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Low bit-rate Speech Codec

based on a Long Term Harmonic plus Noise Model
F. Ben Ali∗, S. Djaziri-Larbi, L. Girin,

Abstract

The long-term harmonic plus noise model (LT-HNM) for speech shows an interesting data compression, since it exploits
the smooth evolution of the time trajectories of the short-term harmonic plus noise model parameters, by applying a discrete
cosine model (DCM). In this paper, we extend the LT-HNM to a complete low bit-rate speech coder. A Normalized Split Vector
Quantization (NSVQ) is proposed to quantize the variable dimension LT-DCM vectors. The NSVQ is designed according to the
properties of the DCM vectors obtained from a standard speech database. The obtained LT-HNM coder reaches an average bit-rate
of 2.7kbps for wideband speech. The proposed coder is evaluated in terms of modeling and coding errors, bit-rate, listening quality
and intelligibility.

Index Terms

Low bit-rate, speech coding, long term modeling, harmonic plus noise model, variable dimension vector quantization.

I. INTRODUCTION

In speech/music coders and analysis/synthesis systems, spectral modeling is generally made on a short-term (ST) frame-by-

frame basis: every 20ms or so. This is the case for most spectral models, including the linear prediction (LP) model [1] and

the sinusoidal model [2], [3]. The main justification of the ST processing is that the signal is only locally (quasi-) stationary

and in interactive applications, the segmentation is necessary for quasi-real-time processing.

For speech signals, the evolution of the vocal tract configuration and glottal source activity is quite smooth and regular for

many speech sequences. Therefore, high correlation between successive ST spectral parameters has been evidenced and can be

exploited, especially in coding applications. For example, inter-frame LSF correlation is exploited in the LP coding schemes

of [4] and in matrix quantization [5]. In parallel, some studies have attempted to explicitly take into account the smoothness

of LP spectral parameters evolution in speech coding techniques [6].

In all those studies, the interframe correlation has been considered “locally”, that is, between only two (or three for

matrix quantization) consecutive frames. This is mainly because full-duplex telecommunications require limiting the coding

delay. This constraint can be relaxed in many other applications in half-duplex communication, storage, or transformation

and synthesis. These applications include archiving, Text-to-Speech modificatin/synthesis, telephony surveillance data, digital

answering machines, electronic voice mail, digital voice logging, electronic toys and video games [7]–[9].

In particular, transformation and synthesis of speech in the decoder is an important application with relaxed delay constraints.

Transformation systems need an efficient and flexible representation of signals and a flexible access to the parameters for

easy manipulation of the signal in the decoder. In MPEG-4 Parametric Audio Coding, audio signals (speech and music) are

represented by object-based models (harmonic tones, individual tones and noise). This representation of signals by frequency

and amplitude parameters permits simple and independent pitch and playback speed modifications at the decoding stage [10]–

[12].

In such applications, the analysis-modeling-coding-synthesis process can be considered on larger signal windows, i.e. on

what is referred to as a long-term (LT) section of signal in the following. In that vein, the Temporal Decomposition technique

[13], [14] consists of decomposing the trajectory of spectral (LP) parameters into “target vectors” which are sparsely distributed

in time and linked by interpolative functions. This method has been applied to speech coding [15], and it remains a powerful

tool for modeling the temporal structure of speech signals. Following another idea, the authors of [16] proposed to compress

matrices of LSF parameters using a two-dimension (2D) transform, e.g. a 2D Discrete Cosine Transform (DCT), similarly to

block-based image compression. They provided interesting results for different temporal sizes, up to 20 (10ms-spaced) LSF

vectors. A major point of this kind of method is that it jointly exploits the time and frequency correlation of LSF values.

More recently, Dusan et al. have proposed in [17] to model the trajectories of ten consecutive LSF parameters by a fourth-

order polynomial model. In addition, they implemented a very low bit rate speech coder exploiting this idea. At the same

time, it was proposed in [18] to model the LT trajectory of sinusoidal speech parameters (the phase and the amplitude of

each harmonic) with a Discrete Cosine Model (DCM). In contrast to [17], where the length of parameter trajectories and the

order of the model were fixed, in [18] the long-term frames are continuously voiced sections of speech, which exhibit very

variable size and “shape”: such a section can contain several phonemes or syllables. Therefore, the LT-DCM is adjusted to
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the characteristics of the modeled speech section, resulting in a variable trajectory size and model order, compared to the

ten-to-four conversion of [17]. In [19], this adaptive scheme was extended to the LT-modeling of spectral envelope parameters,

leading to a so-called 2D-cepstrum. Again, only voiced speech sections were processed, and they were considered as purely

harmonic. The LT-DCM modeling has also been extended to LSF parameters in [20], including quantization aspects and the

processing of both voiced and unvoiced sections.

An important extension of the LT-modeling within the sinusoidal framework has been proposed in [21], [22] based on the

two-band Harmonic+Noise model (HNM) of [23]. Such HNM is particularly appropriate for modeling mixed voiced/unvoiced

speech signals. In [21], [22], the DCM has been applied to the trajectories of the two-band HNM model parameters: the spectral

envelope that here encompasses both harmonic and noise amplitude parameters, the fundamental frequency F0, and the voicing

cut-off frequency FV that separates the low-frequency harmonic band and the high-frequency noise band. The results of [21],

[22] have thus generalized the modeling of the spectral envelope to any harmonic/noise combination, and has introduced the

LT modeling of the FV parameter.

In the present paper, we extend the LT-HNM presented in [21], [22] to a complete low bit-rate LT-HNM speech coder by

addressing quantization issues. Before entering into technical choices and details, it can be noted that, although the sinusoidal

model and its different variants (including the HNM) have shown good performance in various speech processing applications

such as speech transformation and synthesis [23]–[26], only a few works have attempted to implement a speech codec based on

the ST sinusoidal model. This can be due to the difficulty of coding variable-size sets of amplitudes, and possibly frequencies

and phases, especially if no harmonicity is assumed.

In [27], spectral amplitudes and corresponding frequency positions are gathered in pair-vectors and coded using a vector

quantization, while phases are scalar quantized. The obtained speech codec provides bit-rates in the range of 3.75–7.75 kbps

for narrowband speech. A low bit-rate narrowband 2.4/4.8kbps speech codec based on the ST sinusoidal model is presented

in [28]. To reduce the parameter set, the sinusoidal components are forced to fit a harmonic model for voiced speech as

well as for unvoiced speech (a low fundamental frequency is chosen for noise representation). Harmonic amplitudes are then

transformed to a fixed length cepstral parameters set and transformed back to frequency domain for DPCM (Differential Pulse

Code Modulation) quantization.

The objective of this paper is to present a methodology for the design of a (very) low-bitrate long-term speech coder based

on the Harmonic + Noise Model, and using existing ST-HNM analysis-synthesis methods and our previous work on long-term

spectral modeling. In the present paper we thus focus on quantization aspects.

More specifically, the novelty lies in the vector quantization of the LT-DCM vectors that model the time trajectories of the

ST-HNM parameters. A main challenge is to cope with the dimension variability of the LT-DCM vectors across LT-sections

(in addition to the dynamic variability). Therefore, the proposed LT-HNM coder focuses on the design of a vector quantization

stage directly fitted to the properties of the LT-DCM coefficients, especially their dimension variability and their dynamics.

In the literature, different quantization methods are proposed, taking into consideration these two properties: i) a mean-gain-

shape approach [29] is used when the coefficient values have a large dynamic, and ii) a split vector quantization technique is

proposed to face the variable vector dimension [30]. We follow this general line, and we propose to apply a normalized split

vector quantization (NSVQ) technique to quantize the LT-DCM vectors corresponding to the LT time-trajectories of spectral

amplitudes, fundamental frequency and voicing cut-off frequency. In the core of the paper, we motivate the choice for this

technique, w.r.t. other possible solutions.

Importantly, it must be made clear that the objective of this paper is not to design and thoroughly evaluate the best possible

long-term coder, nor it is even to show that the HNM is the best short-term model candidate to be integrated in the LT

framework for such a task. Rather, it is to show the feasibility and potential efficiency of the long-term approach to speech

coding in the HNM framework, i.e. we want to show that the long-term approach can lead to a LT-HNM coder that is more

efficient than the ST-HNM (with similar ST parameterization) in terms of quality/bitrate ratio (postulating that the delay is not

an issue in the targeted applications).

The paper is organized as follows. In Section II, a summary of the ST-HNM is given to introduce the parameters to be

LT-modeled. An overview of the LT-HNM, relying on previous work, is presented in Section III. In Section IV, we present the

proposed NSVQ approach for the LT-DCM vectors. Statistics of LT-DCM vectors properties and the design of the quantization

stage are presented and discussed in Section V. Experimental results related to coding errors, listening quality, intelligibility

measure and obtained bit-rates are presented and discussed in Section VI.

II. SHORT TERM HARMONIC PLUS NOISE MODEL (ST-HNM)

The HNM concept has been first proposed in [31] as the multi-band excitation model: it splits the frequency band into

voiced and unvoiced sub-bands, where voiced sub-bands are modeled by harmonic components, whereas unvoiced bands are

modeled by (colored) noise. This model is dedicated to represent sounds with a mixed harmonic/noise structure, such as mixed

voiced/unvoiced sounds of speech. This model inspired the two-band HNM and the residual error HNM, both proposed by

Stylianou et al. in [23], [32].

In this study, we used the two-band ST-HNM presented in [21], [22], based on the generic two-band HNM of [23]. The

frequency band is split into two sub-bands, as illustrated by Fig. 1: a harmonic sub-band containing harmonics of the speech
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Fig. 1: Two-band HNM: harmonic lower sub-band containing harmonics of F0 and noise upper sub-band.
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Fig. 2: Example of temporal segmentation of speech into voiced (V) and unvoiced (UV) LT-sections.

signal (low frequencies), and a noise sub-band containing high frequency noise components. These two bands are separated

by a time-varying voicing cut-off frequency FV , which is the last harmonic frequency in the harmonic band. In this model,

the speech signal is segmented into short-term frames with a duration of 30ms and a fixed hop-size of 20ms, as in [22]. The

ST-HNM parameters are extracted from each ST-frame, as detailed in [22]. For each ST-frame, these parameters are:

• Fundamental frequency F0: F0 is obtained for each ST-frame using the autocorrelation-based method of [33].

• Voicing cut-off (VCO) frequency FV : FV is computed only for voiced ST-frames using the technique given in [34].

For unvoiced frames, FV is set to zero. Since FV is the frequency of the last harmonic in a ST-frame, we have: FV (k) =
IkF0(k), where Ik and F0(k) are respectively the number of harmonics and the fundamental frequency in the kth ST-frame.

• Harmonic parameters: For each kth ST-frame, a harmonic amplitude vector with size Ik is obtained by the iterative

analysis-by-synthesis method described in [3]. The corresponding harmonic frequencies are obtained by multiplying F0(k)
by the harmonic order.

• Noise parameters: The noise band is modeled by the sum of sinusoids at different noise frequencies. For each ST-frame,

noise amplitudes and frequencies are obtained by a peak-picking technique, similar to that used in [2].

III. LONG TERM HARMONIC PLUS NOISE MODEL (LT-HNM)

The aim of the LT-modeling of ST-parameter time-trajectories is to capture the temporal correlation between successive

ST-parameters. This has the advantage to reduce significantly the size of the model data. The implementation of the LT-HNM

is detailed in [21], [22]. We summarize in the following the LT modeling steps.

A. Segmentation of the speech signal into LT-sections

The speech signal is first segmented, according to F0 values, into LT-sections, i.e. blocks of ST-frames of variable duration,

based on voiced/unvoiced decision. Each LT-section is either entirely voiced (F0 6= 0 for all successive frames) either entirely
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unvoiced (F0 = 0 for all successive frames). Typically, the duration of a long-term section can be several hundreds of

milliseconds, and may contain up to ca. 60 ST-frames. This temporal segmentation is illustrated in Fig.2. The LT-model is

then applied to the trajectories of ST-parameters along each LT-section.

B. Discrete Cosine Model (DCM) for the LT-modeling of the ST-HNM parameters trajectories

This study is based on the DCM to model the time-trajectories of the ST-HNM parameters within a LT section. The DCM

approaches the data by a discrete sum of cosine functions. This model was first used for cepstral modeling in [28], [35]. Then

it was applied to the LT modeling of harmonic parameters in [18], [19] and LP parameters in [20]. The DCM is defined as

follows:

X̃(n) =
P∑

p=0

C(p) cos(pπ
n

N
), n = 1, · · · , N, (1)

where the vector X̃ = [X̃(1), · · · , X̃(N)]T is the DCM model of the data vector X, both of length N and indexed by n.

C = [C(0), · · · , C(P )]T is the DCM vector of P + 1 coefficients, where P is the DCM order. In cepstral modeling, X

represents the log-spectrum amplitudes and n is a frequency index [35]. In LT-modeling, X contains the time-trajectory of a

parameter and n is a time index. In a general manner, the DCM exhibits a good numerical stability compared to other models,

especially the polynomial model when P becomes large.

In [21], [22], a detailed description of the application of this model to the trajectories of the ST-HNM parameters is given.

The LT-DCM coefficients C are computed by minimizing a Weighted Mean Square Error between model and data. Two

iterative algorithms are proposed in [22] to determine the optimal model order. A first “1D” iterative algorithm is applied to

the trajectory of F0 on each LT (voiced) section, to provide the optimal LT-DCM coefficient vector CF0
. This algorithm is

also applied to the trajectory of the voicing cut-off (VCO) frequency FV to provide CFV
. For the LT modeling of the spectral

amplitudes, harmonic and noise amplitudes in a ST-frame are first gathered in a unique vector. Then a two-dimension DCM

is applied. The first DCM is applied within each ST-frame along the frequency axis (the same model order is used for all

ST-frames in a LT-section). The second DCM is a time-dimension DCM along a LT-section, applied to the time-trajectory of

each coefficient obtained from the first frequency-domain DCM. For each LT section, we obtain a LT-DCM coefficient matrix

denoted CA. The first dimension of the matrix, is the frequency DCM order plus 1, and the second dimension, is the temporal

DCM order plus 1. Both orders are determined by the iterative algorithm presented in [22]. This 2D-DCM can be seen as an

extension of the 2D-cepstrum of [19] to the HNM model.

C. LT-HNM speech synthesis

The time-trajectories of the LT-modeled ST-HNM parameters are obtained from the LT-DCM coefficients CF0
, CFV

and

CA by applying (1).1 The mathematical details are given in [21]. The HNM synthesized speech signal is the summation of a

purely harmonic signal and a noise-like signal as detailed in [21]. Harmonic amplitudes are obtained by sampling the modeled

spectrum at harmonic frequencies (multiples of the modeled F0), while a regular sampling of the noise sub-band is used to

obtain the noise amplitudes and noise frequencies. Harmonic amplitudes are linearly interpolated across frames, and cumulative

instantaneous phases are approached by a continuous summation of harmonic frequencies (multiplied by 2π) with null initial

phases for each harmonic trajectory. The noise-like signal is synthesized using an overlap-add technique, with random phases,

similar to [3].

IV. LT-DCM COEFFICIENTS CODING

In this section, we present the core contribution of the present paper, i.e. the coding techniques that we applied to our LT-

HNM in order to derive a complete LT-speech coder. The parameters to be coded and sent to the receiver for each LT-section

are: i) the LT-DCM coefficients of the HNM parameters trajectories (CF0
, CFV

and CA), and ii) the LT-section length K

(the numer of ST-frames in a LT-section), which is required for synthesis. For simplicity, and when appropriate, we use in the

following a common and simplified notation C for all DCM vectors, i.e. CF0
, CFV

and the rows of CA. We propose to apply

a mean-gain-shape vector quantization (VQ) to the LT-DCM coefficient vectors C, while a binary representation is used for

the LT-section length K . Note that the Discrete Cosine Transform (DCT), which is close to DCM, has been widely used in

image and video coding [36] and a modified DCT (MDCT) is used in some high quality audio coders as the MPEG-2 AAC

standard [37]. However, to our knowledge, no previous studies dealt with the quantization of DCM coefficients for speech

applications.

A. Scalar quantization of mean LT-DCM coefficient

To guide our choices for the design of the LT-DCM quantizers, we first observed the distribution of the LT-DCM vector

coefficients. For this aim, we applied the LT-HNM on the training speech material described in Section V-A. This resulted in

1For spectral amplitudes, (1) is first applied on the time axis, and then on the frequency axis for each ST-frame.
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a database of LT-DCM coefficients composed, for each training LT-section, of two LT-DCM vectors, CF0
and CFV

, and one

LT-DCM matrix CA. Fig. 3 shows the histograms of the first LT-DCM coefficient of CF0
(a), of CFV

(c) and of the rows of

CA (e), compared with the histograms of the remaining coefficients of the LT-DCM vectors (Fig. 3 (b), (d) and (f)). The first

coefficient of each LT-DCM vector CF0
and CFV

, denoted C(0), is significantly higher than the other values of the vector,

since it represents the mean value of the modeled data trajectory. We note that this property is not noticeable in the case of

CA coefficients. We can see for example that the first coefficient CF0(0) of CF0
exhibits a bimodal distribution with modes

at typical average F0 values for male and female speech. Consequently, the first coefficients C(0) are discarded from the

vector quantization in order to increase its efficiency. Let us denote the new coefficient vectors and matrix rows (without the

first coefficient C(0)) by ĊF0
, ĊFV

and ĊA (Ċ in generic form). Applying the mean-shape principle of vector quantization,

the first coefficient C(0) of each LT-DCM vector is coded separately using scalar quantization (the “shape” coding of Ċ

is presented in the next subsection). Optimal scalar quantizers adapted to the statistical properties of the C(0) database are

designed by applying the Lloyd-Max algorithm [30].

B. Dimension variability of the remaining LT-DCM vectors

The LT-DCM vectors Ċ (be it ĊF0
, ĊFV

or a row of ĊA) have variable dimension, due to the variable duration of LT-

sections and to the dynamics of the time trajectories of the HNM parameters. Therefore, variable LT-DCM orders are obtained

to reach the target LT-modeling errors. Fig. 4 shows the length variability of the LT-DCM vectors: The LT-model order is very

scattered within the range [1, 30]. We thus deal with a variable dimension vector quantization problem, with possibly long

vectors.

In the literature, some studies address the quantization of variable dimension vectors and propose some solutions adapted

to each case of study. A non square transform vector quantization (NSTVQ) is proposed in [38], [39] to code harmonic



6

sub-vectors
split into

Ċ
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amplitudes of the excitation in a LP codec: a non square linear transform is applied to the variable dimension vectors in order

to obtain fixed length vectors which are then submitted to VQ. Another solution used for coding variable dimension harmonic

amplitude vectors, and called Variable Dimension Vector Quantization (VDVQ), consists in designing a single universal fixed

length codebook and using a binary selector vector that points on the non zero components of the harmonic amplitude vectors

[40], [41]. In [42], the frequency scale is transformed from Hertz to Mel scale to obtain fixed-length harmonic amplitude

vectors. The latter solution cannot be used in the case of the LT-HNM as it solves the dimension variability problem only

on the frequency scale. The limit of the VDVQ is that the maximum vector length must be fixed, while in our case the

maximum discrete cosine model order is controlled by the analysis-synthesis fitting of the model to the data. Concerning the

NSTVQ, the proposed LT-HNM incorporates already one (two in case of spectral amplitudes) non square transform (the DCM)

applied to each parameter leading to “decorrelated” and “energy-concentrated” coefficients: adding an additional non square

transform prior to quantization may dangerously increase the information loss. In the following section, we develop a variable

dimension vector quantization fitted to the particular constraints of the LT-HNM and to the particular characteristics of the

DCM coefficients, referred to by the Normalized Split Vector Quantization (NSVQ).

C. Proposed Normalized Split Vector Quantization

The proposed NSVQ quantizer for the remaining DCM vectors Ċ is summarized in Fig. 5. As the LT-DCM vectors

corresponding to F0, FV and spectral amplitudes A have similar characteristics, the same type of quantizer is applied to all

of them, although a code-book is designed for each of them. Due to the shape and length variability of the DCM vectors, the

proposed quantization technique is based on mean-gain-shape quantization and split vector quantization. The mean-gain-shape

technique implies that we work with normalized coefficients, and the splitting technique consists in splitting a long vector into

several sub-vectors [43], as shown on Fig. 5.

1) Normalization of the LT-DCM coefficients: The amplitude envelope of the coefficients within a given LT-DCM vector

Ċ typically decreases with the coefficient rank. This results in an important variation of the DCM coefficient values across

successive sub-vectors when splitting a DCM vector for quantization. In order to optimize the efficiency of the quantization

codebook, we propose to normalize the LT-DCM vectors, such that all DCM coefficients vary in the same range, here in

[−1, 1]. The purpose of the shape normalization is to facilitate the coding of all sub-vectors with the same codebook. In other

words, the normalization enables to reduce the size of the codebook for a similar coding efficiency. We propose to apply the

following vector normalization:

C̄i(j) =
Ċi(j)− µj

βj

, j = 1, . . . , max
i

{Pi}, (2)

where Ċi and Pi refer respectively to the LT-DCM vector indexed by i and the corresponding model order. µj and βj are

respectively the mean value and the maximum (absolute centered) value of all DCM coefficients of rank j in the training

database, given for j = 1 to max
i

{Pi} by:

µj =
1

card{Mj}

∑

i∈Mj

Ci(j), (3)

βj = max
i∈Mj

{|Ci(j)− µj |}, (4)
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Fig. 6: Example of the mean values calculation used for vector normalization.
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Fig. 7: Two-stage cascaded vector quantization.

where Mj is the set of LT-DCM vectors indices i with Ci(j) 6= 0 and card {Mj} is the cardinality of Mj . Fig. 6 gives

an example to explain the calculation of µj (and βj): for a given rank j, µj is the mean of all coefficients of rank j in the

LT-DCM vectors indexed in Mj . Note that µj and βj are calculated from a training database and then saved in the coder

and the decoder, i.e. they are not concerned with quantization. Remember that the first coefficient C(0) is not concerned by

this normalization, since it is quantized separately (cf. IV-A). Note that (2) is inspired from the mean-gain-shape VQ in [29],

except that in our case the normalization is carried out across all vectors of the training database, while in [29] it is a local

normalization of each vector.

2) Splitting the normalized DCM vectors into equal-length sub-vectors: The LT-DCM vectors have a variable and possibly

large dimension, as shown on Fig. 4. To avoid the use of a large training database and to reduce the size of the codebook, we

propose to split the normalized vector C̄ into B smaller equal-length sub-vectors, denoted C̄
b, b = 1, · · · , B. Since the size

of C̄ is not necessarily a multiple of the fixed sub-vector size, the last sub-vector of each vector is zero padded. Note that B

is variable: it depends on the length of the corresponding LT-DCM vector.

3) Two-stage Vector Quantization: A two-stage vector quantization is applied to the fixed-length LT-DCM sub-vectors. The

two cascaded vector quantizers, illustrated on Fig. 7, provide a higher quantization accuracy when using a training database with

limited size, and much lower computational complexity compared to single-stage VQ [43]. The 1st-stage quantizer is applied

to C̄
b while the resulting error vector is quantized by the 2nd-stage quantizer. The total quantization error corresponding to

sub-vector C̄b is given in the sub-vector Eb.

4) Coded stream: For each LT-section, the parameters sent to the receiver are the LT-section length K and the quantization

indices of C(0) and C̄
b for each HNM parameter. The number of sub-vectors B for each DCM vector must also be sent for

each HNM parameter. The order P of the DCM applied to the spectral amplitudes on the frequency axis is also needed to

determine the first dimension of the matrix A.

D. The LT-DCM decoding

The decoding of the LT-DCM vectors is carried out by inverting the quantization and normalization steps given in IV-C.

The decoded sub-vectors are represented by the codewords indexed by iCb in the codebook. We first concatenate the coded

sub-vectors of each LT-DCM vector. Then, we apply the denormalization corresponding to (2):

Cq(j) = βjC̄
q(j) + µj , j = 1, · · · , Pi, (5)

where Pi is the order of the LT-DCM vector being decoded. Remind that the normalization coefficients µj and βj are stored

in the receiver and the exponent q refers to the coded data. The obtained DCM vector is finally concatenated to the decoded

first coefficient Cq(0) leading to the final coded LT-DCM vector Cq.

V. CODEBOOKS DESIGN, BIT ALLOCATIONS AND BIT-RATES

In this section, we describe the experimental procedure for the design and the test of the proposed LT-HNM speech codec.

We first describe the speech databases that we used for training and testing the codec. We then detail the design of the vector

and scalar quantizers codebooks and we discuss different bit allocation configurations and the resulting bit-rates.
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Fig. 9: Histograms of the coding rRMSE of C(0) with an 8-bit optimal scalar quantization.

A. Speech material

In this study, we used the American TIMIT database [44], sampled at 16kHz. 2,720 items of this database, each consisting

of a complete sentence, were used for the training of the quantizers (38% female and 62% male speakers, with a total duration

of about 122min). The segmentation of the training speech samples into voiced and unvoiced LT-sections yielded 44,122 LT-

sections: 49% voiced (ca. 69min) and 51% unvoiced (ca. 53min). The mean duration of a voiced LT-section is about 195ms

and about 145ms for unvoiced LT-sections. The test database is composed of 300 items (150 female and 150 male speakers)

with a total duration of about 14min. It is composed of 4,969 LT-sections, 49% voiced and 51% unvoiced. Statistics about the

duration of LT-sections are given in Fig. 8.

In parallel, a French speech database was used for subjective listening quality and intelligibility assessment with French

speaking subjects. This database was developed for vocal audiometry for the Hearing in Noise Test (HINT) [45] and is

composed of 20 phonetically balanced sentences (only male speakers) sampled at 16kHz, with a total duration of 63sec. The

segmentation in LT-sections yielded 136 voiced LT-sections (66% of the total duration) and 174 unvoiced LT-sections (34% of

the total duration). The statistics of the LT-section durations for HINT are displayed on Fig. 8.

B. Design of the VQ Codebooks

A VQ codebook is designed for each type of LT-DCM parameter vector, i.e. for F0, FV and the rows of A.

A two-stage VQ is used, as detailed in Section IV-C3. Each codebook is optimized using the Linde-Buzo-Gray (LBG)

algorithm [30], [43]. 50 iterations are run to obtain the codebook for each stage. This iteration number shows a good convergence

of the optimization algorithm for each codebook.



9

C. Design of the scalar quantizers for C(0)

An optimal scalar quantization codebook is designed for the first coefficient C(0) of each HNM parameter (F0, FV and A).

The scalar quantizers are optimized according to the distribution of these coefficients on Fig. 3. The histograms of the relative

Root Mean Squared Errors (rRMSE) for each LT-DCM vector, given by equation (6), resulting from an 8-bit optimal scalar

quantization, are shown in Fig.9: The results show that the coding errors lie around 0.1% for F0 and FV , and around 1% for

spectral amplitudes A.

EC(0) =

√
(C(0)− Cq(0))2

C(0)2
, (6)

where Cq(0) is the coded value of C(0).

D. Bit allocation and bit-rates

A different bit allocation is assigned to each codebook. We denote by N0 the bit allocation of the coefficients C(0) and

by N1 and N2 the bit allocations of the first and the second stage VQ respectively. A different bit allocation (N0, N1, N2) is

assigned for each HNM parameter (F0, FV and A). We discuss in the following the results for two configurations of the bit

allocation, given in Table I. The first configuration corresponds to the largest codebook size we could generate, when taking

into consideration database size, complexity and computing time limits, while the second configuration is a trade-off between

low bit-rate and listening quality.

For each bit-allocation, the obtained average bit-rate RT is the summation of four basic average bit-rates for the HNM

parameters: RF0 , RFV
and RA and RK for the LT-section length K:

RT = RF0 +RFV
+RA +RK . (7)

For each LT-section, let B and P be the number of sub-vectors in a DCM-vector Ċ and the first dimension of A respectively.

The obtained average bit-rates for each LT-section are given by:

RF[0,V ]
=

1

T
[N0 +NB +B(N1 +N2)], (8)

RA =
1

T
[NP +NB + (P + 1)[N0 +B(N1 +N2)]], (9)

RK =
1

T
NK , (10)

where RF[0,V ]
can be RF0 or RFV

, NB , NK , NP represent the number of bits used for the binary representation respectively

for the number of sub-vectors B for a DCM-vector, the number of ST-frames K in a LT-section and the frequency-dimension

DCM order P (first dimension of A) and T is the duration of the LT-section. Note that the number of sub-vectors B is the

same for all rows of the matrix A in a LT-section, since the same DCM order is used for the temporal dimension.

In Table I, we show the obtained average bit-rates over all LT-sections of the test database. Here a sub-vector length was

set to 5 coefficients and the bit allocation was fixed to: NK = 7, NP = 6 and NB = 2. The first bit allocation configuration

yields an average bit-rate of 3,685 bps, while the second bit allocation configuration yields an average bit-rate of 2,721bps.

Note that an important part of the bit-rate (ca. 88%) is dedicated to the coding of spectral amplitudes.

The coding errors corresponding to both considered bit allocations are evaluated in the following section.

VI. EVALUATION OF THE COMPLETE LT-HNM SPEECH CODEC

The evaluation of the LT-HNM speech codec is carried out using the test speech database described in Section V-A. We

first provide illustrative examples of LT-modeled and quantized parameter trajectories. Then we present quantitative measures

of LT-modeling/coding errors for each HNM parameter. Finally, perceptual listening quality of the coded speech is evaluated

with the objective quality assessment algorithm PESQ [46], [47] (we used here WB-PESQ for wide-band speech) and with

subjective mean opinion score (MOS) tests. Additional subjective tests are processed to assess the intelligibility of the coded

speech.

First Allocation Second Allocation

N0 N1 N2 Bit-rate N0 N1 N2 Bit-rate
(bps) (bps)

F0 8 9 6 179 6 7 5 143

FV 8 9 6 181 6 7 5 144

A 8 7 7 3284 6 5 5 2721

K - - - 41 - - - 41

Total - - - 3685 - - - 2721

TABLE I: Two configurations of bit allocation and corresponding average bit-rates for the quantization of the LT-DCM

coefficients of each HNM parameter.



10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
120

140

160

180

200

220

240

260

Time (s)

F
0
 (

H
z
)

 

 

Analyzed F
0

LT modeled F
0

Coded and LT modeled F
0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4 000

5 000

6 000

7 000

8 000

Time (s)

F
V

 (
H

z
)

 

 

Analyzed F
V

LT modeled F
V

Coded and LT modeled F
V

Fig. 10: Example of time trajectory of analyzed, LT modeled and both LT modeled and coded F0 (top) and FV (bottom)

(RT ≈ 3.6 kbps). The LT-modeled trajectories fit better the analyzed values than the coded ones.

A. Examples of LT-modeled/quantized parameter trajectories

Fig. 10 illustrates an example of the reconstruction of the HNM parameters, after modeling with the LT-DCM and after

LT-coding (LT-DCM + quantization) at RT ≈ 3.6 kbps. The time trajectories of F0 and FV are displayed in the left and right

figure, respectively. Globally the trajectories of the LT-modeled parameters and of the LT-modeled and quantized parameters

follow well the original (i.e. ST) trajectories. We note on this example that the reconstruction of F0 is more accurate than that

of FV , i.e. closer to the ST parameter trajectories.

Fig. 11 displays an example of reconstructed spectral amplitudes vector in a voiced ST-frame, after LT-modeling and after

LT-modeling + quantization. We see in this figure that globally, the spectral shape is well modeled and coded by the proposed

technique. In this example, the effect of the quantization is moderate compared to the effect of the LT-modeling. In addition,

the LT-modeling is less accurate in the noise-band compared to the harmonic band.

B. Measure of the coding and modeling errors
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Fig. 11: Example of analyzed, LT modeled and both LT modeled and coded spectral amplitudes in a voiced ST-frame.

(RT ≈ 3.6 kbps)

Three errors are considered for each HNM parameter, as depicted on Fig. 12: i) eLT , the LT-modeling error, ii) eq , the

quantization error and iii) eLT
q , the total coding error resulting from both LT-modeling and quantization. These errors are

evaluated for each LT-section indexed by m. For the frequencies F0 and FV , we compute the error rate in % (rRMSE) as:

rRMSE =

√√√√ 1

K

K∑

k=1

(F (k) − F̃ (k))2

F (k)2
, (11)
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RT ≈ 3.6 kbps; (b), (d) and (f): RT ≈ 2.7 kbps. Scores on the plots indicate the mean values of the data box.

where F refers to F0 or FV and F̃ is the modeled and/or coded version of F , and k and K are respectively the index and

the number of ST-frames in the LT-section. For the spectral amplitudes A, a signal-to-noise ratio (SNR) is evaluated in dB for

each LT section according to:

SNR = 10 log10

[
1

K

K∑

k=1

∑Nk

f=1 Af (k)
2

∑Nk

f=1(Af (k)− Ãf (k))2

]
, (12)

where Nk is the number of frequency components in the kth ST-frame, and Ãf is the modeled and/or coded version of Af .

Fig. 13 displays the statistics of the errors of the three parameters F0, FV and A. Both bit-allocations of Table I are

considered. Comparing the results of Fig. 13 (a) and (b) to (c) and (d), we may note that the errors on F0 are smaller than

those on FV . This is in part due to the dynamic behavior of the time trajectories of FV compared to the smoother time trajectory

of F0, as illustrated in Fig. 10. Another reason is the rounding of the modeled FV values to a multiple of the modeled F0,

which induces cumulative errors. In a general manner, modeling error and quantization error cumulate to yield the total error

(see the related discussion in [48]). For F0, the LT-modeling error is significantly lower than the quantization error, hence

the quantization error is much closer to the total error. In other words the total error is mostly due to the quantization. This

confirms the observation made in Fig. 10. For FV , the contributions of the LT-modeling and of the quantization to the total

error are more balanced. In contrast, Fig. 13 (e) and (f) show that, at RT ≈ 3.6kbps, the distortion due to the LT-modeling of

the amplitudes is higher than that caused by the quantization. Indeed, the mean SNR due to LT-modeling is around 10.7dB,

while it reaches 15.7dB for the quantization. The resulting average SNR for the complete LT-coding process is about 8.3dB.

This confirms the observation made in Fig. 11.

RT ≈ 2.7kbps is a configuration with a better balance between LT-modeling and quantization: the corresponding average SNRs

are closer (about 10.7dB and 11.7dB respectively). The total average error is 6.9dB. As expected, the overall results of Fig. 13

confirm that eq, and thus eLT
q , are higher at the lower bit-rate.
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Fig. 14: Listening quality: PESQ scores of TIMIT test database.

The way the modeling error and the quantization error contribute to the total error is not easy to characterize and is not

expected to be linear. The optimal control of the total error by an automatic “weighting” of the LT-modeling and quantization

processes remains out of the scope of the present study, but it is thus a very interesting perspective to improve the proposed

LT-HNM codec.

C. Listening quality assessment

We first assess the perceptual listening quality of the synthesized speech using the ITU-T standard Perceptual Evaluation

of Speech Quality (PESQ) algorithm [47]. PESQ is an intrusive measure, i.e. it compares the degraded speech to the original

sample and delivers a score in the range from -0.5 (bad quality - very annoying) to 4.5 (excellent quality-imperceptible). Fig. 14

shows the PESQ scores obtained for all the test database and at different steps of the LT-HNM coder: Fig. 14(a) corresponds

to the PESQ scores of the ST-HNM modeled speech, while Fig. 14(b) shows the scores of the LT-HNM speech (LT-DCM

modeling of HNM parameters without quantization). From these results, it is clear that the main quality degradation is due to

the first step, i.e. the ST-HNM, where the mean PESQ score is 2.9, which indicates a slightly annoying impairment, whereas

the LT-HNM speech displays a score of 2.7, which is in the same quality range (slightly annoying).

Fig. 14(c) and Fig.14(d) show the mean and standard deviation of the PESQ scores of the coded LT-HNM speech for

both considered bit-rates. The PESQ scores corresponding to RT ≈ 3.6kbps indicate a mean score degradation of about 0.3

compared with the LT-HNM results, which seems reasonable. And, as expected, Fig. 14(d) shows that the speech quality

decreases with the bit-rate: at RT ≈ 2.7kbps, the mean PESQ score reaches 2.1, which corresponds to annoying quality.

Note that the overall average PESQ scores degradation from ST-HNM to coded LT-HNM speech (RT = 2.7kbps) is about 0.8

(from 2.9 to 2.1), which emphasizes again that the overall listening quality loss is to a large extent due to the initial ST-HNM

representation of the speech signal, and not only to LT-modeling and quantization. We believe that a series of improvement

can be conducted, not only on the proposed LT-coding techniques, but also on the initial ST-HNM on which these LT-coding

techniques were applied.

To confirm the objective ratings, subjective listening tests were also carried out in-lab with 12 nave male and female french

speaking listeners, aged within 23-30 years, using the HINT database (in French) [45]. Subjects listened (with high-quality

headphones) to randomly played speech samples, composed of original, ST- and LT-HNM synthesized samples without and

with coding (at RT ≈ 2.7 kbps). Listeners were asked to rate the listening quality of the heard sentences according to the

ITU-T P.800 recommendation [49], using Absolute Category Rating (see Table II). For comparison, the PESQ scores for the

French HINT database were also computed.

The obtained MOS and PESQ scores for the French test database are shown on Fig. 15. We first note that, in the case of

the LT-HNM (with and without coding), the average PESQ and MOS scores are similar (about 2.5 for the LT-modeled speech

and 1.9 for the coded speech at RT = 2.7kbps), which proves a high correlation between objective (PESQ) and subjective

MOS Quality Impairment
5 Excellent Imperceptible

4 Good Perceptible but not annoying

3 Fair Slightly annoying

2 Poor Annoying

1 Bad Very annoying

TABLE II: Mean Opinion Score (MOS).
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Fig. 15: PESQ and MOS scores for HINT speech samples: (a) ST-HNM, (b) LT-HNM only, (c) Coded speech at RT ≈ 2.7kbps.

(MOS) quality scores when applying the LT-model. However, this is not true for the ST-HNM synthesized samples, where the

mean PESQ score is equal to 3.1, while the mean MOS score reaches 3.6. We also note that the average PESQ and MOS

scores of the LT-modeled and the coded HINT samples (2.5 and 1.9 respectively), are lower than the average scores of TIMIT

samples (2.7 and 2.1 respectively) (cf. Fig. 14). This may be due to the presence of longer LT-sections in French, as observed

on Fig. 8, where the average duration of TIMIT voiced LT-section is 195ms, while it reaches 306ms for the French database.

In addition, the quantizers were designed using training samples from TIMIT and not from HINT (since this latter database is

not large enough). Also, note that some studies have reported a language dependency of PESQ assessment tool [50] [51] [52].

D. Intelligibility measure

Subjective intelligibility tests have also been conducted to assess the intelligibility of the LT-HNM modeled/coded speech.

The Hearing in Noise Test measures a person’s ability to hear speech in quiet and in noise, it has been developed for medical

use to measure the sentence Speech Reception Threshold (sSRT2) [53], but this test is nowadays widely used to evaluate the

speech intelligibility of enhanced and coded speech [54]. We carried out the HINT test with 12 French speaking subjects who

listened (with high-quality headphones) to 12 different French speech samples from the French database: 6 LT-HNM and 6

coded LT-HNM at 2.7 kbps. They were asked to repeat each sample after listening to it. The intelligibility is measured by

the rate of correct words from all listened words over all test samples [54]. We obtained an intelligibility rate of 99.7% for

the LT-HNM synthesized speech, and 94.5% for the coded LT-HNM speech, which indicates that the coded LT-HNM speech

provides a good intelligibility even if the listening quality was rated as annoying.

E. Discussion

Although the results presented above show that the proposed coder provides a good intelligibility at low bit-rates, the

enhancement of the global listening quality remains an important issue for the comfort of the user.

It seems too early to compare the performance of the proposed coder with thoroughly optimized commercial coders, as the

NB-HVXC or the WB-EVS (wide-band enhanced voice services codec) for example, which provides a good quality (MOS≈3.5)

at 5.9kbps [55]. We emphasize that the results of section VI are related to the coding of wide-band speech at such low bit-rates

as 2.7kbps. However, it is worth to note that the MPEG-4 parametric audio coders HVXC (Harmonic Vector Excitation Coder)

[56] and HILN (Harmonic and Individual Lines plus Noise) [57] provide listening quality of the coded narrow-band signals

at 2 and 6kbps, respectively, which lies in the same range (MOS<3) as the results of Fig. 14c).

According to the quality ratings of Fig. 14 and Fig. 15, it is clear that the listening quality degradation is mainly due to the

modeling part of the coder (i.e. ST-HNM and LT-HNM) rather than to the quantization part. To reduce the speech distortion, it

would be interesting to strengthen the modeling constraints on the ST- and LT-HNM (higher modeling order, lower modeling

errors, etc.) to reach higher quality ratings prior to quantization. In addition, the impact of each parameter (frequencies F0, FV

and amplitudes A) on the listening quality needs to be analyzed separately in order to recognize which of them has to be

modeled more accurately. The quantization stage can then be evaluated at lower (and different) bit allocations (N0, N1, N2)
to achieve a trade-off between the target bit-rate and the listening quality.

2sSRT: in speech audiometry, it is the decibel level at which 50% of heard words can be repeated correctly by the subject.
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VII. CONCLUSION

The objective of this paper is to evaluate the feasibility and efficiency of the LT approach to speech coding in the HNM

framework. We thus presented the design of a complete low bit-rate speech coder based on the long-term harmonic plus

noise model (LT-HNM) [22] by adding a variable-dimension vector quantization stage. To our knowledge, no previous studies

addressed the quantization of DCM coefficients obtained from the LT-modeling of speech signals. Hence we carried out a

statistical study of these coefficients to design an appropriate quantization technique. The proposed Normalized Split Vector

Quantization (NSVQ) is adjusted to the properties of these DCM coefficients. We presented first experiments to evaluate the

proposed LT-HNM speech coder with two bit allocations, achieving the average bit-rates 3.6kbps and 2.7kbps for wide-band

speech. Although the proposed coder achieved good intelligibility at both tested bit-rates, the global signal quality can still be

improved. The results of section V indicate that the modest listening quality is mainly due to the ST- and LT-modeling part

of the coder, with mean PESQ scores of 2.9 and 2.7 respectively. Indeed, the quantization stage reduces the mean listening

quality score by 0.3 and 0.6 respectively at 3.6kbps and 2.7kbps.

The LT-HNM coder that we propose in this paper can still be improved to make it good candidate for commercial applications.

These improvements will be addressed in future work. Particularly, the ST and LT target modeling errors can be adjusted to

achieve a given quality score prior to quantization. Then, a compromise between target bit-rate and global quality has to be

achieved, for example by optimizing the bit allocation to the different HNM parameters according to their impact on the

achieved quality. Besides, in order to decrease the bit-rate, we think about introducing perceptual criteria to reduce the short-

term data-rate prior to quantization, as proposed in [58], where the auditory masking is exploited to discard inaudible frequency

components from coding.
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