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proposed  for  low  bit-rate  coding of 
speech.  In  the  present  paper,  we 
investigate  the  use of this  coding  method 
for  image  coding  and  study  its  different 
parameters.  We  show  that  it  is  not 
necessary  to  transmit  local  bias  values of 
the  image  frames.  We  also  show  that  the 
stochastic  excitation is not  adequate  to 
represent  the  prediction  residual  signal. 
In order to get  good  performance  from  this 
coder, it  is necessary  to  generate  the 
codebook  from  the  actual  prediction 
residual signal. 

1. Introduction 

Recent  trend in the  image  coding  area 
seems to be  to  borrow  concepts  from  the 
existing  speech  coding  techniques  and  do 
their  two-dimensional ( 2 - D )  extension  to 
develop  new image  coders.  Some examules  of 
the  coders  developed in this  fashion  are 
the  ADPCM  coder fl], the  sub-band  coder 
1 2 1 ,  the  vector  quantizer [ 3 , 4 1  , the 
multipulse exrjted  (MPE)  coder 151  and the 
regular  pulse excited  (RPE)  coder 161. 

Tn the  speech  coding  area,  the  linear 
prediction  (LP)  analysis  technique  has 
been  very  popular  over  the  last  several 
years 1 7 , 8 1 .  In  the  LP-based  speech 
coders,  the  short-time  sueech  suectrum is 
represented  by a few  LP  coefficients  and 
the  residual  signal  obtained  by  passing 
the  speech  signal  through  the L P  inverse 
filter is modelled and quantized.  In  the 
earlier  LP-based  speech  coders [ 9 ] ,  the 
modelling  and  quantization  are  done in 
such  a  manner  that  the  difference  between 
the  unguantized  and  quantized  residual 
signal  is  minimum.  However,  the  present- 
day  LP-based  speech  coders r10-133 model 
and quantize the  residual  signal in such  a 
manner  that  the  uerceptually-weiqhted 
difference  between  the  original  and  the 
reconstructed  speech is minimized.  This 
allows  graceful  degradation  in  the 
performance of the  present-day  coders  with 
decrease in the  bit-rate;  as  opposed  to 
drastic  degradation in the earlier coders. 
Examples of the  present-day  speech  coders 

In  the  multipulse  excited  (MPE) 
speech  coder fl01, the  residual  si-gnal is 
model  led  as a sequence  of  pulses.  The 
model  parameters  (pulse  positions and 
amplitudes)  are  determined  from  the  speech 
signal  by  an  analysis-bv-synthesis 
procedure  which  estimates  one  pulse  at a 
time  and is sub-optimum in nature.  These 
model  parameters  (pulse  positions and 
amplitudes)  are  scaler-quantized.  Though 
the  model-parameter esti.mation  procedure 
is  sub-optimllm, it tries  to  minimize  the 
perceptual  difference  between  the  original 
and  the  reconstructed  speech.  Because  of 
this,  the  MPE  coder  gives  good  quality 
speech  at  medium  bit-rates (9.6-16 
kbits/sec).  But,  it  can  not  be  used  for 
low  bit-rate (4.8 kbits/sec)  coding  of 
speech.  The  MPE  coding  has  been 
successfullv  extended  to  image  coding by 
Horn  et al. (51 , where it can  produce  good 
q u a l i t y   i m a g e s   a t  a bit-rate  of 1 
bit/pixel.  However,  it  has  not  been 
possible  to  apply  the MPF: coding  for 
images  €or  lower  bit-rates  because  the 
quality  deteriorates  drastically. 

Recently,  the  stochastic  excited 
coding of speech  has been  proposed for low 
bit-rate  coding  at 4.8 kbits/sec 1131.  
Here  the  prediction  residual  signal is 
modelled  by a sequence of random  Gaussian 
numbers.  Both  modelling  and  quantization 
of  the  residual  signal is done in such a 
way  that  the  Derceptually  meaninqful 
difference  between  the  original  and  the 
reconstructed  speech  is  minimum.  The 
concept of codebook  coding  (or,  vector 
quantization) is  used  here  for  efficient 
quantization.  In  the  present  paper,  our 
aim is to  explore  the  STE  coding  method 
for  image  coding.  Though  the  STE  coding is 
computationally  very  expensive,  recent 
reduction in cost and increase in speed of 
digital  signal  processing  hardware  have 
encouraged us to  investigate  the  STE 
coding  method  for  coding  images  at low 
bit-rates (<0.5 bit/pixel). 
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2. The STE image coder 

A .  Model 

In  the  STF  image  coder,  the  image  is 
synthesized  at  the  receiver  using  the 
model  shown in  Fig. 1. Here,  x(m,n) 
denotes  the 2-D seuuence  representing  the 
image  intensity  samples.  Since  all  the 
image  intensity  samples  are  positive, a 
bias  term R is introduced in the  model. 
For  synthesizing  the  image  signal,  an 
optimum  codevector is selected  from  the 
codebook and multiplied by  a suitable  gain 
factor G to  derive  the  excitation  signal 
u(m,n)  to  the  LP  synthesis fi!.ter 
H ( 2 )  = 1 / A  (z,w) where 

A(z,w)=l- 5 2 a(k,l)z-kw-l. 
k I  

( k , I ) € R  
Here, {a(k,l)l are the  LP coefficients and 
R is the  reqion  of  support  of  the 
predictor.  The  difference  equation 
describing  the  synthesis  of  the  image 
signal is given by 

(k,l) €R 
In this  model of image  synthesis,  the 

required  parameters  are  bias  coefficient 
B, LP coefficients  Tafk,l)l,  address of 
the  optimum  codevector and the  gain  factor 
G. These  parameters  have to be  computed 
from the  image  signal Ix(m,n)}, quantized 
and  transmitted  to  the  receiver.  The 
urocedures for  computing  these  parameters 
and  their  subseuuent  quantization  are 
described  be 1 ow. 

B. Estimation of bias and LP  coefficients 

For  computing  the  bias  and  the  LP 
coefficients,  the  total  image is divided 
into  non-overlapping  analysis  frames 0 6  
size  (MxN).  The  bias  coefficient B is 
computed  for  each  of  these  analysis  frames 
as a local  mean of intensity s a m ~ l e s  and 
quantized  uniformly  using 7 bits. 

For  computing  the LP coefficients for 
each  of  the  analysis  frames,  the  region R 
of support of predictor is assumed  here  to 
be causal,  though  the  spatial  causality is 
n o t   a n   i n h e r e n t   p r o p e r t y  o f  i m a g e  
formation.  The  region R is taken  here  to 
be a f Q x Q )  quarter-plane  such  that 

predictor  order P is related  to Q by P= 
Q2-1. I n  the  present  study,  we  have 
considered  only  the  third  order  linear 
predictor,  because  higher-order  linear 
predictor  does  not  increase  the  prediction 
gain  appreciably [l]. 

R={fk,l); O,<k,l<Q-l  and  fk,l)=(B,a)l. The 

T h e   t h r e e   L P   c o e f f i c i e n t s   a r e  
determined  from  the  image  data in the 
analysis  frame  by  m~nimizing  the  total- 
squared  value E of  the 2 - D  prediction 
residual  signal 

M N  

rn=2 n=z 
P =  2 2 fe(m,n) 1 2 , 

where 

where 

y(m,n)=x(m,n)-B. 

This  minimization  leads to  a set  of  linear 
equations  which  can  be  solved to determine 
the  LP  coefficients.  This  method  of 
estimating  LP  coefficients is known  as  the 
covariance  method [11. There is another 
m e t h o d   o f   L P   a n a l y s i s ,   n a m e l y   t h e  
autocorrelation  method,  which  differs  from 
the  covariance  method in terms  of  limits 
of  summation in the  above equation. Other 
details  about  this  method  can be  found in 
1 1 1 .  

F o r   q u a n t i z a t i o n   o f   t h e   L P  
coefficients,  each  LP  coefficient  is 
transformed  into  log  area  ratio  (as  done 
in  speech  coding [ 8 ] )  to  get  uniform 
spectral  sensitivity.  Rach  log  area  ratio 
coefficient is then  uniformly  quantized 
using 6 bits. 

C. Estimation  of  the  optimum  codevector 

For  computing  the  address and gain of 
the  optimum  stochastic  codevector, the LP 
analysis  frame  of  image  is  divided  into 
non-overlappinq  search  sub-frames of size 
(IxJ)  such  that M/I and N/J are  positive 
integers. As mentioned  earlier, in the  STE 
coder,  the  residual  image  signal  is 
represented  by a sequence  of  Gaussian 
random  numbers. So a codebook  of L 
codevectors  is  constructed  here  from  the 
Gaussian  random  numbers and stored  both  at 
the  transmitter and the  receiver. 

In  order  to  find  the  optimum 
codevector  which  represents  the  residual 
image  signal,  an  exhaustive  search 
procedure  shown in Fig. 2 is used. Here, 
a l l   t h e   c o d e v e c t o r s   a r e   p r o c e s s e d  
sequentially  one at  a  time. Each component 
of a codevector is scaled  by a gain  factor 
G which  remains  constant  for  the  (IxJ) 
long  stochastic  search  sub-frame  and is 
reset  to a new  value  for  the  next  sub- 
frame. The  components of scaled  codevector 
are  filtered  through  an  LP  synthesis 
filter  and  the  bias  coefficient is added 
to  each  of them. The  synthesized  image 
s a m p l e s   a r e   c o m p a r e d   w i t h   t h e  
corresponding  original  image  samples  to 
form a difference  signal.  The  difference 
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signal  representing  the  objective  error is 
further  processed  by  another filter  which 
makes  this  error  perceptually  more 
meaningful  for  a  human  observer.  (The 
transfer  function  of  this  perceptual 
weighting  filter  can  be  derived  from  the 
existing  knowledge  of  the  human  visual 
perception  system.  However, in the  present 
study,  this transfer  function is taken to 
be unity.) The  perceptually-weighted 
total-squared  error is found over  the  sub- 
frame  for  each ~f the L stochastic 
codevectors  in  the  codebook  and  the 
optimum  codevector is selected  as  the  one 
which  results in least  weighted-error. The 
gain  factor G of the  optimum  codevector is 
also  computed  by  minimizing  the 
perceptually-weighted  total-squared error. 
This  is  given by 

G = Z  Zy(i,i)y(i,j)/ 2 2 (C(i,j)1*, 

where {y(i,j)l and !y(i,i)l are  the  bias- 
A 

subtracted  original  and  synthesized 
images. The  logarithmic  value  of  gain 
factor G is uniformly  quantized  using  6 
bits.  In  order  to  facilitate  the 
transmission of address of the codevector, 
the  codebook  size is taken  to  be  a  power 
of 2. For  L=1024,  the  total  bit-rate  of 
the  STE  image  coder is  0.274 bit/pixel. 

I J  A I J  

i = l  j.1 i Z 1  j = 1  

3 .  Resul ts  

The  STE  coder is studied  here  on  a 
number  of  512 x 512  images.  Different 
parameters  used in this  coder  are  listed 
in Table 1. The  performance o f  the  STE 
coder is evaluated in terms of signal-to- 
noise  ratio  1141.  For  the  values O F  
parameters  listed in Table 1, the  STE 
coder  results in an  SNR  of 19.5 dB  which 
is not  very  encouraging. 

We  have  tried  to  study  the  effect of 
various  parameters  on  the SNR  performance 
of  the  STE  coder.  In  order  to  see  whether 
the  introduction of bias  term is necessary 
in the  STE model  shown in Fig. 1, we  study 
the  performance o f  the  STE  coder  with  and 
without  bias term. The  SNR  results  are 
found  to  be 19.51 dB  with  bias  term  and 
20.36 dB  without  bias term. Thus,  the  use 
of bias  term in the  STE  coder  deteriorates 
its  image  quality.  In  addition, i t  
r e q u i r e s  6 bits  per  frame  for  its 
transmission. So, it will be better  not to 
transmit  the  frame-bias  values. 

Next,  we  study  the  effect of 
d i f f e r e n t   m e t h o d s   ( c o v a r i a n c e   a n d  
autocorrelation  methods) of LP analysis on 
the  performance  of  the  STE  coder.  The  STE 
coder  results in an  SNR  of 2c1.36 dB  for 
the covariance method and 20.24 dB  for  the 
autocorrelation  method.  In  addition, it 
might  be  noted  that  both  the  covariance 
and  autocorrelation  methods  for  2-D  LP 
analysis  do  not  guarantee  the  stability of 
the  LP  synthesis  filter. S o  from 
performance ~oint-of-view, the  covariance 
method is Dreferable for  2-D LP  analysis. 

u(rn,n l / A ( z , w )  

Fig. 1. Receiving  end  of  the  STF  image 
coder. We  have  also  studied  the  effect  of 

larger  codebook  s;zes  on  the  performance 

B and LP 
computation 

- Fig. 2. Transmitting  end  of  the S T G  imaqe 
coder. 

Table 1. Parameters of STE  imaqe  coder 

Image  dimension 

Image  gray  levels 

LP  analysis  frame (MxN) 

LP Order  (P) 

LP  analysis  method 

Search  sub-frame  (IxJ) 

Weighting  filter (W) 

Codebook  size  (L) 

Total  bit-rate 

512x512 

256 

32x32 

3 

Covariance 

8x8 

Unity 

1024 

R .  274 bit/Dixel 

1 
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of  the  STE  coder.  The  SNR  results  are 
20.36 dB  for  L=lQ24, 20.41 d B  for  L=2048 
and 21.29 dB  for  L=4096.  Though  the S N R  
performance  improves  with  the  codebook 
size, it  is still  not  very  satisfactory 
even  for  L=4096.  From  this,  we  conclude 
that  the  stochastic  model is not  good  to 
represent  the  Prediction  residual  signal. 

In  order  to  improve  the  performance 
of the  coder,  we  have  tried  to  use 
codebook  generated  by  using  the  Linde- 
Buzo-Gray  algorithm r151 on  the  training 
data  consisting  of  the  actual  residual 
signal.  For  L=256,  1=4  and  J=4,  it 
resulted in SNR improvement  of 4.8  dB. 

4 .  Conclusion 

In  the  oresent  paper,  the STF: coding 
method is studied  for  image  coding  at low 
bit  rates (0.274 bit/pixel).  It is shown 
that  it is not  necessary  to  include  bias 
term in the  STE  model.  It is also  shown 
that  the  stochastic  model is not  adequate 
for  representing  the  prediction  residual 
signal.  For  getting  better  performance, it 
is necessary  to  generate a codebook  from 
the  training  data  consisting  of  the 
residual  signal. 
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