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Abstract—n this paper, we present a framework for developing ~ Seeech | ASR —N  SOURCE ~ ——N  CHANNEL
source coding, channel coding and decoding as well as erasure con- FRONT-END —| CODING | —| CODING
cealment techniques adapted for distributed (wireless or packet-
based) speech recognition. It is shown that speech recognition as
opposed to speech coding, is more sensitive to channel errors than o oieq
channel erasures, and appropriate _channel_ coding design criteria word SPEECH SOURCE CHANNEL
are determined. For channel decoding, we introduce a novel tech- +— gecoanmion & DECODING <,i DECODING
nique for combining at the receiver soft decision decoding with
error detection. Frame erasure concealment techniques are used ) . »
at the decoder to deal with unreliable frames. At the recognition Fig. 1. Block diagram of a remote speech recognition system.
stage, we present a technique to modify the recognition engine itself

to take into account the time-varying reliability of the decoded fea- . .
ture after channel transmission. The resulting engine, referred to speech recognition (ASR) front-ends [2] to different channel

as weighted Viterbi recognition, further improves recognition ac- conditions, or by modeling GSM noise and holes [3]. Other
curacy. Together, source coding, channel coding and the modified studies analyzed the effect of random and burst errors in the
recognition engine are shown to provide good recognition accuracy GSM bitstream for remote speech recognition applications

%er a wilde range of communication channels with bitrates of 1.2 [4]. Finally, [5] and [6] evaluate the reliability of the decoded
pS oriess. . 3 o feature to provide robustness against channel errors. Similarly,
Index Terms—Automatic speech recognition, distributed speech packet switched networks constitute a difficult environment.
recognition (DSR), joint channel decoding-speech recognition, Soft T ommunication link in IP based systems is characterized
decision decoding, weighted Viterbi algorithm, wireless and packet b ket | inlv d . Pack
(IP) communication. y packet losses, mainly due to congestion at routers. Packet
loss recovery techniques including silence substitution, noise

substitution, repetition and interpolation [7]-[9].
. INTRODUCTION In terms of source coding for DSR, there are three possible

N DISTRIBUTED speech recognition (DSR) systems2Pproaches. The first approach bases recognition on the de-
speech features are acquired by the client and transmitte@@sled speech signal, after speech coding and decoding. How-
the server for recognition. This enables low power/complexiVer, it is shown in [10]-[12] that this method suffers from sig-
devices to perform speech recognition. Applications includdficant recognition degradation at low bitrates. A second ap-
voice-activated web portals, menu browsing and voice-operaf@i@ach is to build a DSR engine based on speech coding param-
personal digital assistants. eters without re-synthesizing the speech signal [13]-[16]. The
This paper investigates channel coding, channel decodifijrd approach performs recognition on quantized ASR features,
source coding and speech recognition techniques suitable 39€l provides a good tradeoff between bitrate and recognition
DSR systems over error prone channels (Fig. 1). The goal isdgcuracy [17]-{20]. This paper presents contributions in several
provide high recognition accuracy over a wide range of chanréeas of DSR systems based on quantized ASR features.
conditions with low bitrate, delay and complexity for the client. In the area othannel codingit is first explained and experi-
Wireless communications is a challenging environment foaentally verified that speech recognition, as opposed to speech
speech recognition. The communication link is characteriz€@ding, is more sensitive to channel errors than channel era-
by time-varying, low signal-to-noise ratio (SNR) channelsures. Two types of channels are analyzed, independent and
Previous studies have suggested alleviating the effect Wfrsty channels. Second, efficient channel coding techniques for
channel errors by adapting acoustic models [1] and automa@i¢or detection based on linear block codes are presented.
In the area ofchannel decodingthe merits of soft and

_ _ _ _ hard decision decoding are discussed, and a new technique
Manuscript received September 25, 2001, revised August 7, 2002. This work

was supported in part by the NSF, HRL, STM, and Broadcom through the U Rr performing error det_e_Ct'on with soft decision _deC_Odmg IS
versity of California Micro Program. Portions of this work were presented @aresented. The soft decision channel decoder, which introduces

the IEEE International Conference on Acoustics, Speech and Signal Processiiididitional complexity 0n|y atthe server, is shown to outperform
Salt Lake City, UT, May 7-11, 2001, and the Eurospeech conference in Aalbo,

Denmark, September 3—7, 2001. The associate editor coordinating the re\iaﬁ Wldely'used hard decision q§cod|ng. - ] )
of this manuscript and approving it for publication was Dr. Harry Printz. In the area okpeech recognitigrthe recognition engine is

The authors are with the Speech Processing and Auditory Perception Labgfydified to include a time-varying Weighting factor depending
tory, Electrical Engineering Department, University of California, Los Angeles

CA 90095-1594 USA (e-mail: abernard@icsl.ucla.edu, alwan@icsl.ucla.eaILf-?.n the qu.ality of each deCOdeP‘ feature after transmission over
Digital Object Identifier 10.1109/TSA.2002.808141 time-varying channels. Following frame erasure concealment,

1063-6676/02$17.00 © 2002 IEEE



BERNARD AND ALWAN: LOW-BITRATE DISTRIBUTED SPEECH RECOGNITION FOR PACKET-BASED AND WIRELESS COMMUNICATION 571

16

an estimate of the quality of the substituted features is take

into account using a weighted Viterbi recognizer (WVR). To- 14+

gether, erasure concealment and WVR improves robustness ,,|.

the DSR system against channel noise, extending the range

channel conditions over which wireless or internet-based spee

recognition can be sustained. Y 7 20 o
Source coding, channel coding, and speech recognitiontec e~ - fg - - o o

nigues are then combined to provide high recognition accurac .| = s

over a large range of channel conditions for two types of speec F= [ == No erasure or error |

. . .. 2 & - .- - .- - | =@= One erasure

recognition features: perceptual linear prediction (PLP)andMe¢ |& .- ... .. ... ........... ........ . . [ Oncemor

frequency cepstral coefficients (MFCC). ° 0 P timerame] %
This paper is organized as follows. Section Il analyzes the ef-

fect of channel errors and erasures on recognition accuracy. Ség-2. lllustration of the consequences of a channel erasure and error on the

tion 11l provides a description of the channel encoders used to myost likely paths taken in the trellis by the received sequence of observations,

.. . . . iven a 16-state word digit model. The erasure and error occur at frame number

ficiently protect the recognition features. In Section 1V, dn‘feren?w,

channel decoding techniques are presented. Section V presents

the weighted Viterbi recognition (WVR) algorithm. Techniquefielihood ¢, , is computed efficiently using the following

alleviating the effect of erasures using WVR are proposed j8cursion:

Section VI. Finally, Section VIl illustrates the performance of

the overall speech recognition system applied to quantized PLP ¢j,¢ = max(¢; +—1a:;]bj(0r). (1)

and MFCC features. '

—10F - - -

8

State

The probability of observing th&/r-dimensional feature, is

N,
ll. EFFECT OFCHANNEL ERASURES ANDERRORS - 1
b'(Ot) = E Cm4N
ooV (@2m)Nr (X

In this section, we study how channel errors and erasures af-
fect the Viterbi speech recognizer. We then present techniques coxp (=3 (0, —p)S o —p)) (2

for minimizing recognition degradation due to transmission ofh N is th ber of mixt is the mi
speech features over noisy channels. whereN}, is the number of mixture components, is the mix-

Throughout this paper, speech recognition experiments CéH_[e weight, and the parameters of the multivariate Gaussian

sist of continuous digit recognition based on 4 kHz bandwidﬁ"?"qure are Its mean vectgrand covariance matrix.. .
Elg. 2 analyzes the effect of a channel error and erasure in

speech signals. Training is done using speech from 110 male VA A first at ission f fch | Th
and females from the Aurora-2 database [18] for a total of 22 - A\SSUME ISt a fransmission free ot cnanne errors. the
est path through the trellis is the line with no marker. As-

digit strings. The feature vector consists of PLP or Mel fre= that a ch r t time. The decoded
quency cepstral coefficients with the first and second deriv; Hme nng at a channetror occurs at ime. The decoce
ature iso; as opposed to; and the associated probabilities

tives. As specified by the Aurora-2 ETSI standard [18], hidd } . ) .
Markov (HMM) word models contain 16 states with 6 mixJ°' €ach statej may differ considerablyb;(a,) # b;(or)).
g_mh will disturb the state metricg; ;. A large discrepancy

tures each, and are trained using the Baum—Welch algorithm ) .
J g g tweerb,;(6;) andb;(o;) can force the best path in the trellis

suming a diagonal covariance matrix. Recognition tests contal

1000 digit strings spoken by 100 speakers (male and female) ranch outfrom the error-free_ best path. ansgquently, many

a total of 3241 digits. ea_ltures may be accountefi for in the overall likelihood compu-
tation using the state modglnstead of the correct state model

4, which will once again modify the probability of observation

Sinceb3(0t+k) 7£ bj(0t+k)-

The emphasis in remote ASR is recognition accuracy and notOn the other hand, channefasureshave little effect on
playback. Recognition is made by computing feature vectofielihood computation. State metrics are not disturbed since
likelihood time and by selecting the element in the dictionarjie probability of the missing observation cannot be computed.
that most likely produced that sequence of observations. The Ad0, note that not updating the state metri¢s ; = ¢; +—1)
ture of this task implies different criteria for designing channé$ not as likely to create a path split between the best paths
encoders and decoders than those used in speech coding/pMij* and without an erasure as a channel error. Hence, channel
back applications. erasures typically do not propagate through the trellis.

The likelihood of observing a given sequence of features . .
given a hidden Markov model is computed by searchirlg: Simulations of Channel Erasures and Errors
through a trellis for the most probable state sequence. Thdn this section, we simulate the effects of channel erasures
Viterbi algorithm (VA) presents a dynamic programmingnd channel errors on DSR.
solution to find the most likely path through a trellis. For each Fig. 3 illustrates the effect of randomly inserted channel era-
stateyj, at timet, the likelihood of each path is computed bysures and errors in the communication between the client and
multiplying the transition probabilities;; between states andthe server. The feature vector transmitted consists of 5 PLP cep-
the output probabilitiedh;(o;) along that path. The partial stral coefficients, enough to represent two observable peaks in

A. Effect of Channel Erasures and Errors on DSR
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nels is the Gilbert—Elliot model [21], in which the transmission
is modeled as a Markov system where the channel is assigned
one of two statesgoodor bad With such a model character-
.. e ized by the state transition probabilitié%; 5 and Pgg, there

® % DERCENTAGE CHANNEL ERRORS (12) B2 is a probabilityP; = Pge/(Ppe + Pag) to be in the good

state and a probability’s = Psp/(Psp + Prc) to be in the

Fig. 3. Simulation of the effect of channel erasures and errors on continud@d state. If the probabilities of channel erasureslasg and
digit rec_o_gnition perfprmance using the Aurora—Z database and PLP featurp’;jB for the good and bad state, respectively, the overall average
Recognition accuracies are represented in percent on a gray scale. probability of erasure isPg = PGPEG + PBPEB )

Throughout this papeFx, . will be considered to be equal to
the perceptual spectrum and the spectral tilt. Erasures are sl andPz,, is set to 0.80. Different types of bursty channels
ulated by removing the corresponding frame from the obsenate analyzed, depending &5 and P, which in turn deter-
tion sequence. Channel errors, on the other hand, are simulatéde how bursty the channel is. Table | summarizes the proper-
by replacing the feature vector with another vector, chosen rdies of the bursty channels studied, including the probability (in
domly according to the statistical distribution of the featurepercent) of being in the bad stat€ ), the overall probability
This simulation technique has the merit of being independenta@fferasure( Pr), and the average length (in frames) of a burst
the source coding algorithm. It is valid especially for low-bitratef erasuregLy).
quantization schemes, which are highly sensitive to channel erThe Gilbert-Elliot model parameters are selected based
rors. on values reported in the literature on Gilbert models for

Fig. 3 shows that channel errors, which propagate through fp@cket-based (IP) networks [22], [23] and wireless communi-
trellis, have a disastrous effect on recognition accuracy, whitgtion channels [24]-[26].
the recognizer is able to operate with almost no loss of accu-
racy with up to 15% of channel erasures. This confirms results
obtained in [19] for isolated digit recognition based on PLP co- . CHANNEL CODING FORDSR S/STEMS
efficients and in [5] for MFCCs. Note that computation of the
temporal derivatives at the receiver accentuates error propagarhe analysis in Section Il indicates that the most important
tion. requirement for a channel coding scheme for DSR is low proba-
The results indicate that a very important attribute of artlity of undetected error<0.5%) and large enough probability
channel encoder designed for remote recognition applicatiasfsorrect decoding$90%). This section presents techniques to
should be error detection more than error correction. Sectionsdétect most channel errors. Corrupted frames are then ignored
and IV present innovative techniques to maximize error detgerased) and frame erasure concealment techniques presented in
tion capabilities of linear block codes suitable for DSR applic&ection VI can be applied.
tions. For the remainder of this section, we assume that all transgor packet-basettansmission, frames are typically either re-

mission errors are detected and replaced by erasures. Modelg&ed or lost, but not in error. Frame erasures can be detected

PERCENTAGE CHANNEL ERASURES (%)
3 3

®

8

erasure channels are presented next. by analyzing the ordering of the received packet and there is no
need for sophisticated error detection techniques.
C. Gilbert—Elliot Models for Erasure Channels With wireless communicatigriransmitted bitsr are altered

during transmission. Based on the values of the received bits

Two types of erasure channels are analyzed. In the figgtthe receiver can either correctly decode the messade (
type, channel erasures occur independently. In the second tyfpecorrect decoding), detect a transmission erfab(for error
channel erasures occur in bursts, which is typically the cagetection) or fail to detect such errdf £ for undetected error).
for correlated fading channels in wireless communication or Since the number of source information bits necessary to code
IP based communication systems, where fadings or netwes#ch frame can be very low (6—40 bits/frame) for efficient ASR
congestion may cause a series of consecutive packets tofdxure coding schemes [19], linear block codes are favored over
dropped. convolutional or trellis codes for delay and complexity consid-

For independent-erasure channels, erasures are inserted egations, as well as for their ability to provide error detection for
domly with a given probability. A classic model for bursty chaneach frame independently.
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A. Error Detecting Linear Block Codes TABLE I
. . . L DESCRIPTION OF THELINEAR BLOCK CODESUSED FORCHANNEL CODING

An (N, K) linear block code mapK information bits into SPEECHRECOGNITION FEATURES
N bits (N > K). The larger the number of redundancy bits
(R = N —K), the larger the minimum distan¢é,,,;,,) between (NK) | R P dwin | Type
any two of the2¥ valid codewords. In order to guarantee the
best possible recognition rate over a wide range of channel con-
ditions, a combination of different block codes is used. More in- (12,10) | 2 | 1,1,1,2,2,2,3,3,3,3 2 SED
formation bits(K') are used for high SNR channels while more (12,9) | 3 | 1,2,3,3.4,5,5,6,7 9 SED
redundancy bit$R) are used for low SNR channels. ’ B

For good channel conditions, Single Error Decoding (SED) (12,8) | 4 | 3,5,6,9,A.D,EF 3 DED
codes, which detect any one bit error in flidits received code-
word, are sufficient. A minimum Hamming distancedyf;, = (10,8) | 2 | 1,1,1,2,2,3,3,3 2 SED
2 is sufficient to form an SED code. However, when there are
2 errors among thé/ received bits, SED codes may fail to de-  (12,7) | 5 | 07,0B,0D,0E,13,15,19 4 TED
tect the error. To increase channel protection, Double Error De-
tection (DED) codes are utilized. Any linear block code with (10,7) | 3 | 1,2,3,4,5,6,7 2 SED

dmin = 3 can be used to correct single error events [Single Error
Correcting (SEC) code] or to detect all one and two-bit error - ) . .
events (DED). For our application, since residual channel erréRd@(z) = [ (1/v2m) e=*'/?) dz is the tail integral of the
degrade recognition accuracy more significantly than chanfélrmal Gaussian distribution. If channel noise statistics are sta-
erasures, all codes with,;, = 3 will be used as DED codes. tionary over the transmission of tie-bits codeword, the BSC
Finally, codes withi,,i, = 4 will be used as Triple Error De- €ross probability is a constant and (3) becomes

tecting (TED) codes as opposed to SEC/DED codes. p(lEm) = po (1 — p)N=d (0<m<2K_1)

B. Search for Good Codes wheredy is the Hamming distance betwegrandz,,,. Maxi-
Exhaustive searches over all possible linear block codes weiizing p(y|z,,,) is equivalent to minimizing thelammingdis-

run for all dimensions of interest, i.e7,< K < 10 and10 <  tancedy betweeny andz,, .

N <12, in order to find the codes with the best distance spec-Fig. 4(a) shows a two-dimensional example for decoding a (2,

trum. For the particular case & = 1, i.e.,a(K + 1, K) code, 1) linear block code. The valid codevectors are shown in dark

dmin = 2, the parity matrixP’ of dimensionl x K of the code is circles. Assume the¥1, +1) codevector was transmitted. If the

P=11,1, ---, 1, 1]. The parity matrice$> and the minimum soft received bits end up in the second or fourth quadrant, the re-

Hamming distancé...;, for all other codes of interest are giversulting received codevector after bit thresholding is equally dis-

in Table Il. Parity matrices are given in hexadecimal notationtant, in terms of Hamming distance, from two valid codewords.

No decision can be made and an erasure is declared (ED). If the

IV. CHANNEL DECODING FORDSR SYSTEMS received symbol is in the first or third quadrant, the codeword is
For wireless communications, information bitsare trans- correctly (CD) or incorrectly decoded (UE for undetected error),
respectively.

mitted and distorted by the channgl= «(t) - z; + n(t), where X . )
a(t) is the complex channel gain andt) is the additive white Typically, hard_d_eC|S|on dgcodlng suffers a 2 dB loss com-
Gaussian noise (AWGN) component. For Rayleigh fading chapdred to soft decision decoding for AVGN channels and about
nels,« is Rayleigh distributed. For AWGN channels(t) = 1. half the diversity for multi-path communications [27].
Depending on whether the actual values of the received bitsEPr
only their signs are used, the channel decoder is said to perforin
softor hard decision decoding, respectively. Consider next aoft decisiormemoryless channel where the
For a discrete memoryless channel,ltkelihoodofreceiving channel input ist1 and the channel output is a real number
the vectory (N bits) given that the codewors,, was trans- With Gaussian statistics. Specifically, the stationary channel is

Soft Decision Decoding

mitted is given by specified by
> ! o ()= )’
m) = AT 0<m<2K —1). 3 )= ——— e _ Wi =2mi)” |} 4
p(ylzm) jl;[lp(yﬂx i) (0<m< o @ pllen) = omey o ; A @)

Maximizing p(y|z.,) is equivalent to minimizing the squared

Euclideandistancedz® = Zjv:l (y; — Tm;)* betweeny and
Transmission channels followed Imard decisiondecoding ..

act like a binary symmetric channel (BSC). For AWGN and Fig. 4(b) is an example of soft decision decoding for the same

Rayleigh fading channels, the cross probability of the equivalg@, 1) code. The maximum likelihood decoder chooses its output

BSCisp = Q(\/a2(2E,/Ny) ), whereE, denotes the averageto be the codeword for which the Euclidean distance between

energy per bit, N, is the average noise ener@y> = Ny/2) the received vectay and the codeworg,, is minimum.

A. Hard Decision Decoding
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ED CD C. Modified Soft Decision Decoding{Soft)
In order to accept a decision provided by the soft decoder,
(-1.+1) (+1,+1) one would like to evaluate the probability that the decoded code-
o L vector was the one transmitted. Swchosterioriprobability is
given by
N 2
H exp [_W]

0

. Jj=1
PE=2nly) = 7 e
2, 1 oo [0
m’/=0 j=1
0(+1 1) which is complex and requires the knowledgeNgf, which is
difficult to evaluate.
ED Another solution is to perform error detection based on the

ratio of the likelihoods of the two most probable codevectors.
Assuming that all codewords are equiprobable, the ratio of the
likelihoods of the two most probable vectars andz, (the

two closest codevectors from the received vegtat Euclidean
distancesl/g, anddg, fromy) is given by

Pyle=2)  (d%, —d2,
Pyl =22) P\ M ®)
D? do — dl)
= € _— 6
o (525 ©

whereD is the Euclidean distance between the two closest code-
vectorsz; andzq, while d; andd, are the distances from the
projection of the received codevectgito the line joiningz,
andzs. The important factor in (6) is

_dy—dy
=—7 (7)

If A = 0, both codevectors are equally probable and the de-
cision of the Maximum-Likelihood (ML) decoder should be re-
jected. If A = 1 (d; = 0, d2 = D), correct decision is almost
guaranteed since the block codes used are chosen according to
channel conditions so that the minimum Euclidean distance be-
tween any two codevectors is at least several times as large as
the expected nois@D? /Ny > 1).

Fig. 4(c) shows an example afsoft decision decoding the
same (2, 1) code. Error detection can be declared when
smaller than a threshold Classic soft decision decoding is a
particular case of modified soft decision decoding witk- 0.

The area for error detection grows aincreases.

A

D. Comparison of Channel Decoding Performances

For comparison, consider the (10, 7) SED block code of
Table Il over an independent Rayleigh fading channel at 5 dB
© SNR. Hard decoding yield®yg = 0.3%, Pep = 30.2%
Fig. 4. lllustration of the different decoding strategies. (a) Hard decoding, ( ndPcp = 6.9.'5%' These m'.lmbers are '|n'suff|C|ent FO provide
soft decoding, and (c)-soft decoding. ood recognition results. With soft decision decoding, on the
other hand, the probability of undetected errors is too large
With soft decision decodind?gp = 0, allowing only forcor- (Pyg = 2.6%).
rect or erroneous decoding. Consequently, béth and Py g Fig. 5 illustrates the performance of thesoft decision de-
increase, which ultimately decreases recognition performanceding schemes for the same code over the same channel for dif-
We propose in the following section a technique to combine tfierent values of\. Note first that\-soft decision decoding with
advantage of soft decision decoding with the error detection ca= 0 corresponds to classic soft decision decoding. With in-
pability of hard decision decoding. creasing\, however, one can rapidly redué® g to the desired
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A-soft decoding of (10,7) over 5 dB Rayleigh fading channel TABLE Il
sl © P(‘ErrorDetJecticn) : ' ' ' ‘ o ' i PROBABILITY OF CORRECTDETECTION (P¢ p ), ERROR DETECTION
o 1 Bomeot Depoding) o ¢ (Pgp) AND UNDETECTED ERROR (Py ;) USING HARD, SOFT AND
7k O | soFT J A-SOFT (A = 0.16) DECODING ON RAYLEIGH FADING CHANNELS.
N | DECISION Py = 0 FOR SOFT DECODING
. oo | A=0.16
S o o '
=5 . o o : | Code|SNR Pcp Pep Pue
p 100-P o © | Pue=05%
D4t o o e ] (N,K)| (dB) |Hard Soft A-soft|Hard A-soft|Hard Soft A-soft
Q & o | Pgp=77%
]
of o0 " E | Peomte% 10,0)| 10 |88.4 97.9 80.3|11.1 10.6| 0.6 2.1 0.1
o PED | ( 5 ) . . O . . . . .
- o ;
2 -
& : (10,8)] 9 |86.098.8 94.0 ({138 58 |03 1.2 0.1
o
U T . Pue ! 1
o ° T : . (10,8)| 8 [82.6 98.3 92.4 (17.0 74 |04 1.7 02
0(0 0.;)2 0.64 0))6 OA‘OS 0?1 0.‘12 0.‘14 0.16 O,l18 012
A (12,9)| 7 [75498.3 93.0 (242 6.7 | 03 1.7 03
Fig. 5. lllustration of the probability of correct detectidiPcp), error (12,8)| 6 ]70.2 99.3 96.2 (29.8 3.8 | 0.0 0.7 0.0
detection( Prp) and undetected errd¢®;; ) as a function of the parameter
A when usingh-soft decision decoding of the (10, 7) DED linear block code (12,8)| 5 |65.098.7 94.335.0 5.6 [ 0.1 1.3 0.2
over an independent Rayleigh fading channel at 5 dB SNR.
(12,8)| 4 |58.897.6 91.6 |41.1 81 |01 24 0.3
values, while sti_II _keeping’c_D large gnough and_usually above (127)| 3 |52.3 986 94.3 |47.7 55 |00 14 0.2
that of hard decision decoding. For instance, witk 0.16, we
have Py = 0.5%, Pep = 7.7% andPcp = 91.8%, which (12,7)| 2 [45.197.3 91.3 549 83 |01 27 04

results in good recognition accuracy. Note that wiien; de-
creasesP.p decreases as well, which indicates that a tradeoff TABLE IV

RECOGNITION ACCURACY AFTER LSF QUANTIZATION OF THE PLP
must be found. COEFFICIENTSUSING THE AURORA-2 DATABASE

The probabilities (correct decoding, undetected error and

error detection) for the block codes designed for different inde-
pendent Rayleigh fading channel SNRs are listed in Table lll.
The value\ = 0.16 is experimentally found appropriate to keep
the number of undetected errors small while the probability of

correct decoding remains high. . . .
Note that soft decoding is made at the cost of the additionaIThe five LSFs are computed and quantized every 10 ms using

complexity of computing Euclidean distances for afff veptor quantizers operating at 7 10 10 bits per.ffame- The re-
codewords. However, note that channel decoding is done at ver decodes the LSFs, Qe.nves the LP coefﬂuent; from the
server, where the complexity of the recognizer prevails. . F.S’ andthe c_epstral co'eff|C|ents from the LP coefiicients. Pre-
dictive VQ and interpolation, used in [19] to further reduce the
bitrate, are not used here because they increase sensitivity to
E. Recognition Experiments transmission errors. Table IV reports recognition results after

Commonly used ASR features include spectral featurdyantization at different b|tra_t(_as. -
such as Mel-Frequency Cepstral Coefficients (MFCCs) an Table V p_resents recognltlon.accuracy after trapsm|ss!on
Linear Prediction Cepstral Coefficients (LPCCs). LPCCs ¢ the quantized LS.FS over an independent Rayleigh faodmg
be extracted from a standard linear prediction model or fron® /anlr;el whg;e equwr?len';] bit erlror rz;t_e_ rangz_sﬁfrom 0.r2]5A> t(l)
Perceptual Linear Prediction model (PLP) [28] which mode% o depen Ny ondt eoc an”neb_con |tlpns|,d_| erent ¢ anned
human auditory perception, and provides good recogniti co elrs Zfe u'sellkb vefra |t:jateh, mclu Ingd iozuLC; afn
accuracy with a low-dimensional feature vector. This secti annet coding, 1S pS Tor good channels and L. ps tor

" had channels.

analyzes recognition results for source and channel codi . .

of PLP features. Results for MFCCs will be presented in able V shows_that the proposed technlqmg()ft), which
Section VIL. performs soft decision based error detection, outperforms both

hard and soft decision decoding. Hard decoding typically keeps

In [19] and [29], it is shown that an efficient representatio% small enouah. but at the cost of too manv frames bein
of the PLP spectrum for quantization is using the line spec?? ugh, bu y ng

tral frequencies (LSF) of the linear prediction system, to expl Fietrased. Classic soft decision decoding, on the other hand, suffers

their high inter- and intra-frame correlation. Quantizing LSF4C™ the fact that it cannot detect errors, which results in a large
roportion of erroneously decoded frames.

also yields a better representation of the low-order cepstral &S
efficients, more important for speech recognition. Finally, error
sensitivity of the LSFs to quantization noise depends on the LSF
order. Appropriate weighting is performed when designing the With remote recognition, reliability of the decoded features
vector quantizer and during the VQ search. is a function of channel characteristics. When channel charac-

Bits/Frame 7 8 9 10

Recognition Accuracy (%) |97.07|98.05|98.31|98.48

V. WEIGHTED VITERBI RECOGNITION (WVR)



576 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 10, NO. 8, NOVEMBER 2002

TABLE V signal. The drawback is that the timing information associated

RECOGNITION ACCURACY USING HARD, SOFT AND A-SOFT DECISION with them is lost. When missing frames are removed from the
DECODING OVER RAYLEIGH FADING CHANNELS . - . .
trellis, no state transitions are possible, and the received fea-

tures might be analyzed using an inappropriate HMM state.
This problem becomes more significant when erasures occur in
bursts, forcing the trellis search in the same state for a long pe-
riod of time, which can significantly impact recognition accu-
racy.
(10,10)| 1.0 |19.96 0.25|94.71 94.71 98.32 Another method is frame erasure concealment, which re-
places the missing frame with an estimate, and preserves the
timing information. Repetition-based concealment replaces
missing frames with copies of previously-received frames,
while interpolation-based concealment uses some form of pat-

Code |Bitrate| SNR BER| ACCURACY(%)

(N,K) | (kbps) | (dB) (%) |Hard Soft A-Soft

(10,9) 1.0 |13.87 1.00|97.31 96.35 98.12

(10,8) 1.0 |10.69 2.00 |94.47 95.03 97.82

(11,8) 11 830 3.00 |87.24 9562 97.43 tern matching and interpolation from the neighboring frames to
’ ' derive a replacement frame (e.qg., [7]-[9]). Both techniques are
(12,8) 1.2 6.29 5.00 |67.25 93.17 97.04 justified by the high correlation between consecutive frames.
’ Interpolation techniques require reception of the next valid
(12,7 | 12 453 7.00 |40.48 91.31 95.88 feature vector, which may add significant delay when bursts of

erasures occur.

We present and compare in the following two sections exten-
teristics degrade, one can no longer guarantee the confidencgi@ms to the frame dropping and repetition-based concealment
the decoded feature. The weighted Viterbi recognizer (WVREchnigues, whereby the confidence in the channel decoding op-
presented in [5], modifies the Viterbi algorithm (VA) to take intceration or the frame erasure concealment technique is fed into
account the confidence in the decoded feature. The time-varythg Viterbi recognizer for improved recognition performance.
reliability ~; is inserted in the VA by raising the probability . o
b;(0¢) to the powery, to obtain the following state metrics up-~ A-WVR Based on Channel Decoding Reliability

date equation: We introduced the WVR technique in [5] to match the recog-
nizer with the confidence in the decoded feature after channel
bjt = Inflx[ﬁbi,t—laij][bj(ot)]%' (8) transmission. We present here a channel decoding reliability

o ] ] _ measurement based on the propoaesbft decision decoding
Such weighting, also used in [30] for state duration modelingeheme presented in Section IV. We consider both binary and
has the advantage of becoming a simple multiplication @fntinuous WVR weighting.
log(b;(0;)) by 7; in the logarithmic domain often used for \wjth pinary weighting, the weighting coefficients can ei-
scaling purposes. Furthermore, note that if one is certain abgyit, pe 0 (if the frame is lost or an error is detected) or 1 (if the

the received featurey, = 1 and (8) is equivalent to (1). On frame js received). The advantage of this technique over frame
the other hand, if the decoded feature is unreliaples 0 and dropping, where state metrics are not upddtgd; = ¢, ¢—1),

the probability of observing the feature given the HMM statg that the timing information of the observation sequence is
modelb;(o;) is discarded in the VA recursive step. conserved. State metrics are continuously updated, even when

Under the hypothesis of a diagonal covariance marithe . _ ( py virtue of the state transition probability matrix using
overall probabilityb; (o) can be computed as the productof thg .~ _ masx; [¢i 1—1aij]-

probabilities of observing each individual feature. The Weighted’-l—he system can be refined if a time-varyiogntinuousesti-
recursive formula (8) can include individual weighting factorgnate% of the feature vector reliability is used. We propose the
.« for each of theV- front-end features functiony, = A? to map the intervgl0, 1] for ), to the interval
Np [0, 1] for ;. The quadratic exponent is empirically chosen after
bj.r = max|d;, 1 1aij] H [b; (0K, ¢)] " (9) itwas shown to provide necessary statistical rejection of the un-
g i certain frames.

Note that if hard decision decoding was employed, only bi-
nary weighting could be used. For soft decision decoding, on
the other hand, both binary weighting with = 0if A\, < 7

In this section, techniques designed for coping with chanrady; = 1if A; > 7, and continuous weighting with, = A}
erasures are presented, regardless of whether the erasures agathée used.
result of a detected channel error or an actual channel erasure. )

One method used to reduce the effect of channel transmissfon?-WVR Based on Erasure Concealment Quality
on recognition accuracy consists of dropping the unreliable fea-Performance of repetition techniques degrades rapidly as the
tures from the sequence of observations (e.g., [19]). The matiumber of consecutive lost frames increases. When frame losses
vation is that channel errors rapidly degrade recognition acakceed the length of a phoneme (20—100 ms or 2—-10 frames),
racy, while recognizers can cope with missing segments in tthee speech signal has evolved to another sound, which no longer
sequence of observations given the redundancy of the speputhifies repetition of the last correctly received feature vector.

VI. ALLEVIATING THE EFFECT OFERASURES
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TABLE VI TABLE VII
DETERMINATION OF THE WEIGHTING COEFFICIENTS FORCONCEALMENT RECOGNITION ACCURACY OVER INDEPENDENT AND BURSTY ERASURE
BASED WEIGHTED VITERBI RECOGNITION CHANNELS USING FRAME DROPPING FRAME DROPPINGWITH

BINARY A-WVR, REPETITION ERASURE CONCEALMENT WITH AND
WITHOUT CONTINUOUS p-WVR

GILBERT STATE | GOOD | BAD

Pct. Erasures 0% | 10% | 20% | 30% | 40% | 50%

Static features Ve = VP (t —tC)

Frame dropping | 98.52]97.1993.51 |85.49 | 71.23 | 56.33

Dynamic features Yero =1 | %, =0

Binary A-WVR |98.52|98.31|98.11|97.19 | 96.87 | 94.31

. . .. . . Concealment 98.52 1 98.47 | 98.31|98.19 | 97.67 | 96.35
In this case, itis beneficial to decrease the weighting fagtar

when the number of consecutively repeated frames increases Conc- + p-WVR | 08.52 | 98.5298.47 | 98.39 | 98.11 | 97.61
For the weighting coefficients, we propose

(b) Bursty (Gilbert-Elliot) erasure channels.
Ve,t = V Pi(t — te) (10)

wherepy, is the time auto-correlation of thgh feature and. is
the time instant of the last correctly received frame. Note that if Frame dropping 91.31 | 87.35 |86.21| 82.17 | 80.47 |179.81/75.11
there is no erasure, thén= t. and~;, ; = 1.

For the case of feature vectors consisting of temporal and dy-
namic features (derivative and acceleration), the weighting co- Concealment | 97.50 | 96.62 |96.82| 94.50 | 93.38 194.42|93.91
efficientsy;, ; are computed as follows. First, the receiver deter-
mines the status of the channel. If two consecutive frames are
lost/received, then it determines that the channel is bad/good.

In the bad channel state, temporal features are repeated anqfiz o\ es from 93.27% to 97.03%, a 71% relative word error
weighting coefficients of the dynamic features are set t0 zefgye (WER) reduction compared to the baseline recognition per-
If the channel state is good, the dynamic features are compufihance of 98.52%. 3) Despite average overall probability of
and the weighting coefficients of the dynamic features are setfg 1« erasures between 9% and 27% and average length of era-

one. A one-sided derivative is used if one neighboring frame, Q{ye pyrsts between 4 and 19 frames (see Table 1), recognition
either side, is lost while still in a good channel state. This ORiccuracy approaches baseline performance.

tionis chosen over repeating the entire previous frame (tempora\yte that Table VIl does not include results for continuous

and dynamic features) since time-correlation of the dynami/Q_WVR’ which require simulations of a complete remote recog-

features is significantly smallfer than for thg temporal featureﬁ‘ition system, including channel coding and decoding. We com-
Table VI recapitulates the weighting coefficients foWWVR. pare in Section VII the performance of continugu¥VVR and

continuousA\-WVR on a complete DSR system.

Channels  |2.5/20(2.5/15|5/20[2.5/10(1.25/5|5/1510/20

Binary A-WVR/| 97.44 | 96.41 [96.29| 94.61 | 93.81 |95.13|94.88

Conc.4+p-WVR/| 98.13 | 97.64 |97.89| 97.46 | 97.18 |96.94|96.94

C. Comparison of the Different Techniques

Table VIlI(a) illustrates recognition accuracy for the different VIl. PEREORMANCE OFCOMPLETE DSR S/STEMS

frame erasure concealment techniques applied to the indepen- ) _
dent erasure channel. Baseline recognition accuracy for eralf this section, the concepts presented above (channel coding,

sure-free channels is 98.52%. Several observations are mad&n@nel decoding and speech recognition) with their respective
After about 10-20% of independent frame erasures, recogniti@Rovations (error detection over error correction, soft-decision
accuracy degrades rapidly. 2) Transmission of the binary frarﬁ@sed error detection and weighted Viterbi recognition) are ap-
erasure reliability measurement to the weighted Viterbi recoflied to complete DSR systems. Two ASR features are analyzed,
nizer preserves synchronization of the VA and significantly r "LP and MFCC.
duces the word error rate. 3) Repetition-based frame erasure
concealment, which in addition to preserving the timing aldd: Complete DSR System for PLP Features
provides an approximation for the missing frame, typically out- Table VIl presents recognition accuracy of a complete DSR
performs binaryA-WVR. 4) Addition of the weighting coeffi- system over a wide range of independent Rayleigh fading chan-
cientsv , representing the quality of the feature concealmenels. Source coding is applied to the LSFs of the PLP system,
technique (10) in the Viterbi search further improves recognivith 5 to 7 bits per 20 ms frame, using the technique proposed
tion performance. in [19], which includes predictive coding and interpolation. De-
These results are confirmed in Table VII(b) for the burstgending on the channel conditions, different linear block codes
Gilbert channels of Table I, for which we can make additionahaximizing error detection are used [19] axdoft channel de-
observations: 1) Binary WVR may outperform repetition-basembding is performed. The overall bit rate, including source and
erasure concealment when the average burst lengths are lacgannel coding, is limited to 500 bps.
2) Again, frame erasure concealment combined with WVR pro- Two scenarios are considered. In the first scenavigdVR),
vides the best recognition results. For instance, for the Gilbait the features are transmitted to the recognizer, even the unre-
channel with( P, Ppg) = (1.25, 5), recognition accuracy liable ones, and the weighting coefficierits = A\?) will lower
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TABLE VIl performance of the joint soft decision decoding-Viterbi recog-

RECOGNITION PERFORMANCE OFCHANNEL BASED CONTINUOUSA-WVR  njtion scheme is confirmed for MFCC features. Recognition ac-
(v = A7) AND CONCEALMENT BASED CONTINUOUS p-WVR

(7, = \/pr(t —t.) ) OVER RAYLEIGH FADING CHANNELS USING THE curacies remain acceptable over a wide range of independent
AURORA-2 DATABASE AND PLP FEATURES Rayleigh fading channel SNRs and using overall bit rates less

than 1.2 kbps.

Block | Bit | SNR BER RECOGNITION (%)

Code | Rate | (dB) (%) |Cont. AXWVR  p-WVR VIIl. SUMMARY AND CONCLUSIONS

(N,K) | (bps) e =X Tkt = Pk In this paper, we present a framework for developing source
coding, channel coding and decoding as well as erasure conceal-
ment techniques adapted for DSR applications.

(8,6) | 400 | &  3.55 98.3 98.2 First, it is shown that speech recognition, as opposed to
speech coding, is more sensitive to channel errors than channel
erasures and appropriate channel coding design criteria are
(10,7) | 500 | 6  5.30 98.4 98.5 determined.

Efficient linear block codes for error detection are presented
and a new technique for performing error detection with soft de-
(10,6) | 500 | 4 7.71 98.1 98.1 cision decoding is described. The new channel decoder, which
introduces additional complexity only at the server, is proven to
outperform the widely-used hard decision decoding scheme for
(10,5) | 500 | 2 10.85 97.4 97.6 error detection.

Once an error is detected, the corresponding frame is erased
and frame erasure concealment techniques which alleviate the

(8,7) | 400 9 2.88 98.5 98.5

(8,6) | 400 7 4.35 98.3 98.3

(10,7) | 500 5 6.42 98.2 98.3

(10,6) | 500 3 9.19 97.6 97.7

e e I S . ; cal ! X
%8t el R .1 effect of channel transmission are discussed. We introduce the

§96 Tt weighted Viterbi recognizer (WVR) whereby the recognizer

2 is modified to include a time-varying weighting factor de-

o« AN . . ..

ot X 1 pending on the quality of each feature after transmission over

o ©- A-Soft decoding + Continuous WVR \ . .

< | |+ Hard Decoding + Binary WVR N time-varying channels.

Z 92+ \ — . .

) | As a case study, source coding, channel coding, and speech

Zol N 1 recognition technigues are combined to provide high recogni-

§ CODES USED v tion accuracy over a large range of channel conditions for PLP

[ 1 kbps 1.2 kbps ‘

based coefficients. Line spectral pairs representing the PLP
spectrum are quantized using weighted vector quantization op-
T RAVLEIGH FADING CHANNEL SNR (dB) ¢ : ! erating at 1 kbps or less. We demonstrate that high recognition
accuracy over a wide range of channel conditions is possible
#Hith less than 1.2 kbps overall bitrate when using the appro-
priate source and channel coder, alleviation of the effect of
channel erasures and the weighted Viterbi recognition engine.
the importance of the inaccurate ones. In the second scenajjgjlar results were also obtained for MFCCs, illustrating the
(r-WVR), the unreliable features (those for whigh < 0.16)  generality of the proposed framework. In fact, the source and
are dropped and concealed with a substitution feature veci{annel coding techniques presented are not restricted to the
WVR weighting coefficients are based on the quality of the cogansmission of PLP based coefficients and MFCCs, and can
cealment operatiofyy, . = \/pk(t — t.) ). Table Vlllindicates pe extended to other types of ASR feature.
that in this case, no strategy consistently outperforms. Future work will include examining the effects of model size
(word, phoneme, tri-phone), as well as studying the robustness
B. Complete DSR System for MFCC Features of the source encoders and recognition scheme to acoustic noise.
Parts of the experiments presented above for PLP are repeated
in this section for MFCC features, illustrating the generality of

the source coding, channel coding and channel decoding scheme
presented in the previous sections. [1] T. Salonidis and V. Digalakis, “Robust speech recognition for multiple

. . . . topological scenarios of the GSM mobile phone system,’Pioc.
MFCCs are quantized using the techniques presented in [5] |CpAssgPMay 1998, pp. 101-104. P Y

(first order predictive weighted VQ with two splits) with 7t0 9 [2] S. Dufour, C. Glorion, and P. Lockwood, “Evaluation of the root-nor-
bits per Split and interpolation by a factor of 2 at the receiver. malized front-end (RN LFCC) for speech recognition in wireless GSM

. . network environments,” iProc. ICASSPvol. 1, May 1996, pp. 77-80.
After channel protection, the number of bits after forward error 3 | Karray, A. Jelloun, and C. Mokbel, “Solutions for robust recogni-

correction is 10 or 12 bits per split, for a total of 1.0 or 1.2 kbps,  tion over the GSM cellular network,” iRroc. ICASSPvol. 1, 1998, pp.
depending on channel conditions. 166-1/0. . B
Fia. 6 illustrates recoqnition accuracy after choosing for each[4] A. Gallardo, F. Diaz, and F. Vavlerde, “Avoiding distortions due to
Ig.01 gnitic Yy g : speech coding and transmission errors in GSM ASR tasksPrdt.
SNR the block code that yields the best results. The superior ICASSPMay 1999, pp. 277-280.

(10,9) (10,9) (10,8) (10,8) (12,9) (12,8) (12,8) (12,8) (127) (12,7) (12,7)

Fig. 6. Recognition accuracy after transmission of the 13 MFCCs over
independent Rayleigh fading channel.
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