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Abstract: This paper evaluates six supersonic business jet (SSBJ) concepts in a multidisciplinary design analysis

optimization (MDAO) environment in terms of their aerodynamics and sonic boom intensities. The aerodynamic

analysis and sonic boom prediction are investigated by a number of conceptual-level numerical approaches. The panel

method PANAIR is integrated to perform automated aerodynamic analysis. The drag coefficient is corrected by the

Harris wave drag formula and form factor method. For sonic boom prediction, the near-field pressure is predicted

through the Whitham F-function method. The F-function is decomposed to the F-function due to volume and the F-

function due to lift to investigate the separate effect on sonic boom. The propagation method for the near-field

signature in a stratified windy atmosphere is the waveform parameter method. In this research, using the methods

described and publically available data on the concepts, the supersonic drag elements and sonic boom signature due

to volume distribution and lift distribution are analysed. Based on the analysis, low-boom and low-drag design

principles are identified.
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�� = speed that a wave propagates normal to itself�� = total drag coefficient������ = wave drag coefficient���� = induced drag coefficient��� = skin friction and form drag coefficient�� = skin friction coefficient�� = form factor� = overall aircraft length�(�, �) = lift on a spanwise strip per unit chordwise length� = Mach number���� = reference area���� = wet area

dt = time step�� = ambient pressure�� = slope of waveform segment i∆�� = pressure rise across shock at the junction of waveform segments i and i-1� = angle between the Y-axis and a projection onto the Y-Z plane of a normal to the Mach plane� = ratio of specific heat� = air density�� = time duration of waveform segment i

Introduction

The supersonic business jet (SSBJ) is regarded as the pioneer of the next generation supersonic transport(1, 2). The

sonic boom and aerodynamic efficiency are the biggest concerns for the return of the civil supersonic transport. There

has been a renewed, worldwide interest in developing an environmentally friendly, economically viable and

technologically feasible supersonic transport aircraft. NASA is working on the experimental Quiet Supersonic

Technology X-plane (X-59 QueSST(3)) to support the potential change in FAA regulations for supersonic flight over

land. BOOM Technology is developing a 55-seat supersonic passenger airliner(4) with a technology demonstrator XB-



1. JAXA is conducting experiments to help develop its next-generation supersonic airliner(5). Aerion Supersonic has

been updating its supersonic natural laminar flow SSBJ concept(6) to get a higher cruise efficiency. Spike Aerospace

is developing a low-boom SSBJ concept(7) with innovative digital cabin for a better structural solution. The

HyperMach(8) developed a supersonic concept SonicStar flying at Mach 3.6 and a hypersonic business jet concept

flying at Mach 5.0. At Cranfield University, the E-5 Neutrino SSBJ concept was developed by 15 academic staff and

team of 30 students over a period of seven months. The scope of this study is to provide a complete review of the issue

related to the design of supersonic business jets – the E-5 being a focal case study(9, 10).

Yoshimoto and Uchiyama(11) studied the effect of canard position on sonic boom. Le et cl.(12) proposed a method

for low-boom low-drag SSBJ concept design, but it is only for the wing geometry design. The supersonic natural

laminar flow (SNLF) concept(13, 14) shows promising results in friction drag reduction. There is a lack of study on the

sonic boom characteristics of this configuration. The wing morphing configuration balances the aerodynamic

performance of subsonic and supersonic regimes. However there are still many technical challenges on the structure

design, mechanical system design and certification(15). Wataru and Kazuhiro(16) studied the aerodynamic and sonic

boom performance of six biplane twin fuselage configurations. A noticeable NASA research(17) studied 12 different

wing-body configurations and they found that different wing configurations have quite different sonic boom

performance. However, this research did not distinguish the effects of volume distribution and lift distribution.

In this research, we select four business-class concepts the Aerion AS-2, the Spike S-512, the HyperMach

SonicStar, and the Cranfield University E-5 SSBJ, plus the BOOM airliner and the NASA X-59 QueSST, to evaluate

their sonic boom and aerodynamic performance. The research is conducted in a multidisciplinary design analysis

optimization (MDAO) environment called GENUS(18). In the previous studies, the authors have established the

multidisciplinary methodologies for supersonic transport(19), evaluated the sonic boom and aerodynamics of three

different classes supersonic transport(20, 21), and optimized a baseline configuration for low-boom and low-drag

objectives(21). This paper aims to evaluate the aerodynamics and sonic boom of six business-class configurations

quantitatively and find out low-boom and low-drag design solutions.

In the following section, the aerodynamic analysis methods are introduced. Section 3 describes the near-field

pressure calculation method for sonic boom calculation. Section 4 shows the atmosphere model and the sonic boom

propagation method. Section 5 compares the aerodynamic analysis results with Concorde data and compares the sonic

boom propagation method to NASA PCBoom. The SSBJ concepts are built and studied in an MDAO environment in



section 6. Section 7 concludes some low-boom low-drag design principles. The last section discusses the conclusions

and future work.

Aerodynamic Analysis

The main aerodynamic analysis tool is PANAIR(22), which can predict inviscid subsonic and supersonic flows of

arbitrary configurations by using a high-order panel method to solve linearized partial differential equation. There are

several studies(23-25) on supersonic transport applying the PANAIR method and its accuracy is believed to be sufficient

for conceptual design. For aerodynamic analysis, PANAIR can provide lift coefficients and induced drag coefficients.

Digital DATCOM(26) is a semi-empirical code to calculate the aerodynamic coefficients and stability derivatives. The

authors have introduce the approach to integrating PANAIR and digital DATCOM into the MDAO environment in

another paper(19). The drag elements for supersonic flight consist of zero lift drag, wave drag, and induced drag, as

accumulated in Equation (1).

�� = ��� + ������ + ���� (1)

Friction Drag

The form factor method(27) is integrated to calculate the zero-lift skin friction and form drag. The result comes from

the contribution of each element, as shown in Equation (2)

��� = � ���������������
�

��� (2)

where N is the number of elements used to model the configuration, �� is the form factor, �� is the skin friction factor,���� is the wing wet area, ���� is the wing reference area.
Wave Drag due to Volume

A wave drag computing method(28) based on the supersonic area rule is applied to calculate wave drag due to volume,

as indicated in Equations (3) and (4). The cross section area calculation onMach plane at different angles and positions

are based on the parametric geometric model.

������(�) = − 1

2� � � A�′′(�, ���
�

�
� )A�′′(θ, ��) ln|�� − ��| d��d�� (3)



�� ���� = 1

2� � �� ����(�)����
�

(4)

where � is the angle between the Y-axis and a projection onto the Y-Z plane of a normal to the Mach plane, ����(�, �)
is the second derivative of longitudinal area distribution, �� and �� are positions along longitudinal axis.

Near-Field Pressure Prediction

This section introduces the Whitham theory(29) used for the near-field pressure calculation. The Whitham theory is the

basic theory for sonic boom prediction(30). The equivalent area due to volume and equivalent area due to lift are

required for the near-field pressure calculation.

A lower fidelity approach is to use the normal areas  �(�) for the equivalent area due to volume and use the wing
platform area distribution �(�) for the equivalent area due to lift. The total effective area ��(�) is obtained through
Equation (5). This approach is applied by the Carlson Simplified Sonic Boom Prediction method(31).��(�) = �(�) + �(�) = ��� + ���� (5)

A higher fidelity approach is to calculate the cross sectional areas on Mach planes. This is a complex calculation

based on the parametric geometry model. The lift distribution comes from the PANAIR sectional properties, which

give the lift coefficient on each cut. This approach is the basis of the waveform parametric method(32). The equation

for the total effective area calculation is indicated in Equation (6).

��(�,�) = ��(�,�) + �
2�� � �(�,�)���

� (6)

where compressor factor � = √�� − 1, �� is the ambient dynamic pressure, �(�, �) is the lift on a spanwise strip per
unit chordwise length.

The F-function derives from the equivalent area, as shown in Equation (7). In this research, we decompose the F-

function to F-function due to volume and F-function due to lift, as indicated by Equation (8). The purpose of this is to

study the separate effects on sonic boom intensity. The near-field pressure is then calculated based on the Whitham

theory, which is based on the concept that linear theory provides the correct first order values, as shown in Equation

(9).

�(�) = 1

2� � ����(�,�)√� − � ���
� (7)



�(�,�) = �������(�,�) + �����(�,�) = 1

2� � ����(�,�)√� − � ���
� +

�
4��� � ��(�,�)√� − � ���

� (8)

��(�) = �� ����(�)
(2��)�/� (9)

where �� = � − ��, � is radial coordinate, � = � − �� is the location on the axis of the equivalent body of the
Mach plane translated field point.

Area Distribution

The area distribution comes from the parametric geometric model. Equation (10) gives the Mach plane position �� at
angle ��. The Mach plane cross section distribution is illustrated in Figure 1.

�� = � − ��������� − 1 − ��������� − 1 (10)

Figure 1. Concorde Mach plane cross sectional area distributions

Lift Distribution

The lift distribution comes from the PANAIR program. The sectional property is utilised to get the lift distribution

along the Mach angle direction. An example of Concorde lift distribution is shown in Figure 2.
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Figure 2. Concorde chordwise lift distribution at cruise Mach 2.0

Sonic Boom Propagation

The sonic boom propagation method applied is the waveform parameter method(32). The sonic boom signature

propagates through the real stratified windy atmosphere is depicted in Figure 3.

Figure 3 Schematic of sonic boom propagation

Atmosphere Model

The atmosphere model implemented for study is the 1976 US Standard Atmosphere(33). This model divides the

atmosphere into layers with an assumption of linear distribution of absolute temperature against geopotential altitude.

In this study, the influences of atmosphere on sonic boom propagation are two-folds: the effect of vertical changes of
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the atmosphere properties and the effect of the horizontal winds. At cut-off Mach number, where the aircraft speed

over the ground is less than the speed of sound at the ground, the sonic boom signature will not reach the ground. At

the supersonic transport cruise altitude (12 to 18 km), the cut-off Mach number is around 1.16.

Waveform Parameter Method

Waveform Parameter method(32) is based on geometrical acoustics. This method is widely used in sonic boom

prediction(23, 34-37). This method is suitable for programming to run automatically. The weakness is it only expect one

shock formation at a time and a complex signature would cause a failure of the calculation. The waveform parameters

m�, ∆p� and λ� divide the pressure signature into several segments and shocks, as shown in Figure 4.

Figure 4. Representation of Sonic Boom Signature by Waveform Parameters

The waveform parameters are defined in Equations (11)-(13).

�� = ������ (11)

∆�� = ���������� ∆�� (12)

�� = ���� − �� (13)

where � is a variable used to identify the points on a waveform, �� is the ambient sound speed, �� is the ambient air
density �� is speed that a wave propagates normal to itself, � is ray tube area.
The time rate of change of these waveform parameters are the following equations.����� = ����� + ���� (14)

�∆���� =
1

2
��∆��(�� +����) + ��∆�� (15)



����� = − 1
2

��(∆�� + ∆����) − ������ (16)

where

�� = � + 1
2� ������ (17)

�� = 1

2
� 3�� ����� +

1�� ����� − 2�� ����� − 1� ���� � (18)

After the calculation of C� and C�, the ray path needs to be calculated according to Reference(38). When the ray
path is known, the ambient properties can be calculated along the ray path. The ray tube area is then determined

according to Reference(39).

Equations (14)-(16) can be integrated to get the following solutions.

�� = ������∆�
1 − ������ (19)

∆�� = ∆������∆�
[(1− ������)(1 − ������� �)]�/� (20)

�� = (1− ������) ���� − ∆������ − ����� ��1− ������� �
1 − ������ − 1� − ∆�������� − ����� ��1− ������� �

1 − ������ − 1�� (21)

where � =
���∆� − 1�� (22)

Validation of Methods

Aerodynamic Results Comparison

The lift and drag coefficients from GENUS (PANAIR and DATCOM) are compared with the Concorde experimental

data(40, 41) at Mach 0.95 and Mach 2.0 respectively. Figure 5a and Figure 5b indicate that the aerodynamic coefficients

from GENUS are close to the results of the experimental data, which helps to validate the methods in GENUS.



a. Aerodynamic coefficients at Mach 0.95 b. Aerodynamic coefficients at Mach 2.0

Figure 5. Comparison of Concorde aerodynamic coefficients

Comparison to PCBoom

The results from the waveform parameter method are compared with the NASA PCBoom V.6. Sonic boom signatures

intensity is measured by the unit of pound per square foot (psf, 1.0 psf = 47.85 Pa) from GENUS and PCBoom are

plotted in Figure 6. The GENUS waveform parameter method shows good match with PCBoom in terms of the sonic

boom intensity. They are different by -8.75% in max pressure and -31.09% in duration at near field (Figure 6a). The

differences become -0.57% in max pressure and 1.09% in duration at ground (Figure 6d). The comparisons indicate

that the sonic boom propagation method in GENUS provides accurate sonic boom signature at ground.

a. Sonic boom overpressure at 40k feet b. Sonic boom overpressure at 20k feet
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c. Sonic boom overpressure at 10k feet d. Sonic boom overpressure at ground

Figure 6. Comparison of sonic boom overpressures from GENUS and PCBoom

Current Supersonic Business Jet Concepts Evaluation

This section analyses the aerodynamics and sonic boom performance of six supersonic airliner concepts, as shown in

Figure 7. These concepts are selected for two reasons: the geometries can be built in the MDAO environment, with

clear fuselage and lifting surfaces (wing, fin, horizontal tail, or canard); they are up to date and represent a range of

configurations.

Figure 7. Business class civil supersonic jet concepts

To model these concepts in a MDAO environment, the basic information required are geometry data, mission

requirements, and engine performance data. The data has been assembled entirely from publically available sources

(Table 1) and so it should be noted that some inaccuracies may have been introduced. For example, the overall

geometries have been estimated from published three view drawings. Some of the geometry data, such as airfoil data,
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are not in the public domain and so, in this case, we use representative supersonic airliner data. However, the same

consistent approach has been applied to each aircraft. The engine geometries are not modelled in this research.

Table 1

Sources of geometry and mission data

Aircraft Geometry data Mission data

Boom three views(4) Wikipedia(42)

AS-2 three views(43) Aerion Supersonic(6)

S-512 images(44) Spike Aerospace(7)

SonicStar three views(8) thesis(45)

E-5 SSBJ detail drawings(10) design specification(10)

X-59 three views(46) configuration C606(46)

The mission requirements for these concepts are listed in Table 2. The table is sorted by the estimated mass. The

SonicStar is modified to fulfill a mission at Mach 1.8 instead of Mach 3.6 and its estimated mass is then adjusted to a

proper value of 50,000 kg.

Table 2

Mission requirements for SSBJs

Requirement Boom AS-2 S-512 SonicStar E-5 SSBJ X-59

Estimated Mass (kg) 77,100 60,328 52,200 50,000 45,454 10,200

Cruise altitude (m) 15,240 18,000 15,240 17,000 15,000 16,760

Cruise Mach 2.2 1.4 1.6 1.8 1.8 1.4

Target range (km) 8,334 7,780 11,482 11,112 8,334 100

Passenger number 45 8 18 6 6 0

Crew number 4 2 2 2 2 2

The NASA EngineSim(47) is used to model the engines. The engines are sized by optimizations to make sure that

each engine model is compliant with the performance requirements. Since the engine models do not make much

difference to this research, we will not introduce the details.



Aerodynamic Evaluation

The aerodynamic evaluation results are listed in Table 3. This table gives the calculated mass, gross wing area, aspect

ratio, fineness ratio, surface area to volume ratio, and lift to drag ratio (L/D). We use these overall ratios to help

understand the aerodynamic performance.

Table 3

Aerodynamic evaluation results of different configurations

Boom AS-2 S-512 SonicStar E-5 SSBJ X-59

Calculated Mass (kg) 77,133 60,328 52,199 50,005 45,463 10,208

Sgross (m2) 226.86 174.06 129.83 188.99 161.41 58.22

Aspect Ratio 1.497 2.579 2.517 2.578 1.477 1.408

Fineness Ratio 16.71 19.47 17.13 28.98 22.18 22.41

Surface Area to

Volume ratio

2.38 3.28 3.70 3.48 4.43 8.09

L/D at cruise 7.211 16.384 12.336 12.520 9.964 13.088

Figure 8 plots the drag polar of each configuration from -2° to 8° angle of attack at cruise Mach numbers. We can

see that the AS-2 has the largest CL (CL = 0.281) at cruise mainly because of the low cruise Mach number (Mach 1.4).

The Boom airliner has the largest mass (77133 kg), whereas the CL is the lowest (CL = 0.083). This is due to both the

high cruise Mach number (Mach 2.2) and large wing gross area (227 m2). It can also be seen from Figure 8 that the

AS-2 has the largest lift curve slope as a result of the largest aspect ratio (2.579). X-59 QueSST has the lowest aspect

ratio (1.408), thus the lowest lift curve slope.



Figure 8. Comparison of drag polar and cruise points

Another big difference we can see from Figure 8 are the zero lift drag coefficients. The drag components of each

configuration are compared in Figure 9. The Boom airliner has the biggest wave drag proportion (64.50%). That is

because the Boom airliner has the lowest fineness ratio (16.71). As we can see from the first derivative of volume

distribution in Figure 10, the Boom airliner has the largest volume change value. The NASA X-59 QueSST has the

lowest value, thus the lowest wave drag proportion (15.46%). Therefore, the wave drag is proportion to the first

derivative of the volume distribution.

For the friction drag aspect, the NASA X-59 QueSST has the largest friction drag proportion (46.08%), because it

has a much larger surface area to volume ratio (8.09) than all the other configurations. The friction drag of AS-2 is

very low (18.74%) due to the supersonic natural laminar flow (SSNLF) wing, which is assumed to have a SSNLF

fraction of 40% (14). The E-5 SSBJ has a low friction drag proportion (19.99%) due to the hybrid laminar control

technology (9).
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Figure 9. Drag components of the configurations at cruise conditions

Figure 10. Comparison of the first derivative of the volume distributions

Sonic Boom Evaluation

The sonic boom evaluation results are listed in Table 4. This table gives the maximum overpressure, maximum

underpressure, time duration, and sonic boom intensity (∆P). These results are used to help analyze the sonic boom of 

each configuration.
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Table 4

Sonic boom evaluation results of different configurations

Boom AS-2 S-512 SonicStar E-5 SSBJ X-59

Max. overpressure (psf) 2.039 5.483 1.068 0.617 1.285 0.272

Max. underpressure (psf) -3.054 -3.488 -1.626 -1.270 -2.399 -0.499

Time duration (ms) 633 1559 363 427 526 199

∆P (psf) 3.054 5.483 1.626 1.270 2.399 0.499

Figure 11 to Figure 16 give the near-field pressure and ground sonic boom signature of each configuration. For

the near-field pressure is the same shape as the F-function signature as indicated in Equation (9). The F-function is

decomposed to F-function due to volume and F-function due to lift, as indicated in Equation (8), to evaluate their

individual impact. It can also be seen from Equation (8) that the F-function due to volume is a reflection of the first

derivative of volume distribution and the F-function due to lift is a refelction of the lift distribution.

The near-field and ground signatures of the Boom airliner model are plotted in Figure 11. The maximum sonic

boom intensity is 3.054 psf. When comparing the near-field signature and the ground signature, the peaks in both plots

are corresponding. The 3.054 psf underpressure is due to the lift distribution peak overlap with the first derivative of

volume distribution peak at 43.6 m. This can be reduced by rearranging the wing and fuselage geometry to mismatch

the peaks. The nose volume rate of change is a large value and so forms the maximum overpressure peak. This

overpressure can be reduced by increasing the length of the conical nose.

a. near-field pressure components b. ground boom signature
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Figure 11. Near-field and ground signatures of Boom airliner

The near-field and ground signatures of Aerion AS-2 model are plotted in Figure 12. It can be seen clearly from

the near-field signature that the maximum overpressure of 5.483 psf is due to the concentrated lift distribution. The

short chord length of the configuration causes this problem. This configuration is designed to facilitate the natural

laminar flow to reduce friction drag, which leaves little space for sonic boom mitigation.

a. near-field pressure components b. ground boom signature

Figure 12. Near-field and ground signatures of Aerion AS-2

The near-field and ground signatures of Spike S-512 model are plotted in Figure 13. The main peak comes from

the peak of the lift distribution at 26 m. This is because the vortex at the wingtip generates negative lift there. The

maximum overpressure peak comes from the lift distribution peak. Through a wing geometry optimization, it is

possible to make the lift distribution more uniform to reduce the maximum overpressure.
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a. near-field pressure components b. ground boom signature

Figure 13. Near-field and ground signatures of Spike S-512

The near-field and ground signatures of HyperMach SonicStar model are plotted in Figure 14. The main peak

comes from the end of the lift distribution at around 63 m. The nose volume rate of change forms an overpressure

peak at 16.5 m that is almost the same height as the lift distribution overpressure peak. To reduce the maximum

overpressure, both the nose shape and wing geometry need to be modified. To reduce the maximum underpressure,

the aft part of the wing needs to be modified. There is still space for this configuration to reduce sonic boom intensity.

a. near-field pressure components b. ground boom signature

Figure 14. Near-field and ground signatures of HyperMach SonicStar
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The near-field and ground signatures of Cranfield University E-5 SSBJ model are plotted in Figure 15. The ground

signature indicates the maximum peak value comes from the aft part. In Figure 15a, the lift distribution peak and the

first derivative of volume distribution overlap to form a high peak at around 41.5 m. The canard on top of the wing

has a big influence on the lift distribution. This is because the shock wave generated by the canard forms a high-

pressure zone on the wing upper surface. Thus, the wing has a negative lift at the canard zone.

a. near-field pressure components b. ground boom signature

Figure 15. Near-field and ground signatures of Cranfield University E-5 SSBJ

The near-field and ground signatures of NASA X-59 QueSST model are plotted in Figure 16. This configuration

is carefully designed to reduce sonic boom intensity. The maximum overpressure peak is almost the same height as

the maximum underpressure peak. The lift distribution end peak mismatches with the volume distribution peak.
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a. near-field pressure components b. ground boom signature

Figure 16. Near-field and ground signatures of NASA X-59 QueSST

Overall Evaluation

From the above analysis, we have known the design point aerodynamic performance and sonic boom signature of

each configuration. However, it is unfair to compare them directly considering their different flight conditions. In fact,

it is difficult to compare them under the same mission requirements. The plots of sonic boom intensity (∆P) and L/D 

at different Mach numbers (Figure 17a) and different lift coefficients (Figure 17b) give a direct comparison between

these configurations and indicate the low-boom low-drag design (bottom right corner of the plots).

a. Varying Mach number (Mach 1.4 to 2.2) b. Varying lift coefficient (CL 0.01 to 0.25)
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Figure 17. Sonic boom intensity (∆P) and L/D plots 

Figure 17a shows that the AS-2 maintains high lift to drag ratio at different Mach numbers because of the

supersonic natural laminar flow. However, its sonic boom intensity remains the highest at different Mach numbers.

This is due to the concentrated lift distribution along the short wing chord. NASA had similar study(17) on AS-2 like

configuration to support the conclusion. The sonic boom intensity of NASA X-59 QueSST remains very low along

all Mach numbers. This is because the NASA Quiet Supersonic Technology, as well as the low mass (10,200 kg) and

the low design Mach number (Mach 1.4).

Figure 17b shows that as the lift coefficient CL increases, the NASA X-59 QueSST is in the lowest sonic boom

level whereas its maximum L/D is around 13. The AS-2 has the highest maximum L/D due to the supersonic natural

laminar flow.

Low-Boom Low-Drag Design Principles

From the above analysis, the ground signature is proportional to the near-field pressure. The near-field pressure is a

combination of the volume distribution and the lift distribution. Therefore, the sonic boom intensity can be reduced

through the near-field pressure by change the volume distribution and lift distribution. Some design principles for low-

boom configuration can be concluded (as illustrated in Figure 18):

1. A long nose to reduce the volume change at the front

2. A large wing length along the fuselage to make the lift distribution more uniform

3. A long tail boom to reduce the volume change at the back

4. Properly arrange the empennage size and position to avoid the overlap of the peaks generated by the volume

and lift separately.



Figure 18. Low-boom design influence factors

The supersonic drag mainly comes from the friction drag, induced drag and wave drag. The friction drag can be

reduced significantly by the supersonic natural or hybrid laminar flow technology. The induced drag is affected by

the wing tip design. The wave drag is related to the first derivative of the volume distribution (as blue line illustrated

in Figure 18). Here are some design principles for low-drag design.

1. Hybrid laminar flow control technology to reduce friction drag

2. Properly wing design to reduce induced drag

3. A long nose to mitigate the volume change at the front

4. Aft fuselage shaping together with the empennage size and position to avoid the sharp change of the aft part.

Conclusion and Future Work

In this research, we integrate the aerodynamic analysis and sonic boom prediction methods for SSBJ concepts

evaluation. These methods are implemented into an MDAO environment called GENUS to facilitate design analysis.

The results of these methods show a good match with experimental data and the NASA PCBoom program. Six

supersonic airliner concepts are selected to be evaluated in the SSBJ MDAO environment.

Through the aerodynamic analysis, we have studied the aerodynamic coefficients and notice the influence of the

mission requirements on the cruise point aerodynamic performance. The wave drag is proportion to the maximum

value of the first derivative of the volume distribution. To reduce the wave drag, the aircraft has to be slender without
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severe volume change. The supersonic laminar flow technology can have an impact on the friction drag and help to

improve the aerodynamic efficiency.

In the sonic boom analysis, we evaluate the sonic boom intensity by studying the near-field pressure and ground

signatures. We decompose the near-field pressure to the effects of volume distribution and lift distribution and find

that the change rate of volume and the lift distribution can influence the sonic boom intensity individually or mutually.

We find that the supersonic natural laminar flow wing can result a very high sonic boom intensity due to the

concentrated lift distribution.

The F-function method helps to get deep understanding of the volume distribution and lift distribution. Through

this study, we conclude some principles for low-boom design and low-drag design, which are important for the

development of the next-generation SSBJ and optimization of current designs.

Future work would include developing a low-boom low-drag configuration based on the current and previous

research. A CFD approach can be implanted for higher-fidelity validation of the near-field pressure.
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