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There has been recent interest in the deployment of ab initio density matrix renormalization group compu-
tations on high performance computing platforms. Here, we introduce a reformulation of the conventional
distributed memory ab initio DMRG algorithm that connects it to the conceptually simpler and advantageous
sum of sub-Hamiltonians approach. Starting from this framework, we further explore a hierarchy of paral-
lelism strategies, that includes (i) parallelism over the sum of sub-Hamiltonians, (ii) parallelism over sites,
(iii) parallelism over normal and complementary operators, (iv) parallelism over symmetry sectors, and (v)
parallelism over dense matrix multiplications. We describe how to reduce processor load imbalance and the
communication cost of the algorithm to achieve higher efficiencies. We illustrate the performance of our new
open-source implementation on a recent benchmark ground-state calculation of benzene in an orbital space
of 108 orbitals and 30 electrons, with a bond dimension of up to 6000, and a model of the FeMo cofactor with
76 orbitals and 113 electrons. The observed parallel scaling from 448 to 2800 CPU cores is nearly ideal.

I. INTRODUCTION

The Density Matrix Renormalization Group (DMRG)
algorithm1,2 is established as a method to obtain highly
accurate low-energy eigenstates of ab initio quantum
chemistry Hamiltonians3–15. While multiple techniques
can now solve for low-energy eigenstates to high pre-
cision in problems that are formally beyond the reach
of full configuration interaction16–20, DMRG provides a
unique capability to treat problems with a large number
of open shells.21,22 Consequently it is particularly useful
in active space problems where a large fraction of the or-
bitals have open shell character, for example, as found
in molecular clusters with multiple open-shell transition
metal centers.23–28 In many such problems, teasing out
the relevant chemistry requires not only a single ground-
state energy calculation, but also the characterization of
many competing low-energy states. For such applica-
tions, improving the scalabity and efficiency of current
DMRG implementations is highly desirable.

Over the last two decades, many different strategies
have been proposed to parallelize the DMRG algorithm
in quantum chemistry. These include:

(i) Parallelism over dense matrix multiplications29,30.
This is a fine-grained parallelism which is effective when
the size of the dense matrices is sufficiently large (namely,
when a large Matrix Product State (MPS) bond dimen-
sion M is used). It can be implemented simply by linking
the code to a parallelized shared-memory math library.

(ii) Parallelism over symmetry sectors,11,30 which is
available when DMRG is implemented with symmetry
restrictions. Typically, particle number, total spin or pro-
jected spin, and spatial symmetry are used in ab initio
DMRG implementations.
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(iii) Parallelism over normal and complementary
operators31,32. This is often considered the largest source
of parallelism for typical ab initio problems.

(iv) Parallelism over a sum of sub-Hamiltonians33.
This is a coarse-grained parallelism with very low com-
munication cost, and is easy to express in a Matrix Prod-
uct Operator (MPO) description of DMRG.

(v) Parallelism over sites34. For a large number of sites,
this is an additional source of coarse grained parallelism.
Such an implementation relies on the transformation of
the MPS to a form with multiple canonical centers.

Recently, Brabec et. al. reported a non-spin-adapted
massively parallel implementation of DMRG for quantum
chemistry using strategies (ii) and (iii).35 We also note
promising recent progress in GPU accelerated parallel
DMRG algorithms.36–38 However, to the best our knowl-
edge, there has not been an implementation that utilizes
all 5 sources of parallelism in a scalable DMRG code for
ab initio problems. This may be partly ascribed to the
fact that strategies (iv) and (v) are most conveniently im-
plemented in a DMRG code39,40 that is structured using
an MPO/MPS formalism,33,41 while many other efficient
ab initio DMRG implementations42,43 using strategies
(i), (ii) and (iii) are organized around the construction
and transformation of renormalized operators.6

In this work, we first reformulate strategy (iii) for
a distributed memory model using the sum of sub-
Hamiltonians language. This demonstrates that a low
communication version of strategy (iii) can in fact also
be viewed as a variant of strategy (iv). This analysis con-
stitutes Section II A and Section II B. In Section II C, we
discuss how the load-imbalance that arises in strategy (v)
can be alleviated via the dynamical determination of con-
nection sites. In Section II D to Section II F we briefly
introduce the shared memory parallelism strategies (i),
(ii) and (iii) used in this work. Next, in Section III, we
illustrate the computational performance of our new im-
plementation of parallel DMRG for a recent ground-state
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benzene benchmark20 in a polarized valence double zeta
basis.44 Although not a correlated or open-shell system
that is particularly suited to DMRG, the size of the calcu-
lation serves to illustrate the scalability of our algorithm.
For a correlated electron problem with many open shells
that is more suited for DMRG, we also consider a model
of the FeMo cofactor system45, and observe that a simi-
lar scaling can be achieved. Finally, the conclusions are
given in Section IV.

II. THEORY

Rather than reintroduce the DMRG formalism here,
we summarize the background theory and notation for
the serial DMRG algorithm1,2 and the SU(2) (spin-
adapted) ab initio DMRG algorithm32,42,46 in Ap-
pendix A and Appendix B, respectively. We encourage
readers unfamiliar with the standard DMRG algorithm
and terminology to first consult these appendices.

A. Parallelism over renormalized operators

In most parallel implementations of ab initio DMRG,
the most important source of distributed memory paral-
lelism comes from distributing the left-right renormalized
operator decomposition of the Hamiltonian, as discussed
in Ref. 31. In this approach, “normal” and “complemen-
tary” renormalized operators (see Appendix B for defi-
nitions) are assigned to different processors according to
their orbital indices.

The leading communication cost per sweep in the ap-
proach described in Ref. 31 isO(16M2K2 logPhamil) from
the blocking step, where M is the MPS bond dimen-
sion, K is the number of sites, and Phamil is the total
number of processors (processor cores) at this parallelism
level. The sub-leading term in the communication cost is
O(M2K2 logPhamil) from the transformation (rotation)
step.

In order to achieve better scalability, it is desirable
to reduce the communication cost. For this purpose,
we note that the leading and sub-leading terms in the
communication cost in the above approach mainly come

from the accumulation of the R
L/R[ 12 ]
i operators (de-

fined in Eq. (B7)). Therefore, the communication cost

can be greatly reduced by never accumulating R
L/R[ 12 ]
i .

Namely, we can arrange for each processor to compute

and store a partial contribution to R
L/R[ 12 ]
i for all indices

i. Compared to the original scheme, this new scheme only
needs to communicate when accumulating the wavefunc-
tion, with a communication cost of O(16M2K logPhamil)
per sweep. However, since all partial components of

the R
L/R[ 12 ]
i operators have to enter into the solving

(Davidson) step, the computational cost for the solv-
ing step increases from O(M3(K3 + K2)/Phamil) to
O(M3K3/Phamil + M3K2) per sweep. The total disk

storage cost also increases from O(M2(K3 + K2)) to
O(M2K3 + M2K2Phamil). For the typical case where
Phamil 6� K, the increase in the subleading term of the
storage is not a large concern.

We note that in this new scheme, the communication of
renormalized operators is completely removed. In other
words, each processor performs blocking, solving, and
transformation steps for a part of the Hamiltonian - i.e.
a sub-Hamiltonian - independently, and only wavefunc-
tions from the solving step are communicated. This mo-
tivates a more general picture where we can develop low
communication algorithms that are formulated in terms
of sub-Hamiltonians, rather than the left-right decompo-
sition of the Hamiltonian.

B. Parallelism over sub-Hamiltonians

For this purpose, we write the ab initio Hamiltonian
Eq. (B1) as

Ĥ = Ĥ(1) + Ĥ(2) + · · ·+ Ĥ(Phamil) (1)

where Ĥ(p) is the sub-Hamiltonian assigned to processor
p. To describe this assignment, we can write

Ĥ(p) =
1

2

∑
ij,σ

[
proc(p, i) + proc(p, j)

]
tij,σ a

†
iσajσ

+
1

2

∑
ijkl,σσ′

proc(p, i, j, k, l) vijkl,σσ′ a
†
iσa
†
kσ′alσ′ajσ (2)

where proc(p, · · · ) defines the mapping from orbital in-
dices to processor rank p (p = 1, 2, · · · , Phamil). There is
clearly much freedom in choosing the definition of these
mappings.

A possible definition of proc(p, · · · ) is

proc(p, i) =

{
1 p ≡ i (mod Phamil)

0 otherwise

proc(p, i, j) =


1 p ≡ (j−1)j

2 + i (mod Phamil) and i ≤ j
1 p ≡ (i−1)i

2 + j (mod Phamil) and i > j

0 otherwise

(3)
and proc(p, i, j, k, l) has the same value for any permuta-
tion of parameters i, j, k, l, namely

proc(p, i, j, k, l) = proc(p, sorted: i, j, k, l) (4)

As discussed above, we can think of a modified ver-
sion of the normal-complementary operator parallelism
as arising from a particular decomposition into sub-
Hamiltonians. In particular, the NC renormalized op-
erator partition (Eq. (B5)) corresponds to

proc(p, sorted: i, j, k, l) =

{
proc(p, j) j = k

proc(p, i, j) otherwise
(5)
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while the CN renormalized operator partition (Eq. (B6))
corresponds to

proc(p, sorted: i, j, k, l) =

{
proc(p, j) j = k

proc(p, k, l) otherwise
(6)

Here the notation proc(p, sorted: i, j, k, l) means that
i ≤ j ≤ k ≤ l. Based on the above definitions, the
symmetry condition proc(p, i, j) = proc(p, j, i) is satis-
fied. This is important for efficiency, since the operator
symmetry conditions used for efficient DMRG algorithms
(see Eq. (B8)) can still be used on each processor without
any communication.

To see how this assignment of Hamiltonian terms gives
the correct scaling for multiple processors, we note that
in the NC partition in Eq. (B5) the summation over two-
index operators is over indices in the left block of sites L,
which are the small indices i, j in the tuple i, j, k, l, and
thus in Eq. (5) the indices i, j are used for the processor
assignment. For similar reasons, the large indices k, l are
used in the CN partition case. This ensures that the
total number of terms in the left-right decomposition of
the effective Hamiltonian on each processor is roughly
O(K2/Phamil) (if Phamil 6� K).

It is worth noting that Eq. (1) is in the same spirit as
the sum of MPOs formulation first introduced in Ref. 33.
This is often considered a different strategy from the
strategy of parallelism over renormalized operators. The
two methods indeed have a very different origin and mo-
tivation. However, our new formulation of the low com-
munication version of the parallelism over renormalized
operators establishes a clear connection between the two
methods. In addition, we find that this new formula-
tion inherits the most important advantages from both
methods:

(i) Low communication time.33 Since each sub-
Hamiltonian can be manipulated completely indepen-
dently, only the communication of the (small) wavefunc-
tion obtained from the DMRG solving step is required.

(ii) Simple implementation. To parallelize a serial ab
initio DMRG code, one only needs to start with a dis-
tributed integral file, where for each processor some in-
tegrals tij and vijkl are set to zero according to Eq. (2).
A single communication step then needs to be added to
accumulate wavefunctions from all processors. No other
part of the code needs to be changed significantly.

(iii) Compatibility with both the exact renormalized
operator and compressed MPO DMRG formalisms. Be-
cause the description of our algorithm does not rely on
specific definitions and choices of normal and comple-
mentary operators,3 one has great freedom to decom-
pose each sub-Hamiltonian. For example, we have pre-
sented examples that correspond to the conventional ex-
act NC or CN renormalized operator partitions6 and
their corresponding MPOs, but other MPO represen-
tations of the sub-Hamiltonians, including compressed
representations33 can be used. In this work, we will only
use exact MPO representations of the sub-Hamiltonians.

(iv) Compatibility with index-symmetry conditions.
We note that the previous description of sub-
Hamiltonians in Ref. 33 was based on splitting the Hamil-
tonian based on single site-indices. This has the disad-
vantage that it becomes difficult to use the two-index
symmetry conditions Eq. (B8) to reduce the computa-
tional cost associated with each sub-Hamiltonian in a dis-
tributed setting, because a single site-index based proces-
sor assignment can easily assign index-symmetry related
operators to different processors. The current two-index
based splitting does not have this problem since Ôij and

Ôji are always assigned to the same processor.
(v) Load balance between processors. The two-index

based assignment assigns roughly equal amounts of work
to different processors, if Phamil 6� K.

(vi) Compatibility with the sum of sub-Hamiltonians
and automated MPO construction. In Ref. 33, it was
demonstrated that by expressing the ab initio Hamilto-
nian as a sum of K sub-Hamiltonians, we can work with
K MPOs each with bond dimension O(K), instead of
one MPO with bond dimension O(K2). The advantage
is that this captures the primary sparsity within the sin-
gle MPO representation of the Hamiltonian. This means
that a simple MPO construction of the sub-Hamiltonians,
which uses only dense matrices, produces the correct se-
rial computational cost of O(M3K3 + M2K4), rather
than the naive (and incorrect) cost of O(M3K3 +M2K5)
arising from single dense MPO representation of H, mak-
ing the correct scaling of the ab initio implementation
very easy to achieve. In particular, this is attractive when
combined with various automated MPO construction ap-
proaches, which then do not need to implement sparse
tensor algebra.33,40,41,47 The two-index based sum of sub-
Hamiltonians retains this attractive feature, but has the
further advantage that the computational prefactor (e.g.
from the sub-MPO bond dimensions) is smaller, when
compared with the previous one-index decomposition.

In this work, we combine the low communication
scheme based on sub-Hamiltonians with a mixed NC/CN
partition11 to achieve high efficiency. The mixed NC/CN
partition introduces additional costs for computation and
communication at the middle site of the sweep. These
details are discussed in Section III A.

C. Parallelism over sites

A more recent approach to coarse-grained parallelism
in DMRG is the “real space parallel DMRG” approach in-
troduced by Stoudenmire and White,34,48 which has been
shown to give near ideal scaling in some calculations with
model Hamiltonians and very recently for quantum chem-
istry Hamiltonian.49 An implementation of this approach
for (non-spin-adapted) quantum chemistry Hamiltonians
can also be found in the QCMaquis code.40

The approach relies on a representation of the MPS
with multiple canonical centers.34 Each extra canonical
center can be introduced by first performing a SVD on
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the effective wavefunction (given in Eq. (A11)) at the
original canonical center k

Ψ[k]eff = L[k]S[k]R[k] (7)

Then we can write

Ψ[k]eff = Ψ1[k]effS[k]−1Ψ2[k + 1]eff (8)

where

Ψ1[k]eff = L[k]S[k]

Ψ2[k + 1]eff = S[k]R[k]
(9)

are the two new canonical centers at site k and k + 1.
Once we have two canonical centers in the MPS, two par-
tial DMRG sweeps, namely, a backward sweep starting
from site k and a forward sweep starting from site k+ 1,
can be performed simultaneously by separate processors.
The above approach can be invoked iteratively to gener-
ate Psite canonical centers in the MPS, where Psite is the
total number of (groups of) processors at this level of par-
allelism. Matrix S[k]−1 (termed the connection matrix)
is used after a round of forward and backward partial
sweeps to merge the updated Ψnew

1 [k]eff and Ψnew
2 [k]eff

to yield an approximation to the updated Ψnew[k]eff

Ψnew[k]eff = Ψnew
1 [k]effS[k]−1Ψnew

2 [k + 1]eff (10)

Merging the two separately optimized portions of the
MPS using this connection matrix does not change the
MPS when the MPS has reached its variational optimum.
The two partial sweeps over sites · · · , k and k + 1, · · ·
cannot update the MPS bond between the sites k and
k+ 1. Therefore, a sweep iteration at the connection site
is performed, where Eq. (A12) is solved for the merged
wavefunction Ψnew[k]eff . The solution of Eq. (A12), de-
noted as Ψ′new[k]eff , is then split according to Eq. (8) to
generate the updated connection matrix Snew[k]−1.

In a typical ab initio application, the amount of com-
putation is not distributed homogeneously among differ-
ent groups of sites (see Fig. 1) because of the boundary
effects of the MPS and the different block sizes from dif-
ferent truncations at different sites. In addition, the total
number of sites available for this level of parallelism is
limited. If the same number of sites is assigned to differ-
ent processors, one observes a significant load imbalance,
which negatively impacts the scalability.49

To alleviate this problem, similar to the dynamic
boundary strategy used in Ref. 49, we have added an ad-
ditional step to dynamically determine the position of the
canonical center (connection site) to improve load balanc-
ing. After all processors finish their partial sweeps, the
total computational cost is measured for each processor
for the partial sweep and all its sweep iterations. From
this, it is possible to estimate whether changing the con-
nection site from k to k + 2 (for example) reduces the
cost discrepancy between the two processors connected
at site k. If this is the case, then the connection site is

moved to k + 2, with the hope that this helps to reduce
the degree of load imbalance during the next sweep.

We note that changing the position of the connec-
tion site between sweeps is not an operation with neg-
ligible cost, since not only the MPS tensors, but also
the renormalized operators, need to be transformed (see
Eq. (A15)). Consequently, in our implementation, we
have limited the distance between the old connection
site and the new connection site to at most two sites.
This ensures that the operation itself does not consume
a significant amount of time. In practice, we can start
the DMRG algorithm with an arbitrary set of connection
sites. After several sweeps with dynamical adjustment of
the connection sites, we observe that we can often achieve
a stable set of connection sites and a well-balanced work-
load amongst the processors. The performance of the
parallelism over sites with the dynamical adjustment of
connection sites is discussed in Section III C.

Comparing to the strategy very recently introduced in
Ref. 49, our approach does not directly reduce the wait-
ing time of the current sweep; instead, the performance
statistics of the current sweep are accumulated, to de-
termine the position of the connection sites for the next
sweep. In contrast, the approach introduced in Ref. 49
completely removes the waiting time at each sweep, but
introduces an extra projection error in the wavefunc-
tion initial guess (Eq. (10)) when the connection site is
changed (which is larger for ab initio systems compared
to spin systems, according to Ref. 49). This extra er-
ror in the wavefunction transformation may increase the
number of Davidson iterations.

In order to improve single-node performance, we have
also considered the fine-grained strategies for shared
memory parallelism.29 Most of them can be easily im-
plemented in an ab initio DMRG code with minor mod-
ifications. These are now discussed.

D. Shared memory parallelism over normal and
complementary operators

The left-right decomposition of Hamiltonian (Eq. (B5)
and Eq. (B6)) is a sum of products of normal and comple-
mentary operators. For the ab initio sub-Hamiltonians,
there are O(K2/Phamil + K) terms in the summation.
Therefore, for the matrix-vector multiplication

|Ψ′[k]eff〉 = Ĥ[k]eff |Ψ[k]eff〉 (11)

invoked during the Davidson procedure, we can divide
the work among Top threads, namely

Ĥ[k]eff = Ĥ[k]eff
(1) + Ĥ[k]eff

(2) + · · ·+ Ĥ[k]eff
(Top) (12)

The partial contribution to |Ψ′[k]eff〉 is computed on ev-
ery thread t as

|Ψ′[k]eff
(t)〉 = Ĥ[k]eff

(t)|Ψ[k]eff〉 (13)
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Finally, a reduction step is performed to obtain |Ψ′[k]eff〉,
as

|Ψ′[k]eff〉 = |Ψ′[k]eff
(1)〉+ |Ψ

′[k]eff
(2)〉+ · · ·+ |Ψ

′[k]eff
(Top)〉 (14)

with a small additional computation cost of
O(16M2K log Top) per sweep.

E. Shared memory parallelism over symmetry sectors

In addition, every term in Eq. (13) is implemented as
a block-sparse matrix-matrix multiplication, which can
be further decomposed into dense matrix-matrix multi-
plications over independent symmetry sectors. Instead of
using nested threaded parallelism over normal and com-
plementary operators and symmetry sectors, we can col-
lapse the two thread parallelism levels to one level,35 to
achieve a better load balance and reduce the overhead
from creating threads.

F. Shared memory parallelism over dense matrix
multiplication

Thread-level parallelism for dense matrix multiplica-
tion can be easily introduced by using a threaded math
library.29 The effectiveness of this lowest level of paral-
lelism is analyzed in Section III B.

III. RESULTS

As a first benchmark, we assess our parallel DMRG
implementation in a ground-state energy calculation of
benzene using a cc-pVDZ basis44 with an orbital space
comprising 108 orbitals and 30 electrons.20 Although the
benzene system is a closed shell system and thus does
not showcase the strengths of the DMRG algorithm, it
nonetheless serves as an example in the literature where
a DMRG calculation with a large bond dimension and
a relatively large number of orbitals has been recently
reported.

For the benzene calculation, we use particle number,
SU(2) (spin) and Cs point group symmetry to reduce the
overall cost of the calculation. The same orbitals, inte-
grals and orbital ordering as in Ref. 20 were used in this
work. The DMRG correlation energy at M = 6000 (plus
approximately 200 states to represent the low-weight
quantum numbers) obtained in this work is −859.1 mEH .
Given the differences in implementation that gives rise to
small differences in bond truncations across many sweeps,
this is in excellent agreement with the DMRG correlation
energy (−859.2 mEH) reported in Ref. 20 at M = 6000.

In addition, we demonstrate the performance of our
DMRG implementation in a calculation on the FeMo co-
factor system, using a model with 76 orbitals and 113
electrons in the active space recently proposed by Li et.

al. in Ref. 45. This is an example of a system with mul-
tiple transition metal centers where the strengths of the
DMRG algorithm can in principle be demonstrated. We
use the integral file provided in Ref. 45 without any fur-
ther orbital reordering. The state with total spin S = 3/2
is targeted.

All calculations in this work use the two-site DMRG
algorithm with perturbative noise.50 Five sweeps were
performed at each MPS bond dimension M . To measure
the wall time per sweep, we used the average wall time for
the last four sweeps for each M . For the benzene system,
to alleviate the problem of losing quantum numbers, we
kept at least one state for each quantum number after
the normal decimation process.31 This makes the bond
dimension M in the calculation slightly larger than its
specified target value. For example, when M was set to
6000, the observed actual M was typically about 6200.

We denote different parallelism schemes by a set of
numbers Psite, Phamil, Top and Tdense indicating the num-
ber of groups of processors, processors, or threads used
in the four levels of parallelism. Namely, Psite denotes
the parallelism over sites; Phamil denotes the distributed
parallelism over sub-Hamiltonians; Top is for the joint
shared memory parallelism over normal and complemen-
tary operators and symmetry sectors; and Tdense is for
the thread-level parallelism in the dense matrix multipli-
cations. The total number of CPU cores for a specific par-
allelism scheme is given by Ncore = PsitePhamilTopTdense.

The calculations were executed on nodes with 28-core
Intel Cascadelake 8276 CPUs (2.20 GHz), made avail-
able via the Caltech high-performance computing facility.
Each node has 56 CPU cores and 384 GB memory.

A. Mixed NC/CN approach

As discussed in Appendix B, in conventional DMRG
implementations, there are two possible ways to write
the left-right decomposition of the ab initio Hamiltonian
at each site k. The NC scheme corresponds to an MPO
with tensor dimensions that increase from left to right,
while the CN scheme corresponds to an MPO with tensor
dimensions that decrease from left to right.33 Typically,
efficient DMRG implementations use a mixed NC/CN
approach,11 where the NC decomposition is used for sites
k < K/2 and the CN decomposition is used for sites
k ≥ K/2, which gives a significantly smaller “MPO”
bond dimension. However, a transformation from the
normal to complementary (two-index) operators is re-
quired near the middle site in this mixed NC/CN ap-
proach. The time complexity for this transformation
is O(K4M2). Additionally, for parallelism over sub-
Hamiltonians, since we use different processor assign-
ments for the NC and CN schemes, an extra reduction
step for all the two-index complementary operators is re-
quired. The communication cost is O(K2M2 logPhamil).
The extra computation and communication cost means
that the middle site of the sweep is significantly more
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expensive than the other sites. Consequently, for par-
allelism over sites, we consider only odd Psite and use
a non-uniform division of the sweep ranges, so that the
high cost of computation at the middle site (included in
the sweep range of processor group p = d 1

2Psitee) is amor-
tized among all Psite groups of processors. In this work,
we tested Psite = 1, 3, 5.

In Fig. 1 we show the distribution of MPO bond dimen-
sions (for each MPO tensor) and the corresponding wall
time cost at each site, for the NC and mixed NC/CN
partitions of the benzene system. For a spin-adapted
DMRG algorithm, the bond dimension of the MPO ten-
sor at site k is 2 + 2K + 6k2 (blue dashed line), if the
NC scheme is used without any optimization or addi-
tional simplifications. Using the symmetry conditions
Eq. (B8), the bond dimension can be reduced to approx-
imately 2+2K+2k2 (green dashed line), and the sudden
decrease of the MPO bond dimension near the rightmost
site in the figure is due to the removal of complementary
operators with vanishing integrals. The mixed NC/CN
approach gives a much better distribution of bond di-
mensions (black dashed line), with the maximal value
D = 5996 appearing near the middle site of the test sys-
tem. From Fig. 1 we can see that the time cost near the
middle site of the mixed approach is approximately two
times as large as that of the NC approach, but the mixed
approach gives a much smaller total wall time per sweep
(with M = 4000 and Phamil = 16, tmixed = 13071 sec) as
compared to the NC approach (tnc = 19356 sec), mainly
due to the smaller MPO bond dimensions for k ≥ K/2.
The speed-up tnc/tmixed is approximately 148% based on
the data in Fig. 1. Due to this, subsequent calculations
in this work all use the mixed approach.

B. Parallelism over dense matrix multiplication

As discussed in earlier studies,29 using thread paral-
lelism in the dense matrix multiplications is not very
effective in DMRG, compared with the other parallel
strategies. Table I shows that this is also true for our
implementation of ab initio DMRG. For M = 2500
and 3000, parallelism schemes with Tdense = 4 are ap-
proximately 60% to 70% slower than the scheme with
Tdense = 1. Therefore, for production calculations in this
work, this level of parallelism was not utilized (i.e., we
used only Top = 28 and Tdense = 1).

TABLE I. Wall time per sweep (in seconds) in the benzene
calculation for MPS bond dimension M = 2500 and 3000
using parallelism schemes with different Tdense.

parallelism scheme Wall time per sweep (sec)
Psite Phamil Top Tdense M = 2500 M = 3000

5 14 28 1 893 1291
5 14 7 4 1521 2106
5 7 14 4 1493 2079
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FIG. 1. MPO tensor bond dimensions (dashed lines) and
wall time cost (solid lines) at each site for the NC and mixed
NC/CN approaches for the benzene system. (Unsimplified
refers to the bond dimension obtained without accounting for
zero-integrals and symmetry conditions, given by 2 + 2K +
6k2). The performance data is from a M = 4000 calculation
with the parallelism scheme Psite = 1, Phamil = 16, Top = 28,
and Tdense = 1.

C. Parallelism over sites

It is sometimes argued that when parallelism over sites
is used, the convergence of the DMRG energy as a func-
tion of the number of sweeps is slower than that of the
standard DMRG approach, if the same sweep schedule
is used.34 In Fig. 2 we compare parallelism schemes with
different Psite for MPS bond dimensions up to M = 6000
(data for M = 6000 with Psite = 3 and Phamil = 8 could
not be obtained due to memory constraints) for the ben-
zene system. We can see that in our test system, con-
vergence is only slightly affected by increasing Psite from
1 to 5. When five sweeps were performed for each M ,
the energy obtained from the last sweep for each M was
almost the same with different Psite, up to M = 5000. Al-
though we started the calculation from the same initial
MPS (with a single canonical center) for different Psite,
for Psite = 3 and 5 the initial MPS is re-canonicalized to
introduce extra canonical centers. During this canonical-
ization step some low-weight single-state quantum num-
bers were discarded, which makes the Psite = 3 and 5
DMRG energy at M = 2500 (artificially) higher in Fig. 2.

To examine the effect of the dynamical connection
sites, we have compared the estimated performance us-
ing dynamical, fixed and uniform connection sites in
Fig. 3. For our test benzene system with 108 sites and
Psite = 5, four connection sites are required. From the
dotted lines in Fig. 3, we see selecting connection sites
based on a uniform division of sweep ranges (namely,
Kconn = {21, 43, 64, 86}) gives a large load imbalance
among the five processors. At the last sweep, the longest
processor task consumed 388% more time than the short-
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FIG. 2. Sweep energies for parallelism schemes with different
Psite and different MPS bond dimensions M for the benzene
system. For each M , five sweeps are performed.

est processor task, which can be mainly attributed to the
highly non-uniform distribution of computational effort
among sites (see solid black line in Fig. 1). In this work,
we found that Kconn = {33, 49, 57, 73} (obtained from
using dynamical connection sites for small bond dimen-
sions) gave much better performance. This corresponds
to the dashed lines in Fig. 3. With this fixed set of con-
nection sites, the longest task consumed 53% more time
than the shortest task. If we allow the set of connec-
tion sites to be dynamically adjusted between the sweeps,
we end up with a slightly altered set of connection sites
Kconn = {33, 48, 59, 74}. Using this, in the last sweep the
longest task then consumed only 26% more time than the
shortest task.

D. Parallel Scaling

In Table II we list the average wall time per sweep with
MPS bond dimensions from M = 2500 to M = 6000
for the benzene system, when parallelism schemes with
different Psite and Phamil are used. The speed-up relative
to the Psite = 1 and Phamil = 16 (Ncore = 448) case is
plotted in Fig. 4.

In Fig. 4 we see that, when Psite = 3, increasing
Phamil from 12 to 18 only reduces the wall time slightly,
while nearly ideal speed-up is observed for different
(Psite, Phamil) when increasing from (1, 16) to (3, 12) and
from (3, 12) to (5, 14). This illustrates that a combina-
tion of different DMRG parallelism strategies is essential
to achieve good scaling across thousands of CPU cores.
The better-than-ideal speed-up for (Psite, Phamil) when
increasing from (1, 16) to (3, 8) is also due to the change
of parallelism strategy. Ideally, the Psite = Phamil = 1
case should be used as the reference point for computing
the speed-up. However, this is not feasible in our test
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FIG. 3. Estimated wall time per processor for parallelism over
sites (as a percentage of the sum of wall times for all proces-
sors), when the connection centers are dynamically adjusted
(solid lines), fixed (dashed lines), uniformly distributed (dot-
ted lines). The performance data is from the Psite = 5 and
Phamil = 20 benzene calculation with the MPS bond dimen-
sion increasing from M = 2500 to M = 6000.
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FIG. 4. Speed-up of average wall time per sweep relative to
the Ncore = 448 case for different MPS bond dimensions using
parallelism schemes with different Psite and Phamil. Top = 28
and Tdense = 1 are used for all parallelism schemes.

system due to the large maximum MPO bond dimension
D = 5996 and when using a large MPS bond dimen-
sion M = 6000. Here, we need Phamil ≥ 10 to ensure
that the memory cost per node is less than 384 GB. This
is an important reason to use larger Phamil rather than
Psite in certain systems, since increasing Psite does not
reduce the memory cost per processor group. Finally,
we note that the speed-up for M = 2500 appears to be
significantly less than the other cases with the larger M .
This is likely related to the fact that for the Psite = 3
and Psite = 5 cases, an initial M = 2500 MPS with an
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TABLE II. Average wall time per sweep (in seconds) of the benzene calculation for different MPS bond dimensions using
parallelism schemes with different Psite and Phamil. Top = 28 and Tdense = 1 were used for all parallelism schemes.

parallelism scheme
Ncore

Average wall time per sweep (sec)
Psite Phamil M = 2500 M = 3000 M = 4000 M = 5000 M = 6000

1 16 448 3145 5253 12740 22212 35451

3
8 672 1855 2542 6158 11335
12 1008 1529 2107 5079
18 1512 1487 2049 4379

5
14 1960 894 1291 3051 5317 8696
20 2800 816 1105 2539 4526 7419

TABLE III. Average wall time per sweep (in seconds) of the FeMo cofactor calculation for different MPS bond dimensions
using parallelism schemes with different Psite and Phamil. Top = 28 and Tdense = 1 were used for all parallelism schemes.

parallelism scheme
Ncore

Average wall time per sweep (sec)
Psite Phamil M = 2000 M = 2500 M = 3000

1 16 448 10596 19464 50677
3 8 672 6380 12191 31496
5 16 2240 3262 5156 12499

artificially higher energy was used (see Fig. 2).
For the largest calculation considered in this work with

Psite = 5, Phamil = 20 and M = 6000 for the benzene sys-
tem, the average communication and idle time among
the Phamil processors constituted approximately 15% of
the total wall time for each group of Phamil processors
and the average idle time among the Psite groups of pro-
cessors was approximately 10% of the total wall time.
The Davidson step (including communication) consti-
tuted 60% to 70% of the total wall time for each pro-
cessor. Reading/writing disk files cost approximately 5%
of the total wall time.

Finally, in Table III we show that a similar scaling can
be observed for the FeMo cofactor system. When in-
creasing (Psite, Phamil) from (1, 16) to (5, 16), for a suffi-
ciently large MPS bond dimension (M = 3000) we obtain
a speed-up of 4.05, which is close to the ideal speed-up
(5). Note that the worse-than-cubic scaling with respect
to M for the M = 2500 and M = 3000 cases shown in
Table III is mainly due to the difference in the Davidson
convergence criteria used for different M .

IV. CONCLUSIONS

In this work, we introduced a modification of the
conventional strategy for distributed memory paral-
lelism in ab initio DMRG algorithms that reduces the
computation to the manipulation of independent sub-
Hamiltonians, together with a small wavefunction com-
munication step. This formulation thus combines the
conceptual advantages of the sum of sub-Hamiltonians
approach introduced in earlier work, with the greater
parallelizability and lower prefactor of the conventional
distributed memory DMRG algorithm. In addition to
this, we carried out a comprehensive examination and

implementation of four other sources of parallelism in
DMRG, introducing techniques for load balancing via dy-
namic connection sites in site-based parallelism, and col-
lapsing tasks to maximize thread efficiency in the shared
memory parallelism. Finally, we showed that the com-
bination of different DMRG parallelism strategies using
both distributed and shared memory models was essen-
tial to achieve near-ideal speed-ups for a benchmark cal-
culation with 108 orbitals and a DMRG bond dimension
of M = 6000, scaling from 448 to 2800 CPU cores. The
DMRG implementation in the Block2 code used in this
work is open-source and can be freely obtained.51
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Appendix A: The serial DMRG algorithm

To establish notation for the DMRG algorithm, con-
sider a quantum lattice system with K sites. Each site is
associated with a Hilbert space spanned by a site-basis
{|nk〉}. A complete basis of the system Hilbert space can
be defined as the tensor product of K site-bases

{|n1 n2 · · · nK〉} = {|n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nK〉} (A1)
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The goal of the DMRG algorithm is to optimize a vari-
ational wavefunction in this Hilbert space, whose ampli-
tudes can be written as a product of matrices

|Ψ〉 =
∑
{n}

A[1]n1A[2]n2 · · ·A[K]nK |n1 n2 · · · nK〉 (A2)

where each A[k]nk (k = 2, · · · ,K − 1) is an M × M
matrix, and the leftmost and rightmost matrices are 1×
M and M × 1 vectors, respectively. The dimension M is
known as the bond-dimension of the MPS |Ψ〉.

Within the MPS ansatz, variational minimization of
the energy, formally written as

E0 = min
|Ψ〉

〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

(A3)

where Ĥ is the system Hamiltonian and E0 is the ground-
state energy, can be performed iteratively by optimiz-
ing the parameters of a single matrix at a time in the
MPS, while the parameters in the remaining matrices
are kept constant. This corresponds to the 1-site DMRG
algorithm. A common variant, designed to improve the
ability to escape local minima, optimizes a single larger
matrix A[k]nknk+1 that describes the variational space
of 2-sites at a time. This formally takes one outside of
the single-site MPS variational space and thus the solu-
tion must be decimated back to the standard MPS form.
This corresponds to the 2-site DMRG algorithm. The
same idea can be generalized to p sites, but in this work
we mainly consider the p = 2 case.

The iterative process in a serial DMRG algorithm
is structured as a series of sweeps along a fixed one-
dimensional ordering of the K sites. Each sweep al-
ternates between the forward and backward directions,
consisting of K + 1 − p sweep iterations. In the k-th
(k = 1, · · · ,K + 1 − p) sweep iteration of a forward
sweep, the parameters in the current matrix being opti-
mized (associated with d adjacent sites, A[k]nk...nk+d−1)
are updated, while in a backward sweep the matrices
are updated in reverse order. The lattice can then be
conveniently divided into 2 + d blocks (or sets of sites)
{Lk−1, Sk, · · · , Sk+d−1, Rk+d} in the k-th sweep iteration
(of a forward sweep, for example): a left block (or the sys-
tem) Lk−1 for sites 1, · · · , k−1; the individual sites whose
matrices are being optimized Sk ... Sk+d−1; and the right
block (or the environment) Rk+d for sites k + d, · · · ,K
(see Fig. 5).

In each sweep iteration, we consider a left-right decom-
position of the system Hamiltonian as the sum of tensor
products of operators defined in blocks Lk and Rk+1

Ĥ[k] = ĤLk⊗1̂Rk+1 +1̂Lk⊗ĤRk+1 +
∑
i

ĥLk
i ĥ

Rk+1

i (A4)

where a bipartition of the lattice {Lk, Rk+1} has been
used. A convenient way to construct this left-right de-
composition for any k is to first write the system Hamil-

bra MPS

MPO

ket MPS

system

environm
ent

FIG. 5. The left block (system), right block (environment)
and the individual sites being optimized in a given sweep it-
eration of the 2-site DMRG algorithm.

tonian in a so-called MPO form

Ĥ =
∑
{n,n′}

W[1]n1n
′
1W[2]n2n

′
2 · · ·W[K]nKn

′
K

× |n1 n2 · · · nK〉〈n′1 n′2 · · · n′K | (A5)

where each W[k]nkn
′
k (k = 2, · · · ,K−1) is a D×D′ ma-

trix, and the leftmost and rightmost matrices are 1×D′
and D × 1 vectors, respectively. The maximal dimen-
sion D among these matrices will be called the bond-
dimension of the MPO.

The left-right decomposition of the MPS can be defined
as (in 2-site DMRG, for example)

|Ψ[k]〉 =
∑

αk−1αkαk+1,nknk+1

A[k]nk
αk−1αk

A[k + 1]nk+1
αkαk+1

× |αLk−1〉 ⊗ |nk nk+1〉 ⊗ |αRk+1〉 (A6)

where the left and right renormalized basis vectors are

|αLk 〉 =
∑

{n1···nk}

[
A[1]n1 · · ·A[k]nk

]
αk

|n1 · · · nk〉

|αRk 〉 =
∑

{nk+1···nK}

[
A[k + 1]nk+1 · · ·A[K]nK

]
αk

× |nk+1 · · · nK〉

(A7)

Using the MPO form, the decomposition Eq. (A4) can
be constructed as

Ĥ[k] =
∑
βk

Ĥ[k]Lβk
⊗ Ĥ[k]Rβk

(A8)
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where

Ĥ[k]Lβk
=

∑
{n1···nk,n′1···n′k}

[
W[1]n1n

′
1 · · ·W[k]nkn

′
k

]
βk

× |n1 · · ·nk〉〈n′1 · · ·n′k|

Ĥ[k]Rβk
=

∑
{nk+1···nK ,n′k+1···n

′
K}

[
W[k + 1]nk+1n

′
k+1 · · ·

×W[K]nKn
′
K

]
βk

|nk+1 · · ·nK〉〈n′k+1 · · ·n′K |

(A9)

system

L

L

L

L

renorm
alized

new
 system

blocking transformation

new
 system

effective Hamiltonian

new
 system

new
 environ.

solving

effective wavefunction

(a) (b)

(c)

FIG. 6. The (a) blocking, (b) transformation, and (c) solving
steps in each sweep iteration of the 2-site DMRG algorithm.33

Each sweep iteration of the 2-site DMRG algorithm is
divided into three main steps (see Fig. 6):6

(i) blocking, where we compute the matrix representa-

tion of Ĥ[k]Lβk
and Ĥ[k]Rβk

Eq. (A9)) in bases |αLk−1 nk〉
and |nk+1 α

R
k+1〉 from the renormalized operators repre-

sented in bases |αLk−1〉 and |αRk+1〉, respectively

〈αLk−1 nk|Ĥ[k]Lβk
|α′Lk−1 n

′
k〉

=
∑
βk−1

W [k]
nkn

′
k

βk−1βk
〈αLk−1|Ĥ[k − 1]Lβk−1

|α′Lk−1〉

〈nk+1 α
R
k+1|Ĥ[k]Rβk

|n′k+1 α
′R
k+1〉

=
∑
βk+1

W [k + 1]
nk+1n

′
k+1

βkβk+1
〈αRk+1|Ĥ[k + 1]Rβk+1

|α′Rk+1〉

(A10)
(ii) solving, where we update the wavefunction in the

renormalized basis |αLk−1 nk〉 ⊗ |nk+1 α
R
k+1〉 (Eq. (A6)),

given by

Ψ[k]eff
αk−1nk,nk+1αk+1

=
∑
αk

A[k]nk
αk−1αk

A[k + 1]nk+1
αkαk+1

(A11)

by solving the eigenvalue problem

H[k]effΨ[k]eff = E[k]Ψ[k]eff (A12)

where the matrix elements of the effective Hamiltonian
H[k]eff are given by

H[k]eff
αk−1nk,nk+1αk+1;n′k+1α

′
k+1,α

′
k−1n

′
k

=
∑
βk

〈αLk−1 nk|Ĥ[k]Lβk
|α′Lk−1 n

′
k〉

× 〈nk+1 α
R
k+1|Ĥ[k]Rβk

|n′k+1 α
′R
k+1〉 (A13)

Since the Hamiltonian is sparse, the eigenvalue problem
is normally solved using an iterative method such as the
Davidson algorithm.52

(iii) decimation and transformation. Once the opti-
mized wavefunction Ψ[k]eff is determined, the new A[k]
and A[k + 1] can be found by decomposing the wave-
function using the density matrix, or via a singular value
decomposition (SVD). After the decomposition, the ma-
trix dimensions of A[k] and A[k + 1] are truncated to
bond dimension M by discarding small singular values or
eigenvalues. The truncated A[k] and A[k + 1] are then
used to construct new renormalized bases |αLk 〉 and |αRk 〉,
in a forward and backward sweep iteration, respectively,
as

|αLk 〉 =
∑
αk−1

A[k]nk
αk−1αk

|αLk−1 nk〉

|αRk 〉 =
∑
αk+1

A[k + 1]nk+1
αkαk+1

|nk+1 α
R
k+1〉

(A14)

The operators formed in the blocking step (Eq. (A10))
are also transformed to the new renormalized basis

〈αLk |Ĥ[k]Lβk
|α′Lk 〉

=
∑

αk−1nk;α′k−1n
′
k

A[k]nk
αk−1αk

A[k]
n′k
α′k−1α

′
k

× 〈αLk−1 nk|Ĥ[k]Lβk
|α′Lk−1 n

′
k〉

〈αRk |Ĥ[k]Rβk
|α′Rk 〉

=
∑

nk+1αk+1;n′k+1α
′
k+1

A[k + 1]nk+1
αkαk+1

A[k + 1]
n′k+1

α′kα
′
k+1

× 〈nk+1 α
R
k+1|Ĥ[k]Rβk

|n′k+1 α
′R
k+1〉

(A15)

Appendix B: Notation for SU(2) spin-adapted ab initio
DMRG

For the ab initio DMRG implemented in this work,
we associate each site k (k = 1, 2, · · · ,K) with a spatial
orbital. The ab initio Hamiltonian is written as32

Ĥ =
∑
ij,σ

tij,σ a
†
iσajσ +

1

2

∑
ijkl,σσ′

vijkl,σσ′ a
†
iσa
†
kσ′alσ′ajσ

(B1)
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where

tij,σ =

∫
dx φ∗iσ(x)

(
−1

2
∇2 −

∑
a

Za
ra

)
φjσ(x)

vijkl,σσ′ =

∫
dx1dx2

φ∗iσ(x1)φ∗kσ′(x2)φlσ′(x2)φjσ(x1)

r12

(B2)
with the following symmetry conditions

tij,σ = tji,σ

vijkl,σσ′ = vjikl,σσ′ = vijlk,σσ′ = vklij,σ′σ
(B3)

With SU(2) spin symmetry we additionally have42

tij = tij,α = tij,β

vijkl = vijkl,αα = vijkl,αβ = vijkl,βα = vijkl,ββ
(B4)

In conventional ab initio DMRG, the left-right de-
composition of the Hamiltonian (Eq. (A4)) is written in
terms of normal and complementary operators.3 One can
choose to use two-index complementary operators only
with the right block (the Normal/Complementary (NC)
partition) or only with the left block (the Complemen-
tary/Normal (CN) partition). The SU(2) spin-adapted
left-right decomposition of the Hamiltonian using the NC
and CN partition is respectively42

Ĥ[k]NC[0] = ĤL[0] ⊗[0] 1̂R[0] + 1̂L[0] ⊗[0] Ĥ
R[0]

+ 2
∑
i∈L

(
a
†[ 12 ]
i ⊗[0] R̂

R[ 12 ]
i + a

[ 12 ]
i ⊗[0] R̂

R†[ 12 ]
i

)
+ 2

∑
i∈R

(
R̂
L†[ 12 ]
i ⊗[0] a

[ 12 ]
i + R̂

L[ 12 ]
i ⊗[0] a

†[ 12 ]
i

)
− 1

2

∑
ij∈L

(
Â

[0]
ij ⊗[0] P̂

R[0]
ij +

√
3 Â

[1]
ij ⊗[0] P̂

R[1]
ij

+ Â
†[0]
ij ⊗[0] P̂

R†[0]
ij +

√
3 Â
†[1]
ij ⊗[0] P̂

R†[1]
ij

)
+
∑
ij∈L

(
B̂

[0]
ij ⊗[0] Q̂

R[0]
ij +

√
3 B̂

[1]
ij ⊗[0] Q̂

R[1]
ij

)
(B5)

and

Ĥ[k]CN[0] = ĤL[0] ⊗[0] 1̂R[0] + 1̂L[0] ⊗[0] Ĥ
R[0]

+ 2
∑
i∈L

(
a
†[ 12 ]
i ⊗[0] R̂

R[ 12 ]
i + a

[ 12 ]
i ⊗[0] R̂

R†[ 12 ]
i

)
+ 2

∑
i∈R

(
R̂
L†[ 12 ]
i ⊗[0] a

[ 12 ]
i + R̂

L[ 12 ]
i ⊗[0] a

†[ 12 ]
i

)
− 1

2

∑
ij∈R

(
P̂
L[0]
ij ⊗[0] Â

[0]
ij +

√
3 P̂

L[1]
ij ⊗[0] Â

[1]
ij

+ P̂
L†[0]
ij ⊗[0] Â

†[0]
ij +

√
3 P̂

L†[1]
ij ⊗[0] Â

†[1]
ij

)
+
∑
ij∈R

(
Q̂
L[0]
ij ⊗[0] B̂

[0]
ij +

√
3 Q̂

L[1]
ij ⊗[0] B̂

[1]
ij

)
(B6)

where the superscript and subscript [S] are used to in-
dicate the total spin quantum number for the spin ten-
sor operator and the resulting spin tensor operator ob-
tained from the tensor product, respectively, and the

block Hamiltonian ĤL/R[0], normal operators Â
[S]
ij , B̂

[S]
ij ,

and complementary operators R̂
L/R[ 12 ]
i , P̂

L/R[S]
ij , Q̂

L/R[S]
ij

are defined by

R̂
L/R[ 12 ]
i =

√
2

4

∑
j∈L/R

tij a
[ 12 ]
j

+
∑

jkl∈L/R

vijkl

(
a
†[ 12 ]

k ⊗[0] a
[ 12 ]

l

)
⊗[ 12 ] a

[ 12 ]
j ,

Â
[0/1]
ij = a

†[ 12 ]
i ⊗[0/1] a

†[ 12 ]
j ,

B̂
[0/1]
ij = a

†[ 12 ]
i ⊗[0/1] a

[ 12 ]
j ,

P̂
L/R[0/1]
ik =

∑
jl∈L/R

vijkl a
[ 12 ]
j ⊗[0/1] a

[ 12 ]

l ,

Q̂
L/R[0]
ij =

∑
kl∈L/R

(
2vijkl − vilkj

)
a
†[ 12 ]

k ⊗[0] a
[ 12 ]

l ,

Q̂
L/R[1]
ij =

∑
kl∈L/R

vilkj a
†[ 12 ]

k ⊗[1] a
[ 12 ]

l

(B7)
with the following symmetry conditions (when i 6= j)11

Â
[S]
ij = (−1)SÂ

[S]
ji

B̂
[S]
ij = (−1)S

(
B̂

[S]
ji

)†
P̂

[S]
ij = (−1)SP̂

[S]
ji

Q̂
[S]
ij = (−1)S

(
Q̂

[S]
ji

)†
(B8)

The corresponding MPO for the NC and CN partitions
can be constructed based on the blocking formulae for the
spin tensor operators, and Eq. (B5) and Eq. (B6), respec-
tively. Since these operators have at most two spatial
orbital indices, the MPO bond dimension D ∼ K2. The
blocking formulae explicitly yield only the non-zero ele-
ments of the MPO, and thus using the blocking formulae
in the DMRG algorithm can be viewed as implementing
sparse tensor contraction with the MPO.

Alternatively, there are procedures to automatically
construct the elements of the MPO tensors by matrix
decomposition (and other algorithms) simply given the
list of two-electron integrals. Examples of these au-
tomated MPO construction approaches are the fork-
merge approach,40 the SVD approach,33 the delineariza-
tion approach,41 and the bipartite approach.47 Note that
some of these procedures work with a dense matrix repre-
sentation of the MPO tensors (even if the matrices have
exact zeros). As discussed in the main text, the sum of
sub-Hamiltonians allows for the correct scaling of imple-
mentations which use such MPO construction techniques
without explicit implementation of sparse tensor algebra.
Thus the strategies in this work, when used with auto-
mated MPO construction techniques, achieve both the



12

correct serial cost as well as have a low communication
overhead for parallel scaling.
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