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Abstract: In the coherent long-reach passive optical networks (LRPON), it is crucial to
propose cost-effective digital signal processing (DSP) technologies to reduce the overall
complexity and power consumption. This paper has proposed a low-complexity chromatic
dispersion (CD) estimation scheme based on deep neural networks (DNN) and the error
vector magnitude (EVM). To add comparisons, the performances of CD estimation schemes
using other two well-known machine learning algorithms including the k-nearest neighbor
(KNN) and the decision tree (DT) have also been investigated. The simulation results show
that the proposed CD estimation scheme is effective in the coherent LRPON with the quadra-
ture phase shift keying (QPSK) and 16-ary quadrature amplitude modulation (QAM) systems
at 14Gbaud rate, 28Gbaud rate and 56Gbaud rate. The comprehensive performances of the
DNN outperform those of the KNN and the DT. The mean estimation error of the DNN is less
than 20ps/nm within the 100 km access distance in the 28Gbaud QPSK/16QAM systems.
What’s more, compared with classical methods using the CD scanning and frequent domain
equalizers (FDE), the computation complexity of the proposed CD estimation scheme based
on the DNN-EVM has been respectively reduced by 72.3 times, 86.7 times and 2.8 times
about the amount of multipliers, adders and comparators.

Index Terms: Chromatic dispersion estimation, coherent passive optical networks, machine
learning, digital signal processing, low complexity.

1. Introduction

In the future fixed-mobile convergent passive optical network (PON), driven by emerging bandwidth-

thirsty network services such as the high-definite video, the virtual/augmented reality and the cloud

computing, the increasing capability demand between the optical line terminal (OLT) and the optical

network unit (ONU) will be improved from 10Gbit/s to beyond 100Gbit/s [1]. Moreover, to increase

the number of users and enlarge the area covering, the access distance is crucial to be extended,

which is up to 100 kilometers [2]. To provide the beyond 100Gbit/s access capability and the long

access reach, the coherent long-reach PON (LRPON) is considered as a promising candidate due to

the high receiver sensitivity, frequency selectivity and capability scalability [3], [4]. For the coherent
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PON, the digital signal processing (DSP) should be low-complexity to reduce the overall complexity

and the power consumption of the ONU [5]. Recently, DSP technologies specially designed for the

coherent PON have been rapidly developed to suit for the low-complexity requirements, where the

simplified carrier recovery, the phase offset estimation and the adaptive equalization have been

proposed [6]–[8].

The chromatic dispersion (CD) compensation is significant for the subsequent DSP modules

in the coherent systems. The traditional CD compensation is based on the frequency domain

equalizer (FDE) with fixed coefficients configured according to the given fiber parameters [9].

However, in the coherent LRPON, owing to the diverse access distances between the OLT and

the multi-level ONU, the CD compensation through the FDE with the prior knowledge of fiber

parameters including the distance and optical fiber coefficients is not adaptive enough. Thus,

the accumulated CD is generally compensated by the adaptive equalization module where the

access distance is typically within 20 km for the coherent PON [10]. However, in the coherent

LRPON, the larger accumulated CD is beyond the compensation capability of the adaptive equalizer.

Therefore, adaptive CD compensation methods with larger dynamic ranges should be proposed for

the coherent LRPON.

In the metro and backbone networks, the adaptive CD compensation methods have the large

dynamic range and they are generally based on the CD scanning and the FDE, where varied CD

values with certain scanning steps are sent into the FDE module until the peak-to-average-power

ratio (PAPR), the value of the Godard error function or the parameter extracted from the delay-tap

plot of the received signal reach to the minimum value [11]–[13]. These adaptive CD compensation

methods are straightforward and effective. However, they are more suitable for the CD compensation

in the metro and backbone network, where the sufficient DSP resources are available in coherent

receiver to support the frequent scanning and complex fast Fourier transformation (FFT) operations.

Complied with the low-complexity demands of the ONU, more hardware-efficient adaptive CD

compensation methods should be proposed for the DSP in the coherent LRPON.

In this paper, to reduce the computation complexity, we propose a low-complexity adaptive CD

compensation scheme for the coherent LRPON, where the frequent linear scanning and the FDE

process are substituted by the proposed CD estimation method. Recently, machine learning (ML)

has been successfully applied in the optical networks [14]–[19], which is specialized in modeling

complicated functional relationships where the underlying principles of physic and mathematics

are difficult to be described [20], [21]. It is observed that the error vector magnitude (EVM) of the

received signal after the in-phase and quadrature (I/Q) balance and the clock recovery monotonically

increases with the accumulated CD within the access span in the coherent LRPON, which enlightens

us to adopt ML algorithms to discover the hidden functional relationship between the EVM and the

CD. Further, the measured EVM of the received signal is sent to the ML module and then the

estimated CD is fed into the equalizer for the CD compensation. Further, the performances of

the EVM-ML based CD estimation method are evaluated in the typical quadrature phase shift

keying (QPSK) and 16-ary quadrature amplitude modulation (QAM) systems with 14Gbaud rate,

28Gbaud rate and 56Gbaud rate. Three typical ML algorithms including the deep neural network

(DNN), the k-nearest neighbor (KNN) and the decision tree (DT) are adopted. The simulation

results show that the comprehensive performances of the DNN outperform those of the KNN

and the DT and the average CD estimation error of the DNN is less than 20ps/nm within the

100 km access distance in the 28GBaud QPSK/16QAM coherent systems between the OLT and

the ONU. To add comparisons, other classical DNN-based CD estimation methods, i.e. the DNNs

trained with the eye-diagram parameters (EDP) [22], [23], the asynchronous amplitude histograms

(AAH) [24], the asynchronously sampled signal amplitudes (ASSA) [25], the balanced-detected

asynchronous diagrams (BDAD) [26] and the asynchronous constellation diagrams (ACD) [27],

have also been compared with the proposed DNN-based approach about the estimation accuracy,

the dynamic range, the network structure and the applicable systems. The results show that larger

CD estimation range, more advanced coherent systems and the similar estimation accuracy are

available in the proposed DNN-based approach and it is more suitable for the low-complexity

CD estimation for the coherent LRPON. What’s more, compared with the classical CD scanning
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and FDE methods, the computation complexity of the proposed CD estimation method has been

decreased dramatically. The computation complexity of the proposed CD estimation scheme based

on the DNN has been respectively reduced by 72.3 times, 86.7 times and 2.8 times in terms of

the amount of multipliers, adders and comparators compared with the FDE-scanning method in the

typical case. The proposed CD estimation scheme based on the EVM-DNN has the potential to be

applied in the hardware-efficient DSP of the ONU in the coherent LRPON.

2. Principal of the Proposed Scheme

The EVM is an important index indicating the comprehensive impairments of the received signal

[28]. In the coherent optical communications, the value of EVM of the received signal after the I/Q

balance and the clock recovery is sensitive to the accumulated CD within certain ranges. Generally,

when the transmitted optical signal experiences less CD, the deviation degree of the received signal

constellation points from the ideal constellation points is small accordingly. In contrast, the signal

constellation is greatly dispersed while the CD value becomes larger. Therefore, the EVM of the

received signal obtains the CD information and it is strongly correlated with the accumulated CD.

In the coherent LRPON, through analyzing sufficient samples of the EVM of the received signal

experiencing various accumulated CD after the balance detection, I/Q imbalance recovery and time

clock recovery, the hidden relationship between the EVM and the corresponding accumulated CD

can be researched, which has the potential to be used to estimate the value of the CD for the

coherent LRPON. The value of EVM is defined as:
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Where S denotes the size of the sample dataset. (I s, Q s) and (I
′

s, Q
′

s) refer to the s − th constellation

point of the practical received signal and its corresponding constellation point of the ideal signal

respectively. To estimate the value of the accumulated CD accurately and efficiently, the specific

mapping relationship between the value of EVM and the accumulated CD is constructed through

the classic machine learning algorithm called DNN. The DNN is selected due to its powerful

nonlinear mapping ability where the simple one-hidden-layer DNN is capable of fitting any nonlinear

continuous function with arbitrary accuracy [29], [30].

The procedure of the proposed DNN is made up of two basic procedures including the forward

propagation and the back propagation. The original input vector x = (x1, x2, ..., xN ) is firstly combined

with weighted input z
(l+1)
i linearly in the neurons, where the superscript (l + 1) indicates that the

corresponding parameters are in the (l + 1)−th layer of the DNN. The N l denotes the number

of nodes in the l−th layer and a
(l )
j refers to the original input of the j−th neuron. Moreover, the

parameters W
(l )
ij and b

(l )
i indicate the weights and biases in the l−th layer respectively. Further, the

weighted input is fed into the nonlinear activation function g(z) and the output a j is known as the

activation.
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In the forward propagation, the input is transformed nonlinearly by the activation functions. Typical

activation functions consist of the hyperbolic tangent (tanh) function, softplus function and sigmoid

function. These functions need to be nonlinear and differential to increase the nonlinearity of the

transformation and enable the optimization of the DNN. The selection of the activation function has

significant effects on the nonlinear mapping capacity and convergence ability of the specific DNN.

Moreover, taking the single-hidden-layer DNN for example, the output of the DNN y is described

in (3) and then the difference between the predicted output y and the real output y is calculated
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Fig. 1. The architecture of the fixed-mobile convergent coherent LRPON. LRPON: long-reach passive
optical networks; OLT: optical line terminal; ONU: optical network unit; RRH: remote radio head; OS:
optical splitter; SSMF: standard single mode fiber.

through the cross entropy loss function defined in (4):
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Where m means the size of the training dataset. The parameter ς used in the regularization term

denotes the weight of connectivity weight parameter W
(l )
ij , which tends to enable W

(l )
ij to be zero to

simplify the structure of the network and then increase the generalization capability of the DNN.

After calculating the loss function, the objective of the back propagation is to update the parameters

W
(l )
ij and b

(l )
i based on the batch gradient descent (BGD) method, where the gradient of the loss

function in terms of W
(l )
ij and b

(l )
i is fully utilized to improve the speed with which the minima of the

loss function can be located. The principle of the BGD is shown in (5):
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Where β is the learning rate. During the update, total training dataset is included in the loss function

and the gradients of W
(l )
ij and b

(l )
i . During each iteration, the weight matrix W

(l )
ij and the bias matric

b
(l )
i are moved towards the direction of the greatest rate of deceasing the value of the loss function.

The parameter matrix W
(l )
ij and b

(l )
i will be determined until the value of the loss function is not more

than O eror , the error margin approximating zero and it is set as 0.0001 in this paper. Finally, the

well-trained DNN is capable of constructing the nonlinear mapping relationship between the input

and output variables. In the proposed adaptive CD estimation scheme based on the DNN, diverse

samples consisting of varied CD and the corresponding EVM of the received signal are gathered as

the dataset and then fed into the DNN. After the training process, the trained DNN can establish the

mapping relationship between EVM and the CD. Once the EVM of the received signal is measured,

the corresponding value of the accumulated CD is estimated by the well-trained DNN as shown in

Vol. 11, No. 5, October 2019 7905711



IEEE Photonics Journal Low-Complexity Adaptive CD Estimation Scheme

Fig. 2. The schematic diagram of the proposed chromatic dispersion estimation scheme based on the
DNN-EVM for the coherent LRPON. DNN: deep neural network; EVM: error vector magnitude; LRPON:
long-reach passive optical networks.

the Fig. 2. Finally, the estimation error can be measured through comparing the estimated CD with

the real CD of the corresponding received signal in the coherent LRPON.

3. Simulation Results and Discussion

To evaluate the performances of the proposed CD estimation scheme, 14Gbaud, 28Gbaud and

56Gbaud QPSK/16QAM simulation platforms are constructed through the VPI transmission 8.6.

In the Fig. 1, taking the 16QAM coherent systems between the source in the OLT and the sink

in the ONU for example, the transmitter and the local oscillator laser work at 1550 nm with the

typical 100 kHz linewidth. What’s more, the input power of the transmitter is set as 0 dBm. Firstly,

the pseudo-random binary sequence (PRBS) with the length of 216
− 1 is mapped into 16QAM

symbols, which are further sent into the digital-to-analog converter (DAC) module. After the fourfold

oversampling, the in-phase and quadrature information of the 16QAM symbols is transformed into

the corresponding electrical signal, which modulates the I/Q modulator consisting of two Mach-

Zehnder modulators (MZM) with an additional 90◦ phase shift in one branch. Further, the modu-

lated optical signal is coupled into the standard signal mode fiber (SSFM) with the varied length

ranging from 5 km to 125 Km and the specific parameters of the SSMF are listed below: loss

coefficient α = 0.2 dB/km, dispersion coefficient D = 16 ps/(nm · km) and the nonlinear coefficient

γ = 1.3 W−1Km−1.

At the coherent receiver, the received optical signal is mixed with the local oscillator (LO) in the

90◦ optical hybrid and the mixed signal is detected by the balanced photo-detectors. In the offline

DSP, the resampling, I/Q imbalance recovery and time clock recovery are carried out and then

the EVM of the received signal is calculated and collected for the DNN-EVM-based CD estimation

module. For every value of CD at the step of 40 ps/nm ranging from 0ps/nm to 2000ps/nm, 30 sets

of the EVM of the received signals are gathered and labelled with the corresponding CD class.

In other words, there are 50 categories of EVM values from the received signals experiencing

the diverse accumulative CD ranging from 0 to 2000 ps/nm and the corresponding CD labels

are varied from 1 to 50. After the simulation, 1500 sets of data are collected, where 2/3 of them

serve as training sets and others are divided into the testing sets. Further, these data sets are fed

into the adaptive CD estimation module to train the DNN and then test the performances of the
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Fig. 3. The EVM curves in terms of the varied accumulated chromatic dispersion under the cases of
(a) 14Gbaud, (b) 28Gbaud and (c) 56Gbaud coherent optical communication systems between the OLT
and the ONU in the coherent LRPON.

trained DNN. During the training phase, the DNN is trained to discover the mapping relationship

between the CD labels and the EVM, where appropriate parameters and structures of the DNN are

determined after some iterations. During the testing phase, the EVM of the received signal after the

I/Q balance and the clock recovery is calculated and then the CD class is estimated by the trained

DNN. The estimation error can be calculated by comparing the true CD with the estimated CD

to evaluate the performances of the DNN-EVM-based adaptive CD estimation scheme. Moreover,

the CD estimation accuracy performance, the key parameters and the structure of the DNN are

investigated as follows.

3.1 The CD Estimation Accuracy Performance

After the I/Q balance and the clock recovery, we measure the EVM of received signal experiencing

the varied CD ranging from 0 ps/nm to 2000 ps/nm. The EVM curves in terms of different values of

the CD are depicted in the Fig. 3. As shown in the Fig. 3, the value of EVM monotonically increases

with the accumulated CD. In the 28Gbaud-QPSK optical coherent communication system, with the

increase of the accumulated CD, the signal constellation points become more and more disperse

and the corresponding EVM of the received signal is augmented from 19.2% to 97.6%. Moreover,

the EVM curves in the coherent optical communication systems working at the same baud rate are

almost overlapped, which means that the mapping relationship between the EVM and the CD is

relatively transparent to the widely used modulation formats including the QPSK and the 16QAM.

However, the hidden mathematical relationship between the EVM and the CD are complicated to be

numerically analyzed. Therefore, the self-learning DNN algorithm is adopted to learn the functional

mapping relationship between them and provide a reasonable prediction of the CD value for the

collected EVM of the received signal derived from the coherent LRPON.

To research the specific mapping between the EVM of the received signal and the accumulated

CD, the classic DNN is adopted. The reasons why the DNN is selected are that the DNN is

capable of establishing any nonlinear function relationship with arbitrary accuracy. In the DNN,

different activation functions, number of neurons in the hidden layers, number of hidden layers and

the learning rate have significant effects on the CD estimation performances and the comparison

results are shown in the Fig. 4. With the increase of the number of iterations, the CD estimation

performance of the DNN is convergent gradually. Taking the 28GBaud-16QAM systems for example,

after 500 iterations, the mean CD estimation error is gradually convergent and the mean error of the

DNN is near 11 ps/nm. In the Fig. 4(a), the effect of different activation functions is investigated and

the mean CD estimation error of the DNN with the sigmoid function has faster convergent speed

and more stable estimation accuracy. Therefore, the sigmoid function is selected as the activation

function. Further, the number of neurons in the hidden layers and the number of hidden layers of

the DNN need to be specified. Seen from the Fig. 4(b), on the one hand, with the increase of the

amount of hidden neurons and hidden layers, the learning capability of the DNN is improved and

the convergent mean estimation error is decreased from 97.3 ps/nm to 11.0 ps/nm. On the other

hand, due to the overfitting, the estimation error increases when the structure of the DNN becomes
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Fig. 4. The performances of the proposed CD estimation scheme based on the DNN with different
(a) activation functions; (b) number of hidden neurons and hidden layers (10/6/3 means that there are
respectively 10, 6 and 3 neurons in the first hidden layer, the second hidden layer and the third hidden
layer); (c) learning rates (ranging from 0.001 to 0.1) in the 28Gbaud-16QAM coherent systems.

Fig. 5. The CD estimation performances of the proposed CD estimation scheme based on the DNN for
the coherent optical communication systems with (a) 14Gbaud, (b) 28Gbaud and (c) 56Gbaud rate.

more complex. Thus, appropriate number of hidden neurons and hidden layers are important and

two hidden layers are adopted due to the good balance between the learning capability and the

generalization performance, where the number of neurons is set as 10 and 6 in the first hidden

layer and the second hidden layer respectively. Moreover, the influence of various learning rates is

also researched. As displayed in the Fig. 4(c), the faster convergent speed is available but larger

fluctuation is also existed when the learning rate is too large. To keep the balance of the convergent

speed and the stable estimation accuracy, 0.01 is chosen as the learning rate in the proposed

DNN.

Further, the CD estimation accuracy performance curves of the DNN are investigated for the

QPSK and 16QAM coherent optical communication systems working at 14GBaud, 28GBaud and

56GBaud rate respectively. It can be seen from the Fig. 5 that the estimated CD is generally cor-

responded with the true CD, which means that the estimation error is much small in the coherent

systems with 14Gbaud, 28Gbaud and 56Gbaud rate. To add comparisons, the adaptive CD esti-

mation schemes based on other two classical machine learning algorithms, i.e. KNN and DT, are

also evaluated. In the comparisons, the key parameters are selected through the grid search and

cross validation. In the KNN, the significant parameter needs to be chosen is the value of k, the

number of nearest neighbors, is set as 8 and 12 respectively for the QPSK and 16QAM systems.

Moreover, in the DT, the important parameter is the maximum number of splits and this parameter

is valued in 150. In the Fig. 6(b), the mean CD estimation accuracy performance of the adaptive

CD estimation method based on the DNN is superior to those of the KNN and the DT in the case

of lager CD range generally.

In the 28GBaud-QPSK systems, the mean CD estimation error is around 4.5 ps/nm, which is less

than the error of the KNN and the DT slightly. However, with the increase of the baud rate and the

modulation efficiency, the estimation accuracy of the DNN-EVM-based method obviously exceeds

those of the KNN and the DT in general. For the 56GBaud-16QAM systems, the mean error of the

CD estimation method based on the DNN is near 51.9 ps/nm, which is less 16.4% and 23.7% than

those of the KNN and the DT respectively. The reasons why the CD estimation method based on
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Fig. 6. The estimation error of the CD estimation schemes based on the DNN, the KNN and the DT
algorithms for (a) the QPSK systems and (b) the 16QAM systems when the CD ranges from 0ps/nm to
2000ps/nm in the coherent LRPON.

TABLE 1

The Complexity Comparisons Among Different CD Estimation Schemes

the DNN outperforms those of the KNN and the DT are that the DNN is capable of constructing

essential nonlinear mapping with high accuracy and building the appropriate model to describe

the correlative relationship between variables. The well trained DNN is capable of providing the

reasonable prediction for the EVM of the unforeseeable received signal and becomes less sensitive

to the random noise. Comparatively, the KNN and the DT are intelligent and simple but they are not

good at discovering the intrinsic relationship between the input and the output.

3.2 The Computation Complexity Analysis

Besides the CD estimation accuracy, the computation complexity performances of the CD estimation

schemes are critical to be investigated for the practical applications especially for the coherent

LRPON. Next, the specific computation efficiency performances of the traditional FDE-scanning

method and adaptive CD estimation methods based on the DNN, the KNN and the DT will be

researched. In the classical CD estimation methods based on the FDE and the CD scanning for

the metro and core networks, different value of the CD with the certain scanning step is sent into

the FDE until the minimum value of the features of the received signal is obtained. The frequent

scanning and numerous FFT and IFFT operations are required. For one CD scanning, the received

signal is processed through the FFT, the FDE and the IFFT. In each FFT/IFFT operation, the

number of real multiplications and real additions is 2N · log2 N and 3N · log2 N respectively, where

N denotes the number of samples in the block and is also taken as the FFT size. In the FDE,

4N + N + 4 real multiplications and 2N real additions are needed for the complex multiplication in

the frequency domain. Given the number of the CD scanning is M , the total multipliers, adders and

the comparators are listed in the Table 1.

Moreover, for the proposed adaptive CD estimation schemes based on the machine learning and

the EVM, the computation complexity mainly consists of two parts. In the one part, 3N + 3 real
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TABLE 2

The Processing Time Comparisons Among Different ML Algorithms

multiplications and 4N real additions are required for the EVM computation according to (1). In the

other part, the computation complexity is constituted with the training complexity and the testing

complexity in the machine learning, where the training procedure can be accomplished offline and

the testing complexity is regarded as the major computation complexity of the machine learning

enabled applications. In the DNN, the number of neurons in the input layer, the first hidden layer,

the second hidden layer and the output layer is respectively N 1, N 2, N 3 and N 4. When the DNN is

well trained, N 1N 2 + N 2N 3 + N 3N 4 multipliers, (N 1 − 1)N 2 + (N 2 − 1)N 3 + (N 3 − 1)N 4 adders and

N 2 + N 3 comparators are needed. In the KNN, Euclidean distances among the testing sample and

all training samples are calculated and then the first k, the number of nearest neighbors, distances

in the ascending order are obtained, where the number of multipliers, adders and comparators is

N T (the size of the training samples), N T and N T · log2 N T respectively. In the DT, C − 1 comparators

are required during the decision process, where C denotes the number of CD value categories.

For a fixed N = 2048 and M = 10 (typical scanning times), the required number of multipliers,

adders and comparators for the different CD estimation schemes are concluded in the Table 1. The

results show that the complexity of the classical CD estimation methods is greatly increased with

the block length N and the number of CD scanning M . Compared with the FDE-scanning method,

the computation complexity of the proposed CD estimation scheme is decreased dramatically. As

shown in the Table 1, for the DNN-EVM-based CD estimation method, the amount of multipliers,

adders and comparators is respectively reduced by 72.3 times, 86.7 times and 2.8 times compared

with the FDE-scanning method in the typical case. Therefore, the proposed low-complexity CD

estimation method is more suitable for the DSP of the ONU in the coherent LRPON.

Further, the processing time of different ML algorithms is also investigated. The processing time of

the proposed ML-based CD estimation approaches consists of the training time and the testing time.

The specific processing time relies on the processors. In this work, the typical central processing

unit (CPU), i.e. Intel(R) Core(TM) i7-6700 CPU @3.40 GHz, is utilized to calculate the processing

time of different ML-based CD estimation methods. Since the machine learning algorithm can be

trained off line generally, the time consumption for the proposed ML-based CD estimation is mainly

the testing time. As displayed in the Table 2, the testing time of the DNN is less than those of the

KNN and the DT. The specific testing time is 0.129 ms, 32.217 ms and 0.162 ms in the DNN, the

KNN and the DT respectively. In the DNN, the testing time is similar to that of the DT and far less

than that of the KNN, which is respectively 79.6% and 0.4% of those of the DT and the KNN. This

is consistent with the complexity comparisons in the Table 1 and the testing time of different ML

algorithms increases with the computation complexity.

In the coherent LRPON, the high CD estimation accuracy and low complexity are both significant

to guarantee the CD compensation performances and reduce the overall complexity of the ONU

respectively. In the Table 1, the computation complexity of the DNN is similar to that of the DT, which

is far less that of the KNN. Moreover, the mean CD estimation accuracy of the DNN exceeds those

of the KNN and the DT generally. In the 14GBaud-QPSK systems, the zero CD estimation error is

available in the DNN while the mean estimation error is 8.62ps/nm in the DT. For the 56GBaud-

16QAM systems, the mean error of the CD estimation method based on the DNN is near 51.9ps/nm,

which is 23.7% less than that of the DT. Therefore, after the comprehensive consideration about the

estimation accuracy and the computation complexity, the DNN is chosen for the CD estimation in

the coherent LRPON. To improve the completeness of discussions, other classical DNN-based CD

estimation methods including the DNNs trained with the EDP, the AAH, the ASSA, the BDAD and

the ACD will be compared with the proposed DNN-based approach in terms of the mean estimation
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TABLE 3

The Comparisons Among Different DNN-Based CD Estimation Approaches

error, the dynamic estimation range, the network structure (the number of neurons in the input layer,

the hidden layer/layers and the output layer) and the applicable systems. It can be seen from the

Table 3 that the dynamic CD estimation range of the proposed method (0–2000 ps/nm) obviously

exceeds those of other classical DNN-based approaches and typical high-speed coherent systems

(beyond 100Gbps QPSK/16QAM) are also covered. Moreover, the CD estimation error of the

proposed DNN-based method is similar to those of the classical DNN-based approaches with the

larger dynamic range. The mean estimation error increases with the CD estimation range generally.

In the proposed method, the CD estimation range is 0–2000 ps/nm while the mean estimation error

is between 0ps/nm and 51.92 ps/nm. In the [23], the root mean square error (RMSE) ranges from

9.10 ps/nm to 47.44 ps/nm, which is close to that of the proposed DNN-based method. However,

the dynamic range is within 800 ps/nm, which is 40% of that of the proposed method. Due to

larger CD estimation ranges, more advanced coherent systems and similar estimation accuracy,

the proposed DNN-based approach is more suitable for the low-complexity CD estimation for the

coherent LRPON.

4. Conclusions

We have proposed a low-complexity CD estimation scheme based on the DNN-EVM to decrease the

computation complexity of the ONU in the coherent LRPON. To add comparisons, the performances

of CD estimation schemes using the KNN and the DT have also been evaluated. The simulation

results show that the proposed CD estimation scheme is effective in the coherent LRPON with

the QPSK and 16QAM coherent systems working at 14Gbaud rate, 28Gbaud rate and 56Gbaud

rate. The estimation accuracy performances of the DNN exceed those of the KNN and the DT with

relatively small-size computation complexity. The mean estimation error of the DNN is less than

20ps/nm within the 100 km access distance in the 28Gbaud QPSK/16QAM transmission systems

between the OLT and the ONU in the coherent LRPON. Further, six other classical DNN-based

CD estimation methods have also been compared with the proposed DNN-based approach. The

results show that larger CD estimation range, more advanced coherent systems and the similar

estimation accuracy are available in the proposed DNN-based approach. Moreover, compared with

the classical CD scanning and FDE methods, the computation complexity of the CD estimation

scheme based on the DNN-EVM has been reduced by 72.3 times, 86.7 times and 2.8 times about

the number of multipliers, adders and comparators respectively in the typical case. The proposed

CD estimation scheme has the potential to be one of the members of hardware-efficient DSP

technologies for the coherent LRPON.
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