusions are in Sect. 6. In Appendix A my implementation
of the CMS method is validated for the linear density case, while
in Appendix B the ToF coefficients are provided up to the fourth
order.

2. Polytropic models

In this section, n = 1 polytropic models are computed
for GMJ = 12.6686536 × 1016 m3/s2, equatorial radius

Req = RJ = 71 492 km, and for two different rotation rates as rep-
resented by q = 0.0891954870 (Wisdom & Hubbard 2016) and
q = 0.08857067907 (Wisdom 1996), where q = ω2R3

eq/GM.
I apply ToF to the third and fourth order as well as the
CMS method. For both methods an iterative procedure is re-
quired to ensure the total mass is conserved, and that for the
thus specified value of K in the polytropic relation P = Kρ2

hydrostatic balance holds.
With ToF I calculate the density at grid point i using ρi =√

Pi/K, while with CMS method ρi =
√

0.5(Pi + Pi+1)/K (H13),
except for i = 0 where ρ0 = P0 = 0 in their respective units. As
I find the dependence on the number of radial grid points, N, to
be strong, I plot the resulting values of J2 (Fig. 1), J4 (Fig. 2),
and J6 (Fig. 3) against N.

Compared to the exact Bessel solution (Wisdom & Hubbard
2016), the CMS method performs best and ToF 3 worst. In par-
ticular, ToF 3 underestimates |J4/10−6| by one to two times (de-
pending on the implementation) the pre-Juno 1σ error bar of ∼2
(Miguel et al. 2016), and therefore predicts a higher atmospheric
metallicity for Jupiter than ToF 4 does (Nettelmann et al. 2012).

ToF 4, on the other hand, performs much better: the differ-
ence in J4 to the exact Bessel solution amounts to only about
15% of the total pre-Juno error bar, and the differences in both
J4 and J6 are still smaller than the uncertainties of the current
Juno data. The influence of the error in J4 due to the application
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Fig. 3. Same as Figs. 1 and 2 but for J6 and results for different q-
values merged into a single panel, distinguished by respectively solid
lines/circles and dashed lines/diamonds. The ToF 3 result of Hubbard
(2013) exceeds the shown range of J6 values.

of ToF 4 on the predicted envelope metallicity and core mass of
Jupiter can be considered negligible. In the following section, I
investigate whether this is also the case for J2, the error bar of
which is 5× the current Juno estimate of 2×0.272×10−6 (Fig. 1).

3. Interior models and J2

The observed value of J2 allows for insight into the internal
structure of Jupiter, as different internal density distributions
may yield different values of J2 to be compared against the ob-
served one. In this section I investigate how sensitive that de-
pendence is. In particular, I consider the resulting uncertainty in
the derived core mass (Mcore) and atmospheric metallicity (Zatm)
due to the technical uncertainty in J2, which results from ap-
plying ToF 4 to compute the gravitational harmonics. For this
purpose, simple models are computed for which I assume a con-
stant metallicity throughout Jupiter’s envelope. Although further
details of the procedure do not influence the resulting quanti-
ties we are interested in (the uncertainties), I give them for com-
pleteness: the envelope is separated into an outer, He-poor part
of helium abundance Yatm = 0.238 in agreement with the Galileo
entry probe value, and a He-rich inner envelope that accounts for
the remaining helium to yield a total He/H mass ratio of 0.275
in agreement with estimates for the protosolar cloud. The transi-
tion takes place at pressure Ptrans = 8 Mbar. The envelope adiabat
runs through the temperature-pressure point of 423 K at 22 bars
as measured by the Galileo entry probe. At the outer boundary at
one bar this yields T1 = 170 K, which I adopt as the outer bound-
ary condition for the Jupiter models. Figure 4 shows the resulting
uncertainties in Mcore and Zatm as a function of the assumed value
of J2.

According to Fig. 4, the error in J2 of about 2 × 10−4 due
to applying ToF 4 maps onto an uncertainty of 0.02 M⊕ in
Jupiter’s core mass and 0.0001 in Zatm. Furthermore, an uncer-
tainty of 0.1% in J2 (twice the horizontal length of gray lines)
would imply an uncertainty of ∼0.1 M⊕ in core mass and 0.0004
in Zatm. Thus, the uncertainties due to applying ToF 4 can be con-
sidered tiny compared to the accuracy in internal structure prop-
erties we are interested in, which is about 10% (e.g., ∼1 M⊕ in
core mass). Moreover, the uncertainty from this source of error
is clearly smaller than the uncertainty due to the material input
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Fig. 4. Uncertainty in the derived values for core mass and atmospheric
metallicity due to the assumed uncertainty in J2 for interior models as-
suming constant envelope-Z. For ∆J2 about 10× the current Juno un-
certainty, corresponding to 2× the estimated error from applying ToF 4
(bottom panel) the core mass uncertainty amounts to ∼0.04 M⊕ (mid-
dle panel), while the uncertainty in Zatm is found to be less than 0.0002
(upper panel). These uncertainties are small.
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Fig. 5. Same as Fig. 4 but for J4 (lower panel) and J6 (upper panel).

physics like the EOS, which is at best of the order of 1%. Fur-
thermore, the additional error in J4 and J6 which results from the
uncertainty in J2 due to applying ToF 4 amounts to only 0.04%
for J4 and 0.03% for J6 (Fig. 5). From Figs. 4 and 5 I therefore
conclude that ToF 4 yields quantitatively useful density distribu-
tions for Jupiter.

4. Results for Jupiter

In this section I construct models that aim to match the tight
current Juno constraints on J2 and J4 and are based on H/He-
REOS.3 (Becker et al. 2014, hereafter B14). In Sect. 4.1 I as-
sume rocky cores and rigid rotation, while in Sect. 4.2 I assume
diluted cores or take into account the shift due to winds.
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Fig. 6. ToF 4 based three-layer Jupiter models that are designed to match
observed J2 and J4 values. This work: black solid, B14: yellow, N12:
green. Measured atmospheric particle abundances of the elements as la-
beled are scaled by their protosolar particle abundance values (Lodders
2003). I use Zsolar = 0.015.

4.1. Models with solid cores and rigid rotation

The models in this section are three-layer models and con-
structed as in Nettelmann et al. (2012), hereafter N12. The only
but important difference to the models of Sect. 3 is that three-
layer models allow for different heavy element abundances in
the two envelopes, so that two free parameters (Z1 = Zatm in the
outer and Z2 in the inner envelope) are available for adjusting
the two low-order harmonics J2 and J4. If this can be achieved
and if in addition Z1 ≥ 2× solar, consistent with the observed
heavy noble gas abundances in Jupiter’s atmosphere, I consider
a model as acceptable for Jupiter.

Figure 6 shows these new models as a function of Ptrans.
They are similar to the ToF 4 based models of N12, who applied
H-REOS.2 and He-REOS.1, and of B14 who applied H-REOS.3
and He-REOS.3 as in this work. The biggest differences are the
narrower range in possible transition pressure and the lower Z1
values compared to B14. The latter is mainly a direct conse-
quence of reducing |J4/10−6| from 589 to 586.6. The lower Z1
values also tend to reduce J2, requiring more heavy elements in
the deep interior to compensate for that. Slightly higher Z2 values
then leave less mass to build the core, so that finally a smaller set
of models (a smaller range of Ptrans values for which Mcore ≥ 0)
is found. In contrast, the difference between these models and
the N12 results was mainly due to differences in the helium
EOS at outer envelope pressures. These new results confirm that
ab initio H/He-EOSs yield rather low atmospheric metallicities
for Jupiter. Compared to .1 × solar (Hubbard & Militzer 2016;
Wahl et al. 2017b), .2.5 × solar (N12), .3× solar (B14), I here
obtain Zatm . 2× solar, out of which acceptable models have
Ptrans = 6–7 Mbar.

An inaccuracy in J4 of about 2.4/600 (0.4%) (compare black
and yellow curves in Fig. 6) seems to induce a rather large un-
certainty of ∆Mcore = 2 M⊕ in core mass; but a 0.1% uncertainty
in J4 might still lead to ∆Mcore = 0.5 M⊕ for three-layer models.
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(magenta). The J4 value of these models (magenta, right panel) was ad-
justed to match the Juno J4 measurement. Black diamonds: Juno mea-
surements, blue error bars: estimated uncertainty due to applying ToF 4
according to Figs. 1–3.

However, this estimate is probably a far upper bound as the mod-
els in B14 were computed with a smaller number of grid points
of N ∼ 2000 compared to ∼12 000 in this work.

Figure 7 compares the resulting J6 value of the ToF 4-based
Jupiter models that match the Juno J2 and J4 values to the Juno
measurement of J6. Models with Ptrans = 4–7 Mbar are within
the observational uncertainty of J6, while models with lower
transition pressures are within 2σ of the observational uncer-
tainty. The computational error from ToF 4 is much smaller than
that.

4.2. Models with diluted cores or zonal winds

Ab initio H/He EOS-based Jupiter models with rock-ice cores
and without zonal winds become notoriously low in atmo-
spheric heavy element abundances. On the other hand, di-
luted cores have been found to enhance Zatm by up to 50%
(Fortney & Nettelmann 2010), while zonal winds directly affect
the J2 and J4 values to be matched by rigidly rotating mod-
els (Militzer et al. 2008; Cao & Stevenson 2017) and thus also
influence the derived Zatm value. While precise predictions on
the dynamic contributions ∆J2n to the observed values depend
on the differential rotation pattern and their mathematical de-
scription (Kaspi et al. 2010; Zhang et al. 2015; Cao & Stevenson
2017), it is predicted that the effect on the low-order J2n increases
with the depth of the winds (Kaspi et al. 2010; Cao & Stevenson
2017) and that the effect on the low-order J2n is small and
in the direction of reducing the absolute J2n values (Hubbard
1999; Kaspi et al. 2010; Cao & Stevenson 2017). Here I calcu-
late Jupiter models as in Sect. 4.1 but by assuming a diluted core
of rock mass fraction Z3,Rocks = 0.2, the rest being inner mantle
material, and by including zonal wind corrections as proposed
by Cao & Stevenson (2017) for half-amplitude width (HAWD)
values of 0.8 and 0.9. The latter quantity is defined as the dis-
tance to the rotation axis where the azimuthal wind velocity has
weakened by a factor of two from its maximum value farther out.

As shown in Fig. 8, the zonal wind corrections lead to lower
values in Z1 and Mcore. This is not a surprise, since the abso-
lute values of J2 and J4 are reduced and thus demand a smaller
mass density in the part of the planet planet where they are most
sensitive, which is near P ∼ 1 Mbar in the outer envelope. This
behavior is in line with the observation of Militzer et al. (2008)
who, in order to enhance the resulting envelope Z value, suggest
zonal wind effects on J2 and J4 in the opposite direction of what
zonal wind models that fit the observed wind speeds predict.

For HAWD = 0.8 I do not obtain any acceptable Jupiter
model because the ∆J2n are too large: both Z1 and Mcore would
become negative. For HAWD = 0.9, there is a restricted range
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Fig. 8. Jupiter models with diluted cores of central rock mass frac-
tion Z3,Rocks = 0.2 (black dashed) or with zonal winds according to
HAWD = 0.9 (solid blue). The solid black curves are the same as in
Fig. 6. I use Zsolar = 0.015.

of solutions at Ptrans = 3–5.5 Mbar, for which Z1 barely reaches
1.5 × solar. Adiabatic H/He-REOS.3-based Jupiter models thus
suggest the vertical extent of the winds to be less than 0.9 RJ
(∼7000 km).

Assuming a diluted core and adiabatic envelopes, the Z1
value can be lifted, but only to less than its maximum value
obtained for core-less models. The enhancement in Z1 can in-
deed reach up to 50% for the largest core mass found here, but
then the base Z1 value is small anyway. Therefore, as Fig. 8
shows, diluted cores do not significantly enhance Zatm for H/He-
REOS-based models, but are helpful for larger core models
(Wahl et al. 2017b) such as those obtained with the EOS of
Militzer & Hubbard (2013).

5. High-order gravitational harmonics

To compute the high-order gravitational harmonics of models
that match the observed Juno values for J2 and J4, I use the
density distributions of the models from Sect. 4 and apply the
CMS method to them1. For that purpose, I convert the ToF-based
density profile as a function of the mean radius of an equipoten-
tial surface to a density profile as a function of the equatorial
radius of the same equipotential surface using the ToF 4-based
figure functions. Then I reduce the number of radial grid points
from N ∼ 12 000 to N ∼ 1000 by assuming a radial spacing that
decreases continuously from the middle to the boundaries. At
layer boundaries, the jump in density is conserved as illustrated
in Fig. 9.

1 One could of course use the CMS method right from the start; how-
ever, my current implementation of the CMS method runs orders of
magnitudes slower than my implementation of the ToF method. Given
the number of iterations necessary to fit both J2 and J4 according to
the procedure outlined in Nettelmann (2011), I evaluated the accuracy
gained as being not worth the enormous computational extra effort.
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Fig. 9. Conversion of the ToF 4-based density profile (black) to a dis-
crete grid as required by the CMS method, here illustrated for N = 50
(blue) and N = 100 (green).

Finally, Table 1 presents my results for the low- and high-
order J2n values of two models from Sect. 4.1, that is, for
Ptrans = 3 Mbar (model J17-3a) and 6 Mbar (model J17-6a),
and for one model that accounts for deep zonal winds through
the corrections to J2 and J4 for HAWD = 0.9 from Sect. 4.2
(model J17-4z). Resulting moments of order ≥6 are not affected
by the above described procedure within the number of digits
given in Table 1. This is shown by model variant (b), where the
J2 value to be fitted was shifted by the difference ToF 4 minus
CMS according to model variant (a). The results are compared
to the exact polytrope solution (Wisdom & Hubbard 2016), to
the DFT-MD-7.13 Jupiter model of Hubbard & Militzer (2016),
to the Juno measurements of Folkner et al. (2017), and to the
same data but corrected for deep zonal winds as proposed by
Cao & Stevenson (2017).

Perhaps most interestingly, the resulting values for J6 and J8
for a rigidly rotating Jupiter are within the current Juno observa-
tional error bars. This may indicate that the winds are shallow.
The J8 value of model J17-4z is also within the observational
error bar and the reduction of its |J8| value by a few percent
is much less than the few 10% estimate of Cao & Stevenson
(2017), whose ∆J8 estimate peaks for HAWD = 0.9 compared to
deeper (0.8) or shallower (0.975) depths. Furthermore, the high-
order J2n values of n = 1 polytropic Jupiter differ by about 10%
from the physical EOS-based Jupiter models. Thus it is impor-
tant to provide the latter class of models as done in this work and
in Hubbard & Militzer (2016).

6. Conclusions

To infer Jupiter’s internal density distribution, the relative accu-
racy in the computed values of J2 and J4 should be of the order
of 0.1% (Figs. 4 and 6). According to n = 1 polytropic models,
ToF 4 can provide this accuracy, while ToF 3 can do so only for
J2 (Figs. 1 and 2). The error in J2 (J4, J6) due to applying ToF 4,
as measured by the difference to the exact solution, is about 5×
(1/2×, 1/3×) the current Juno uncertainties for these parame-
ters. I conclude that these uncertainties are nevertheless suffi-
ciently small for predicting Jupiter’s internal density distribu-
tion. Other uncertainties, such as the thermal state, perhaps as a
result of helium rain, may induce larger unknowns in our under-
standing of Jupiter (Nettelmann et al. 2015; Hubbard & Militzer
2016; Mankovich et al. 2016; Wahl et al. 2017b).

The computed values of J6 and J8 of rigidly rotating Jupiter
suggest that zonal winds are restricted to regions well above a
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Table 1. High-order moments of different models for rigidly rotating Jupiter.

J2n Juno ToF-4 CMS-1000a,b CMS-1000a,b Polytropec CMS [HM16] Juno 0.9d CMS-1000e

[F17] J17-3a J17-3a/b J17-6a/b [WH16] DFT-MD 7.13 [CS17] J17-4z

J2/10−6 14696.514 ± 0.272 14696.6 14698.30a

14696.50b
14698.24a

14696.64b
13988.15 14696.43 14690.68 14692.26

−J4/10−6 586.623 ± 0.363 586.64 586.65 586.62a

586.63b
531.83 596.05 581.91 582.00

J6/10−6 34.244 ± 0.236 34.09 34.21 34.42 30.12 35.15 31.75 33.85
−J8/10−6 2.502 ± 0.311 2.732 2.460 2.491 2.132 2.546 1.335 2.433
J10/10−7 ... ... 2.021 2.057 1.741 2.10 ... 1.999
−J12/10−8 ... ... 1.821 1.860 1.568 ... ... 1.801

J14/10−9 ... ... 1.755 1.797 1.518 ... ... 1.736
−J16/10−10 ... ... 1.781 1.827 1.552 ... ... 1.762

J18/10−11 ... ... 1.883 1.934 1.656 ... ... 1.862

Notes. (a) Fit to J2 and J4 Juno data using ToF 4; (b) same as (a) but for J2 value to be fitted shifted by the difference ToF 4 minus CMS, values are
displayed only where different from (a); (c) Bessel solution for rigid rotation; (d) Juno data corrected for zonal winds based on Bessel solution for
the ∆J2n of polytropic model with wind depth HAWD = 0.9; (e) same as (a) but using the J2 and J4 values from (d).

References. [F17] = Folkner et al. (2017), [WH16] = Wisdom & Hubbard (2016), [HM16] = Hubbard & Militzer (2016), [CS17] =
Cao & Stevenson (2017).

depth of 7000 km (0.9RJ). Furthermore, application of the more
accurate CMS method in combination with the physical EOS
H/He-REOS.3 is found to yield higher-order |J2n| values that
are 10% higher than the prediction from the polytropic model
(Table 1).

Still, the internal structure of Jupiter remains poorly
constrained. Further insight might be gained from a Juno
measurement of the fluid Love number k2 and its considera-
tion in three-dimensional models for the gravity field (Wahl et al.
2017a).
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Table A.1. CMS results for linear density model.

J2n CMS-128 CMS-128 CMS-512
[H13] this work

J2/10−2 1.4798138 1.47981376 1.47978941
−J4/10−4 5.9269129 5.92691294 5.92726570

J6/10−5 3.4935680 3.49356798 3.49433822
−J8/10−6 2.5493209 2.54932089 2.55049835
J10/10−7 2.1308951 2.13089515 2.13255938
−J12/10−8 1.9564143 1.95641425 1.95871536

J14/10−9 1.9237724 1.92377252 1.92693981

Notes. All parameters are chosen as in [H13] = Hubbard (2013).

Appendix A: Linear density models with CMS

Hubbard (2013) provides the gravitational harmonics for a linear
density model with Jupiter-like parameters and N = 128. I use
that model to test my implementation of the CMS method. The
agreement is excellent for the given number of digits (seven in
H13; see Table A.1). However, a model with only N = 128 is not
yet converged as the same linear density model with N = 512
shows. Therefore, in order to obtain this good agreement with
the linear density model of H13, I had to choose the spacings
in equatorial radius dλi and the dimensionless density jumps δi
exactly as in H13. In particular (N. Movshovitz, pers. comm.),
λ0 = 1, λN = 0, δ0 = δN = 0, dλ = 1/(N − 1), λ1 = λ0 − dλ/2,
λi = λi−1 − dλ for i > 1, and δi = dλi for i ≥ 1. All other pa-
rameters were chosen as in H13, in particular q = 0.088822426,
Req = 71 492 km, and GM = 126 686 536 km3/s2.

Appendix B: ToF to fourth-order coefficients

I summarize the theory of figures of Zharkov & Trubitsyn (1978)
and then give the coefficients up to the fourth order. Consider a
spheroidal planet in hydrostatic equilibrium of density distribu-
tion ρ(r, ϑ) which is symmetric with respect to the axis of rota-
tion and the equatorial plane. As a result, there is no dependence
on azimuthal angle ϕ, and only even indices in the spherical har-
monics expansions survive. In this two-dimensional problem, a
surface of constant total potential U only depends on polar an-
gle ϑ. Different such surfaces rl(ϑ) are labeled by the level pa-
rameter l. In the ToF method according to Zharkov & Trubitsyn
(1978), l is taken to be the mean radius of the respective equipo-
tential surface as defined by the condition of equal volume,
(4π/3) l3 = 2π

∫ 1
−1 d cosϑ

∫ rl(ϑ)
0 dr′ r′2. Furthermore, any de-

pendence on (r, ϑ) is replaced by dependence on (l, ϑ) through
the expansion of rl(ϑ) into a series of Legendre polynomials
Pn(cosϑ) according to

rl(ϑ) = l

1 +

∞∑
n=0

s2n(l) P2n(cosϑ)

 , (B.1)

where the s2n(l) are the figure functions. The first-order devia-
tion from a spherical shape is described by s2, while s0 can be
determined with the help of the equal-volume condition to

s0 = −
1
5

s2
2 −

2
105

s3
2 −

1
9

s2
4 −

2
35

s2
2s4. (B.2)

The figure functions s2n are of nth order except s0 which is of
second order. In the following, I abbreviate the expression in
parenthesis in Eq. (B.1) by (1 + Σ) and set µ = cosϑ.

The total potential is composed of the gravitational potential
V(r) = −G

∫
d3r′ρ/|r′ − r| while the centrifugal potential reads

Q = − 1
2ω

2r2 sin2 ϑ. In the ToF it is convenient to capture the
centrifugal term due to the planetary rotation of angular rotation
rate ω by the small parameter m = ω2R3

m/GM, where Rm is the
mean radius of the outermost level surface. After expanding V
and Q into series of Legendre polynomials and replacing r by
Eq. (B.1), one can write

U(l, ϑ) = −
4π
3

G ρ̄ l2
∞∑

k=0

A2k(l) P2k(µ), (B.3)

where ρ̄ denotes the mean density 3M/(4πR3
m). On equipotential

surfaces, dU/dθ = 0 and thus A2k ≡ 0 for k > 0. This property
is used to determine the s2n, while A0 yields the total potential.
One finds

A0 =

(
1 +

2
5

s2
2 −

4
105

s3
2 +

2
9

s2
4 +

43
175

s4
2 −

4
35

s2
2s4

)
S 0

+

(
−

3
5

s2+
12
35

s2
2 −

234
175

s3
2+

24
35

s2s4

)
S 2+

(
6
7

s2
2−

5
9

s4

)
S 4

+ S ′0 +

(
2
5

s2 +
2
35

s2
2 +

4
35

s2s4 −
2
25

s3
2

)
S ′2 +

(
4
9

s4

+
12
35

s2
2

)
S ′4 +

m
3

(
1 −

2
5

s2 −
9
35

s2
2 −

4
35

s2s4+
22

525
s3

2

)
.

(B.4)

The functions S n and S ′n will be defined below.

B.1. From V to Dn, D′n and further to Sn, S′n, and Jn

The gravitational potential at a location (r, ϑ) in the planet sepa-
rates into an external potential r > r′ due to the mass distribution
ρ(r′, ϑ′) interior to r and an internal potential r < r′ due to the
mass distribution ρ(r′, ϑ′) exterior to r. The multipole expansion
of V reads

V(r, ϑ) = −
G
r

∞∑
n=0

(
r−2nD2n(r) + r2n+1D′2n(r)

)
P2n(µ). (B.5)

Using Eq. (B.1), the volume integrals Dn of the external and D′n
of the internal gravity field expansion take the form2

Dn(l) =
2π

n + 3

∫ l

0
dl′ρ(l′)

∫ 1

−1
dµ′ Pn(µ′)

drn+3

dl

D′n(l) =
2π

2 − n

∫ Rm

l
dl′ρ(l′)

∫ 1

−1
dµ′ Pn(µ′)

dr(2−n)

dl′
(n , 2)

D′2(l) = 2π
∫ Rm

l
dl′ρ(l′)

∫ 1

−1
dµ′ P2(µ′)

dln r
dl′
· (B.6)

With z := l/Rm, their dimensionless form is defined as

S n(z) =
3

4πρ̄ ln+3 Dn(l), S ′n(z) =
3

4πρ̄ l2−n D′n(l), (B.7)

2 In the representation by equipotential surfaces, r < l′ can happen for
the external field and r > l′ for the internal field. This does not pose
a problem here (Zharkov & Trubitsyn 1978) as long as the m-value is
sufficiently small (Hubbard et al. 2014).
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and can be written as

S n(z) =
1

zn+3

∫ z

0
dz′

ρ(z′)
ρ̄

d
dz′

[z′ n+3 fn(z′)]

S ′n(z) =
1

z(2−n)

∫ 1

z
dz′

ρ(z′)
ρ̄

d
dz′

[z′ 2−n f ′n(z′)]

S 0(z) =
m(z)
Mz3 · (B.8)

After application of partial integration and assuming dρ/dz to
be finite, the S n, S ′n adopt the convenient form for numerical
evaluation

S n(z) =
ρ(z)
ρ̄

fn(z) −
1

zn+3

∫ z

0

dρ
ρ̄

z′ n+3 fn(z′) (B.9)

S ′n(z) = −
ρ(z)
ρ̄

f ′n(z) +
1

z2−n

(
ρ(1)
ρ̄

f ′n(1) −
∫ 1

z

dρ
ρ̄

z′ 2−n f ′n(z′)
)

with

fn(z) =
3

2(n + 3)

∫ 1

−1
dµ Pn(µ) (1 + Σ)n+3,

f ′n(z) =
3

2(2 − n)

∫ 1

−1
dµ Pn(µ) (1 + Σ)2−n (n , 2) ,

f ′2(z) =
3
2

∫ 1

−1
dµ Pn(µ) ln(1 + Σ). (B.10)

By expressing powers of (1 + Σ) in terms of the binomial se-
ries expansions, and by further expanding powers of Σ into
linear series of Legendre polynomials and by making use of∫ 1
−1 dµ Pn(µ) Pm(µ) = 0 for n , m, the integrals in Eqs. (B.10)

can be solved analytically. The results for fn(z) and f ′n(z) are pro-
vided in Eqs. (B.16) and (B.17). Accordingly, the integrals S 2n
and S ′2n are of nth order. Finally, the gravitational harmonics are
obtained as

J2n = −(Rm/Req)2n S 2n(1). (B.11)

B.2. Coefficients in A2n for computing the s2n

Below, I give the coefficients that are of fourth order or lower af-
ter multiplication with m, S 2n, or S ′2n as occurring in the respec-
tive equations. They were generated by a C++ program written
by myself in 2004,

A2 =

(
−s2 +

2
7

s2
2 +

4
7

s2s4 −
29
35

s3
2 +

100
693

s2
4 +

454
1155

s4
2

−
36
77

s2
2s4

)
S 0+

(
1 −

6
7

s2−
6
7

s4 +
111
35

s2
2 −

1242
385

s3
2

+
144
77

s2s4

)
S 2 +

(
−

10
7

s2 −
500
693

s4 +
180
77

s2
2

)
S 4

+

(
1 +

4
7

s2 +
1

35
s2

2 +
4
7

s4 −
16
105

s3
2 +

24
77

s2s4

)
S ′2

+

(
8
7

s2 +
72
77

s2
2 +

400
693

s4

)
S ′4

+
m
3

(
−1 +

10
7

s2 +
9
35

s2
2 −

4
7

s4 +
20
77

s2s4 −
26
105

s3
2

)
.

(B.12)

To lowest order, s2 ≈−m/3, thus s2 is of first order in m,

A4 =

(
−s4 +

18
35

s2
2 −

108
385

s3
2 +

40
77

s2s4 +
90

143
s2s6 +

162
1001

s2
4

+
16 902
25 025

s4
2 −

7369
5005

s2
2s4

)
S 0 +

(
−

54
35

s2 −
60
77

s4 +
648
385

s2
2

−
135
143

s6 +
21 468
5005

s2s4 −
122 688
25 025

s3
2

)
S 2 +

(
1 −

100
77

s2

−
810

1001
s4 +

6368
1001

s2
2

)
S 4 −

315
143

s2 S 6 +

(
36
35

s2

+
108
385

s2
2 +

40
77

s4 +
3578
5005

s2s4 −
36

175
s3

2 +
90

143
s6

)
S ′2

+

(
1 +

80
77

s2 +
1346
1001

s2
2 +

648
1001

s4

)
S ′4 +

270
143

s2 S ′6

+
m
3

(
−

36
35

s2+
114
77

s4 +
18
77

s2
2 −

978
5005

s2s4+
36
175

s3
2−

90
143

s6

)
.

(B.13)
To lowest order, s4 ∼ m×s2, thus s4 is of second order in m,

A6 =

(
−s6 +

10
11

s2s4 −
18
77

s3
2 +

28
55

s2s6 +
72

385
s4

2 +
20
99

s2
4

−
54
77

s2
2s4

)
S 0 +

(
−
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11

s4 +
108
77

s2
2 −

42
55

s6 −
144
77

s3
2

+
216
77

s2s4
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S 2 +

(
−

25
11

s2 −
100
99

s4 +
270
77

s2
2

)
S 4

+

(
1 −
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55

s2

)
S 6 +

(
10
11

s4 +
18
77

s2
2 +

36
77

s2s4 +
28
55

s6

)
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+

(
20
11

s2 +
108
77

s2
2 +

80
99

s4

)
S ′4 +

(
1 +
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55

s2

)
S ′6

+
m
3

(
−
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11

s4 −
18
77

s2
2 +

34
77

s2s4 +
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55

s6

)
. (B.14)

To lowest order, s6 ∼ m×s4, thus s6 is of third order in m.

A8 =

(
−s8 +

56
65

s2s6 +
72

715
s4

2 +
490

1287
s2

4 −
84
143

s2
2s4

)
S 0

+

(
−

84
65

s6 −
144
143

s3
2 +

336
143

s2s4

)
S 2 +

(
−

2450
1287

s4

+
420
143

s2
2

)
S 4 −
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65

s2 S 6 + S 8 +

(
56
65

s6 +
56

143
s2s4

)
S ′2

+

(
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1287

s4 +
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143

s2
2

)
S ′4 +
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65

s2 S ′6 + S ′8

+
m
3

(
−

56
65

s6 −
56
143

s2s4

)
. (B.15)

To lowest order, s2n ∼ mn.

B.3. Coefficients for computing the f2n and f ′2n

f0 = 1

f2 =
3
5

s2 +
12
35

s2
2 +

6
175

s3
2 +

24
35

s2s4 +
40
231

s2
4 +

216
385

s2
2s4

−
184

1925
s4

2
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f4 =
1
3

s4 +
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(B.16)

f ′0 =
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42
143

s2s6

f ′8 =
3
17

s8 −
588

1105
s2s6 −

1715
7293

s2
4 +

2352
2431

s2
2s4 −

4536
12 155

s4
2.

(B.17)

Numerical values for the s2n and J2n for a given barotrope ρ(P)
can be obtained through an iterative procedure. For given val-
ues of the J2n and s2n, which can initially be zero, the den-
sity distribution ρ(l) is computed by numerical integration of
the hydrostatic balance equation dP/dl = −ρ(P)dU/dl using
Eq. (B.4), and by integration of the mass conservation equa-
tion dm/dl = 4π l2ρ(l). Given then ρ(l), new figure functions
are repeatedly calculated until convergence using Eqs. (B.12) to
(B.15), and then the J2n are calculated using Eq. (B.11). Con-
verged J2n values for a given barotrope require about six itera-
tions of this procedure.
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