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Abstract—This paper discusses the Slepian–Wolf problem of
distributed near-lossless compression of correlated sources. We
introduce practical new tools for communicating at all rates in
the achievable region. The technique employs a simple “source-
splitting” strategy that does not require common sources of ran-
domness at the encoders and decoders. This approach allows for
pipelined encoding and decoding so that the system operates with
the complexity of a single user encoder and decoder. Moreover,
when this splitting approach is used in conjunction with iterative
decoding methods, it produces a significant simplification of the
decoding process. We demonstrate this approach for synthetically
generated data. Finally, we consider the Slepian–Wolf problem
when linear codes are used as syndrome-formers and consider
a linear programming relaxation to maximum-likelihood (ML)
sequence decoding. We note that the fractional vertices of the
relaxed polytope compete with the optimal solution in a manner
analogous to that observed when the “min-sum” iterative decoding
algorithm is applied. This relaxation exhibits the ML-certificate
property: if an integral solution is found, it is the ML solution. For
symmetric binary joint distributions, we show that selecting easily
constructable “expander”-style low-density parity check codes
(LDPCs) as syndrome-formers admits a positive error exponent
and therefore provably good performance.

Index Terms—Block codes, communication systems, data com-
pression, decoding, iterative methods.

I. INTRODUCTION

THE Slepian–Wolf problem of distributed near-lossless
compression of correlated sources (see (L) of Fig. 1)

has been understood theoretically for many years [1]. It has
received a lot of attention recently due to its relevance as a
subcomponent of numerous distributed data dissemination
systems. Practical techniques, however, have remained elusive
for quite a long time. The challenges include: finding provably
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Fig. 1. The Slepian–Wolf problem: (L) model (R) achievable rate region.

good codes, low-complexity decoding, and choosing source
coding rates. Recently, proper application of channel coding
developments to this setting has been successful at addressing
some of these challenges. However, explicit practical solutions
that apply to all instantiations of the problem have not yet been
constructed. This paper applies channel coding developments
to broaden the class of problems with low complexity solu-
tions. Indeed, any instance of the problem can be addressed
practically with our approach.

The achievable rate region for mem-
oryless sources with joint probability distribu-
tion is given by [1]

(1)

where . (See (R) of Fig. 1.) In [2], Cover
simplified the proof by proposing a code design strategy
whereby each encoder randomly places all possible source
sequences into bins and gives the bin index to the decoder.
Linear block codes can be used to perform binning practically
and with no loss in either the achievable rate region or the
error exponent [3]. In code operation, the decoder receives a
single bin index from each transmitter and then searches for

a collection of “jointly typical” sequences [4,
pp. 194–197] lying in the described bins. This can be done with
high probability provided that the rates lie within the achievable
region. At certain rate points, which we call “vertices” or
“corner points,” this joint search over all codebooks for “jointly
typical” sequences can be done successively. The corner points
are the rate tuples that are obtained by expanding

by successive applications of the chain
rule and assigning to each rate the unique corresponding term
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in the expansion. For instance, if users would like to commu-
nicate at the rate , then we
describe the source at rate by entropy-encoding

. (We can do this by using either a variable-rate lossless
code or a fixed-rate near-lossless code.) After successful de-
coding, can be used as side information to help decode

at rate . By exchanging the roles of and
, it follows that the same approach applies to encoding at

rate . Thus, in this case,
the decoding process can be decomposed into a pipelined
approach that operates at the speed of a single-user decoder.
Recently, a lot of attention has been paid to the construction of
low-complexity decoders to achieve rates of very close to

. These attempts, which include iterative techniques
for turbo-code [5] constructions [6]–[9] and low-density parity
check code (LDPC) [10] constructions [11]–[15], have met
much success when and are binary random variables.

While these codes can be combined using time-sharing to
achieve nonvertex rates, time-sharing has practical drawbacks.
Rate fluctuations arise at different points of the encoding
process, and the delay required to communicate near a target
rate can be prohibitively long.

We consider in Section III a practical method to per-
form “source-splitting,” which transforms all points in the
Slepian–Wolf achievable region into vertices in a Slepian–Wolf
achievable region with more sources. Once the rate point
becomes a vertex, we can parallelize encoding and pipeline de-
coding. Inspired by rate-splitting for Gaussian [16] and discrete
memoryless [17] multiple access channels, source-splitting
was introduced in [18], but that approach required shared
randomness at the encoders and decoder, and the outputs of
the splitting operation had alphabets larger than the original
source. Another approach that allows parallelized encoding
and pipelined decoding is [19], but this also requires common
randomness at the encoder and decoder and involves searching
for jointly typical sequences at the encoder. Our splitting
technique involves a simple thresholding operation followed by
specifying a bin index, reduces the alphabet size of the outputs
of the splitter, and does not require common randomness.

In Sections III-A and III-B we also illustrate via the “method
of types” [20] and reasoning similar to [17] that performing the
proposed splitting strategy at most once per user can achieve any
rate in the Slepian–Wolf achievable rate region with parallelized
encoding and pipelined decoding. Analogous to Section III of
[21], we show in Section III-C that rate tuples on the boundary
of the dominant face can be split into two sets of sources that
may be decoded sequentially.

We discuss in Section IV how the splitting strategy can be
combined with iterative decoding in a practical setting. Our
splitting technique has an important simplification in part of
the decoding process. Simulation results from synthetically
generated data confirm the practicality and effectiveness of this
approach.

We also consider in Section V the Slepian–Wolf problem
when LDPCs are used as syndrome-formers and consider
a linear programming (LP) relaxation to maximum-likeli-
hood sequence decoding (MLSD). This decoder exhibits the
maximum-likelihood (ML)-certificate property: if an integral

solution is found, it is the ML solution. We note that the
fractional vertices of the relaxed polytope, termed pseudocode-
words, compete with the ML solution in a manner analogous to
that observed when a “min-sum” iterative decoding algorithm
is applied [22]–[25]. We show how this relaxation relates to
“coset-leader” decoding across binary symmetric channels.
From there, we show an equivalence between this LP formu-
lation and one developed for channel coding [26]–[28]. This
equivalence allows us to illustrate that for symmetric binary
joint distributions, Slepian–Wolf vertex rates can be achieved
using easily constructable ’expander’-style LDPC’s [29]–[31]
as syndrome-formers with a positive error exponent (i.e., expo-
nential error probability decay in block length).

II. MODEL AND DEFINITIONS

In this paper, we will consider a set of discrete
memoryless sources drawn according to

with alphabets . We
denote as the th symbol from process . We use the
following notation:

for any where

for any

permutes

A. Dominant Face

The dominant face consists of all
that satisfy

(2)

Note that any point in is dominated (with respect to the stan-
dard partial order on ) by a point in the dominant face.

Throughout the paper, we exploit the chain rule for entropy

(3)

We may now apply the chain rule to derive an alternative de-
scription of the dominant face . By combining the chain rule
with (1) and (2), we arrive at
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So we see that achievability (1) and lying on the dominant face
(2) imply that

(4)

Conversely, we see that the leftmost inequality in (4) directly
implies achievability (1) and setting in (4) directly
implies lying on the dominant face (2). Hence, we may alterna-
tively characterize the dominant face as

(5)

Vertices are the rate tuples that occur at the
intersection of the bounding surfaces (for instance, they are the
two “corner points” of Fig. 1). They are obtained by expanding

into terms by successive applications of
the chain rule, and assigning to the value of the unique
term in the expansion having the form for some
set . Each unique vertex of the dominant face cor-
responds to a rate-tuple that is single-user decodable given
side information of the previously decoded sources. Most of
the practical methods [6]–[9], [11]–[15] to achieve rates near
the Slepian–Wolf achievable rate region boundary are only
applicable to vertices.

III. SOURCE-SPLITTING FOR SLEPIAN–WOLF

Let us now consider taking each symbol of a discrete mem-
oryless source (DMS) where

and splitting it into a collection of random vari-
ables of smaller cardinality. We write if there is
a bijection between the random variables and . We
consider the following way to perform source-splitting:

(6a)

(6b)

where operates as a thresholder and is a
permutation operator.

Definition (6) gives many possible splits, since there are many
possible values of and . For a nontrivial
splitting threshold , ,

, and there are distinct ways to
map the symbols to the splitting sets in (6). This provides a
total of

distinct ways to perform the splitting mechanism and form the
bijection .

Fig. 2. Source splitting and decoding for a two-source Slepian–Wolf problem.

If we have two discrete memoryless sources
drawn according to , then we can split to
form as shown in (6). At this point, we have
three sources, each of which can be encoded separately at
rates , , . We note that because ,

. Through the chain rule for
entropy, we consider the rates

(7a)

(7b)

(7c)

(7d)

For any nontrivial split, is not a vertex in
, but is a vertex in

. This directly implies a parallelizable
encoding strategy and pipelined single-user decoding strategy
that operates with the complexity of a smaller-alphabet
decoder. By varying across the different values of the threshold

and , we may sweep across distinct
nonvertex points on the dominant face .
Fig. 2 illustrates the proposed encoding and decoding strategy.

Source-splitting may be performed to transform a source
of cardinality into binary random variables

...
(8a)

(8b)

where and if event occurs and 0 other-
wise. Each yields new splits and thus there are
splits.

The motivation for binary splitting is the reduction in
complexity of near-lossless block-compression of high-rate
sources: the splitting approach allows for parallelized encoding
and pipelined single-user decoding of low-rate binary sources.

In the next section we show that although this method gen-
erates a finite number of distinct splits, we may group con-
secutive symbols together and interpret them as a single out-
come of a source of larger alphabet. Because of the exponential
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growth in the number of splits as a function of the source al-
phabet size, it follows that long super-symbols lengths are not
required. We also discuss in the next section a controlled way to
map super-symbols to a desired rate point. Moreover we arrive
at similar details about the required number of splits per source,
as in the case of multiple access [18].

A. Two Sources: At Most One Split Per Source Required

We consider a DMS drawn according to pmf over al-
phabet and assume without loss of
generality that for each . We treat the first
outcomes of the source as the single outcome of a DMS
with alphabet through the standard integral
representation

(9)

Splitting according to (6) on yields

and a total of non-
trivial splits. We use the “method of types” [20] to take a subset
of all and , parametrize
them according to , and demonstrate that

tends to a continuous function of and tends to

. Moreover, we illustrate in Theorem 3.5 that any point
on the dominant face of the two-user Slepian–Wolf achievable
rate region can be transformed to a vertex in a three-user
problem via source-splitting. Since the number of nontrivial
splits grows as , operating near any target rate does
not require long super-symbol lengths. We introduce some in-
termediate lemmas that are useful in the proof of Theorem 3.5.

We denote the set of all probability distributions on by
. For a length- sequence ,

the type is the probability distribution defined by
, for all . We denote by the

pmf induced on by independent drawings according to .
We denote by the subset of
consisting of the possible types of sequences . For any
type , the type class is the set of all

such that . From [20] we note that

(10)

(11)

Define

(12)

(13)

(14)

We now construct the set of permutations
. For each , order the members of

lexicographically. Then any can be uniquely spec-

ified by where satisfies

and denotes the

lexicographically ordered position of in .

Conversely, we define to be the st member of
.

We define the type class integral representation parametrized
by as

(15)

We then construct a set of permutations on
so that any satisfies

(16)

Finally, we define the threshold

(17)

Intuitively, any maps approximately a
fraction of the members of each type class to values
below the threshold , and the remaining ones to values at
or above . As grows, this approximation becomes more
exact. The set contains more than one permuta-
tion since the definition given by (16) does not specify the order
for strings that satisfy .

We now split into and

(18)

where and is given by (17). Note that
has cardinality and all

lead to the same random variable .
We next demonstrate the asymptotic continuity of the distri-

bution of with respect to . The given property is not
obvious because for and large enough ,

. Moreover, for the same value of ,
the event does not necessarily correspond in any
sense to the event . Nonetheless, Lemma 3.1,
proved in Appendix B, shows that asymptotic Lipschitz con-
tinuity of essentially holds. Lemma 3.2, proved in
Appendix C, shows the corresponding property for the joint dis-
tribution .

Lemma 3.1: For any , forms a bijection

with another random variable that satisfies
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Lemma 3.2: Let be a split of the discrete
memoryless source , and let be another set of discrete
memoryless sources. Then for any , forms

a bijection with another random variable that satisfies

Lemma 3.3, proved in Appendix D, demonstrates the rela-
tionship between the entropy rate and . Lemma
3.4, proved in Appendix E, shows the corresponding continuity
for the conditional entropy.

Lemma 3.3: For , the random variable de-
fined in (18) satisfies .

Lemma 3.4 (Range Lemma): Let
be a split of the discrete memoryless source . Then

defines a continuous function from
[0, 1] onto the interval .

Together, these results prove that any point on the dominant
face of the achievable rate region can be approximated to arbi-
trary accuracy using the given approach, as shown in Theorem
3.5.

Theorem 3.5: For two sources , with joint distribution
, any point on the dominant face of

can be transformed via source-splitting according to (18) to
a vertex in .

Proof: Using the chain rule for entropy and the fact that
, we have that

By the Range Lemma we can set so that
. We may then define

and where . Then
we note from the Slepian–Wolf theorem that the rate-tuple

is achievable, and furthermore, it is a vertex of
the region .

B. Sources: At Most One Split Per Source Required

We now apply the source-splitting procedure for the
Slepian–Wolf problem with users and show that

virtual sources are sufficient. The argument is based
upon a recursive generalization of Theorem 3.5. The technique
employed to show this is analogous to [17, Sec. II]. From there
it follows from direct manipulation of the arguments in [17,
Sec. III] that at most one split per source is required.

Theorem 3.6: Consider correlated sources with
product distribution , and let
and be the corresponding Slepian–Wolf achievable achiev-
able rate region and dominant face. Any may be
transformed to a vertex in a source Slepian–Wolf
achievable rate region by splitting each source at most once
using (18).

Proof: Suppose . Apply the split (18) to source
to arrive at . For each the

inequality

(19)

is valid for all sufficiently small by the following
argument. For it is valid, since

Since is continuous in , there exists a largest
interval such that (19) is fulfilled for all

.
Hence, for any we have from (19) that

(20)

and from the definition of it follows that

(21)

Choose

(22)

and let be the largest subset of that satisfies
. From (21) with we have

(23)

Define a virtual -source
. Let be

the -tuple defined by , and

(24)

We next show that where is
the dominant face of the Slepian–Wolf achievable rate region
corresponding to the sources. We first illustrate that (2)
holds and then show achievability (1).

Note that by the definition of and since
the splits form a bijection we have that

(25)

It remains to be shown that the rate tuple
is achievable, i.e.,

(26)
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We note from (25) and the chain rule for entropy that

(27)

Alternatively, it suffices to show the first inequality in (27) for
each . We enumerate the following cases.

• or :
Equation (26) follows from (1).

• and

(28)

where (28) holds owing to (24) and (20).
• and

(29)

where (29) holds owing to (24) and (20).
Thus we have that . Note further that
by our choice of there exists a such that

(30)
It follows that, besides (24), we also have

(31)

Finally, as part of (26) we have

(32)

This suggests the following parallelizable way of decoding
. First note that from (24), we can entropy

encode and decode at rate . Knowledge
of can be kept at the decoder and we see that the
group can be encoded and decoded according to (30).
This follows from (31) and the Slepian–Wolf coding theorem.
Finally, it follows from (31) that with knowledge of
and at the decoder, we may decode the remaining group
of users. Each of these three groups has size at most .
From the case, we know that every rate point on the
dominant face can be achieved by rate-splitting with at most

virtual sources. Let us assume by induction that
for the user case, every rate tuple may be achieved
with rate-splitting using at most virtual sources.
We just saw that for the -user case, we can decompose it
into a single-source encoding problem, and two Slepian–Wolf
encoding problems of size and , respectively, where

. By applying the induction hypothesis on these
two smaller Slepian–Wolf encoding problems, we see that any
rate-tuple in the -user region can be achieved by rate-splitting
with at most

virtual sources.
Finally we observe that each user needs to split at most

once to achieve any rate point on the dominant face. Algebraic
topology techniques used to prove the analogous result in the
discrete multiple access setting ([17, Sec. III]) directly apply in
this setting.

C. Sources: The Boundary of the Dominant Face

Now we show that rate tuples on the boundary of the dom-
inant face can be divided into two sets of sources that may be
decoded successively but otherwise independently.

We can express the dominant face in three
ways:

with equality for (33)

(34)

with equality for (35)

where (33) is a restatement of (1),(2); (34) is a restatement of (5);
and (35) follows because holds directly and
holds by exchanging in with in and applying the
chain rule for entropy.
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We say a rate tuple lies on the boundary of if there
exists a proper subset such that

(36)

Rates that are on the boundary of have the desirable property
that they allow serial, but otherwise independent, decoding of
sets of sources and their complements. More specifically, if is
on the boundary of and satisfies (36), then we can jointly
decode the subset of inputs with index in and subsequently
jointly decode the subset of inputs with index in .
The proof is as follows.

By definition, for a point on the boundary there is at least one
such that (36) holds. Now note that for any

(37)

(38)

where (37) follows from (35). From (33) and (38), (36) we now
have

(39)

where . Thus can be decoded independently
of . Finally, since , (33) allows for

to be decoded successfully by using a successive decoder
with as side information.

IV. SOURCE-SPLITTING AND ITERATIVE DECODING FOR

SLEPIAN–WOLF

We discuss in this section how we can combine iterative de-
coding methods with source-splitting and point out how the
splitting strategies defined in (6) and (8) significantly facilitate
part of the decoding process. We conclude by showing simula-
tion results.

Using the successive decoding approach of Section III we
can near-losslessly compress a pair of sources drawn
according to at any rate on the dominant
face of . The strategy performs the splitting
operation (6) and allocates rates according to (7a)–(7d).

Good binning strategies exist to perform successing decoding
at rates that are vertices of the Slepian–Wolf region. Iterative
decoding using “syndrome-former” LDPC encoders [11]–[15]
and punctured turbo code encoders [6]–[9] have been extremely
successful.

The iterative decoding technique applied here is the sum-
product algorithm [32], which operates on the graphical struc-
ture of the code. For example, Fig. 3 illustrates a normal graph
representation [33] of an LDPC used as a syndrome-former
encoder, where the syndrome is the index of the bin in which
input lies. The sum-product algorithm produces symbol-wise
a posteriori probabilities (APPs), which are approximate on
graphs with cycles. We use carefully constructed graphical
representations that allow for the approximate APPs to give
credible empirical performance. In the context of our problem,
the bin indices handed to the decoder for are
denoted as . At each level of the pipeline, the

Fig. 3. Normal syndrome-former encoding graph.

APP outputs of previously decoded users are used as inputs to
the currently operating decoder. The outputs of the iterative
decoders are the approximate APPs

Let the outputs of the decoder be the estimate ,
which may be constructed from the APPs of by
performing the symbol-based maximum a posteriori (MAP)
decoding

While is the direct output of one of the iterative
decoders, must be combined to yield

. The splitting strategy (6) leads to the implication

(40)

(41)

and thus can be constructed with very low complexity

by
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Fig. 4. Combining iterative decoding with source-splitting.

Fig. 4 gives a schematic of the decoding process. In the
case of binary splitting (8), the decoder observes bin indices

and the iterative successive decoder outputs
will be the APPs

...
...

In this case the implication

(42)

holds and we can construct again with very low
complexity:

A. Simulation Results

Synthetic Data: We now discuss simulation results that illus-
trate the promise of this splitting technique. The experiments
begin with the random selection of a joint probability distribu-
tion for sources over for some .
We then draw independent samples and encode using an ir-
regular LDPC with degree distribution drawn according to the
density evolution results provided in [34]. Once the nonzero
components of the parity matrix are constructed, their values
are selected randomly from . We perform the
sum-product update rule in its dual form ([33, Sec. IX]), which
operates on the Fourier Transform of APPs. Also we note that in

the case of , the transormed APPs lie in rather than
. Thus the same gain in decoding complexity reduction is at-

tained here as is in the binary case.
Fig. 5 illustrates the achievability of nonvertices in the two

source Slepian–Wolf problem using splitting and iterative de-
coding for and . The leftmost plot shows four
nonvertex rate pairs on the boundary of the achievable region.
We perform iterative decoding in their neighborhoods for a col-
lection of points. The rightmost plot shows the symbol error rate
as a function of the difference between the sum rate and the joint
entropy. The given results show error probabilities of at
sum rate penalties between 0.1 and 0.25.

V. LINEAR PROGRAMMING METHODS FOR SLEPIAN–WOLF

Low-density parity check codes are linear codes based on bi-
partite graphs whose nodes have bounded degrees regardless of
block length. Let us consider a binary linear code that
consists of binary codewords of length . We associate
with its parity check matrix

...

using the condition that any satisfies if and
only if

(43)

Graphical representations denote the dependencies between
codewords based upon the constraints they must satisfy. For a
linear code, each local constraint is a smaller linear code. Fig. 3
illustrates a normal graph representation [33], where bits are
associated with edges and constraint codes are associated with
nodes. A node with a “ ” sign and degree is a
single parity check code that imposes the constraint that the bits
lying on the edges adjacent to that node must sum (modulo )
to . A node of degree with an “ ” sign is a repe-
tition code and imposes the constraint that the bits lying on the

adjacent edges must be equal. There are nodes with “ ”
labels, each of which corresponds to a single repetition code
and has one “half-edge” connection to an external bit. There
are nodes with “ ” labels, each of which corresponds
to a single parity-check code and has one “half-edge” connec-
tion to an external syndrome bit. The th parity-check node is
connected to the th repetition node if and only if the , entry
of is 1, i.e., if the th variable node is involved in the com-
putation of the th syndrome symbol. The set of all valid
input-output sequences is the set of pairs that satisfy all
local constraints.

For a given , the set of all input sequences
consistent with the output is given by

Co (44)
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Fig. 5. Symbol error rate for source-splitting to achieve nonvertex rate pairs.

A. Decoding of Linear Block Codes on the Binary Symmetric
Channel

Over a memoryless binary symmetric channel (BSC), we
have the following channel model:

where each transmitted symbol , each noise symbol
is , each received symbol ,

and is binary addition modulo 2. If a binary linear code is
used to transmit, then we have from (43),(44) that if and
only

Co (45)

If we define , a sufficient statistic for
decoding is

for each . We describe maximum likelihood sequence decoding
(MLSD) as follows:

Co

Co

Co

Co

Co

Co

Co

By noting that all linear programs over polytopes have an op-
timal extreme point [35], and by defining

Co (46)

where denotes the convex hull, the above problem can be
cast as a linear program:

(47)

However, the MLSD decoding problem is NP-complete [36] and
thus explicitly representing the polytope (46) is prohibitively
complex.

1) Coset Leaders: We next discuss an alternative decoding
approach for the BSC that also directly applies to ML-decoding
scenario for block-encoding for lossless source compression,
where the syndrome-former matrix is , and the noise is
identified with the source. Since every satisfies (45), we
have that

(48)

and thus Co . So we may first find the most likely
noiseword in the corresponding coset

Co

Co

Co

Co

Co

Co



COLEMAN et al.: LOW-COMPLEXITY APPROACHES TO SLEPIAN–WOLF NEAR-LOSSLESS DISTRIBUTED DATA COMPRESSION 3555

which corresponds to being the minimal-weight member of the
coset, or coset leader. We note that may also be charac-
terized in LP form as

(49)

and that the complexity in expressing the polytope arises
here as well. Nonetheless, we see the codeword estimate is

and that for the same sequence, (47) is correct if and only
if (49) is correct. Thus, these two optimization problems are
equally powerful.

We now discuss relaxed polytopes for (47) and (49) that can
be efficiently represented. A relaxed polytope can be de-
fined as the intersection of polyhedra , where each

is the convex hull of all code symbols consistent with the
local parity check and syndrome . Note that (as in Fig. 3),
parity-check is connected to one syndrome symbol and a
set of adjacent variable nodes. If ,
then Co is the set of valid configurations for the symbols
with indices in . We define Co to be the matrix
with each element of Co as a column vector. In the event
that , the valid configurations form the coset Co
which is Co and Co is defined simi-
larly. With this notation we construct as follows:

Co

where is defined to be the restriction of to the coordinates
in .

We now state the following lemma.
Lemma 5.1: Any is an extreme point of if and

only if:
1) ,
2) Co .

Proof: For any , the only constraint involving
in the polytope is the constraint that . It thus fol-

lows that 1) holds for any extreme point of . The only
constraints involving are that and that

Co . Since Co
, and since the convex hull of any set has as its extreme

points the set , 2) holds if is an extreme point of .
For the converse, suppose that 1) or 2) does not hold. If 1)

does not hold, then either is infeasible and thus is not an ex-
treme point, or is feasible and for some .
Note that and thus is the strict convex
combination of the two feasible vectors formed by replacing
with 1 and 0 respectively. If 2) does not hold, then either is

infeasible, and thus not an extreme point, or is feasible and
Co . Again, since the convex hull of any set

has as its extreme points the set , is a strict convex com-
bination of vectors lying in Co . We extend each of those
vectors to by letting their th position (where )
be and note they are all still feasible. It thus follows that is
a strict convex combination of feasible vectors in .

Feldman et al. [27], [28], [26] have recently considered poly-
nomial-time LP relaxations for LDPC’s that exhibit the ML-cer-
tificate property: if an integral LP solution is found, it is the
ML-codeword. These relaxations correspond to replacing
with in (47):

(50)

All valid codewords are vertices of this polytope, but nonintegral
vertices, termed “pseudocodewords”, also arise and thus com-
pete in the optimization. Recent work in [26] shows that on the
BSC, using easily constructable “expander” LDPC’s [29]–[31]
with this LP decoder yields a positive error exponent (expo-
nential error probability decay in block length). By [22]–[24],
pseudocodewords also compete with true codewords when the
“min-sum” algorithm is applied to the graphical representation
of the same code. Furthermore, [24] shows that the region over
which the “pseudocodewords” compete with true codewords is
in fact . Discussions in [24], [28], [25] suggest that the two
decoders have essentially the same performance. This gives an-
other motivation for considering the LP decoding paradigm –
it is more amenable to concrete analysis and is intimately con-
nected to iterative decoding algorithms.

We now consider from [28] a pair and
and note the transformation

(51)

The following lemma captures useful properties of .
Lemma 5.2: Given any and .

1) .

2) For any and any ,
.

3) .
Proof:

1)

if
if

2)

if
if

3) Follows by inspection.
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It was proposed in [37] to replace the polytope in (49)
with

(52)

in the context of source block compression with LDPC’s to
arrive at a polynomial-time algorithm that also exhibits the
ML-certificate property. In light of the equivalence of (47) and
(49) in Section V-A, it is natural to ask the question whether
the two relaxations (50) and (52) are equally as powerful. The
answer is yes, as shown by the following theorem.

Theorem 5.3: Given any , any ,
and any , the following two optimization
problems are isomorphic:

(53)

(54)

where

(55)

Proof:
a) Consider the objective function in (53) and note that for

all

where we have defined .
b) We consider the transformation

that maps points in to points in .
Consider any that is an extreme point of and any

. By 1) of Lemma 5.1 and 3) of Lemma 5.2

(56)

By 2) of Lemma 5.1, Co . By 3) of
Lemma 5.2

It thus follows that

Co (57)

From (56), (57), and Lemma 5.1, is an extreme point
of . Moreover, since satisfies 2) of Lemma
5.2, the polytope is mapped to the polytope

.
From a), the transformation maps the objective function

of (50) to the objective function of (52) plus a constant that is
invariant to the polytope. From b), the transformation maps
the constraint polytope of (50) to the constraint polytope of (52).
By exchanging the roles of and , noting 1) of Lemma 5.2 and
applying the exact same arguments, we conclude that the two
problems are one-to-one transformations of one another.

As a consequence, Theorem 5.3 guarantees that the same
class of expander codes [29]–[31] discussed in [26] yields the
same positive error exponent when applied as syndrome-for-
mers for source block encoding. Moreover, it follows from a di-
rect manipulation of the arguments in [24] that application of the
LP decoder is also intimately related to applying the ’min-sum’
algorithm to the syndrome-former graphical representation of
the code.

B. LP Decoding at Vertices for Slepian–Wolf

We next show how Theorem 5.3 applies to decoding at vertex
points of the Slepian–Wolf problem. Suppose drawn
according to have been encoded at rate

. Assume has been decoded correctly
and the objective is to decode given as side information.
Suppose and .
Then we define the following likelihood ratios

By performing an analysis similar to the above derivations, we
arrive at the following Slepian–Wolf ML relaxation

and note that it also exhibits the ML-certificate property.
If we consider the special case where and the

correlation structure is symmetric, (i.e.,
), then MLSD of from its syndrome

given as side information corresponds to

Consider the following relaxation with the ML-certificate
property

and note that it is of the form of (53). It thus follows from The-
orem 5.3 that using an expander-style LDPC as mentioned pre-
viously along with this LP decoder results in a positive error
exponent.
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VI. CONCLUSION

In this paper we continue to apply the theme of trans-
forming successful low-complexity channel coding strategies
to ones that are applicable to source coding. We introduce
low-complexity approaches for Slepian–Wolf distributed data
compression. These techniques include a source-splitting ap-
proach to facilitate successive decoding at nonvertices. This
method does not require common sources of randomness at
the encoders and decoder, reduces the alphabet sizes at the
outcome of the splitter, and has nice simplifications when used
with iterative decoding. We demonstrate the effectiveness of
this approach with synthetically generated data. Using this
technique, any arbitrary rate can be transformed into a vertex
in a higher-dimensional problem by splitting each source at
most once. We also discuss rate tuples on the boundary of the
dominant face and show how they can be split into two sets
decodable sequentially but otherwise independently.

We also introduce linear programming methodologies for the
Slepian–Wolf problem. These methodologies are deeply con-
nected to an LP methodology designed for the channel coding
domain, as well as the “min-sum” iterative decoding algorithm.
By showing the equivalence between two linear programs, we
show that for the two-source Slepian–Wolf problem with a sym-
metric binary joint distribution, using an easily constructable
encoder and the proposed LP decoder results in a positive error
exponent.

It is our hope that these methodologies will further strengthen
the quest to design practical coding schemes for the general
Slepian–Wolf problem with provably good performance.

APPENDIX A
DEFINITIONS

The following definitions and lemma are useful for proving
Lemmas 3.1, 3.3, and 3.4. Define

(58)

(59)

Lemma 1.1: Consider any such that
and for each . Then as defined in
(58) satisfies , and as defined in
(59) satisfies .

Proof: For any ,

(60)

Since for each , for each .
Thus for each . Since is fixed in the
optimization (58), and since the function is monotonic, there
exists a that minimizes (60) and satisfies
where . Thus

Since for each , for all
. Again, since is fixed in the optimization (59), and since the

function is monotonic, there exists a that maximizes (60)
that satisfies where .
Thus,

To aid in proving Lemmas 3.1, 3.2, and 3.4, map each

to using the type class
integral representation given in (15) with :

(61)

Define and the random variable with alphabet
in terms of as

if

if .

(62)

For every ,

iff and (63)

iff and (64)

iff (65)

iff (66)

Thus and form a bijection. Note the following
properties of for all , :

(67)

(68)

Since is a function of , it follows that
forms a Markov chain. Since

, also forms a Markov chain.
Thus for any , ,

(69)
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Define

(70)

and note that for any ,
implies

(71)

(72)

APPENDIX B
PROOF OF LEMMA 3.1

Proof: Assume without loss of generality that
. Since implies

(73)

(74)

(75)

As a result

(76)

Note that

(77)

where (77) follows from

Therefore,

(78)

(79)

where (78) is due to (58) and (12) and (79) is due to (10). Thus,

by Lemma 1.1.

APPENDIX C
PROOF OF LEMMA 3.2

Proof: Assume without loss of generality that
Thus,

(80)

(81)

(82)

where (80) is due to (72), (81) is due to (69), and (82) is due to
(76). From here we finish the proof by applying Lemma 3.1.
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APPENDIX D
PROOF OF LEMMA 3.3

Proof: For an arbitrary

(83)

Therefore,

(84)

(85)

where in (85), (83) vanishes because for any ,
.

Note that

(86)

where (86) follows from (11) since

Thus,

(87)

(88)

(89)

where (87) is due to (58), (59), (12); (88) is due to (10); and (89)
is due to Lemma 1.1.

APPENDIX E
PROOF OF LEMMA 3.4

Proof: We first show that is continuous in .
Assume . Note from Lemma 1.1 that

(90)

Define

Then

We now bound . Note that, for all
and all
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where the first inequality follows from (72). Since the function
is monotonically increasing on , for all

and all

which implies . We can also lower bound
as follows:

(91)

(92)

(93)

where (91) follows from the log-sum inequality [4, p. 29], (92)
is due to (74), and (93) is due to (59), Lemma 1.1, and (80). Thus

(94)

(95)

where (94) is due to (90), and (95) is due to (80). Thus

by Lemma 3.2. Thus is continuous in .
Finally, is continuous in due to the conti-

nuity of and along with the chain
rule for entropy. The endpoints are contained because

is a point mass and thus and is bi-

jective with , and thus .

ACKNOWLEDGMENT

The authors thank Jon Feldman, Ralf Koetter, and Karen
Haigh for their helpful discussions and comments.

REFERENCES

[1] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Inf. Theory, vol. 19, pp. 471–480, 1973.

[2] T. M. Cover, “A proof of the data compression theorem of Slepian
and Wolf for ergodic sources,” IEEE Trans. Inf. Theory, vol. 21, pp.
226–228, 1975.

[3] I. Csiszár, “Linear codes for sources and source networks: Error expo-
nents, universal coding,” IEEE Trans. Inf. Theory, vol. 28, pp. 585–592,
1982.

[4] T. M. Cover and J. Thomas, Elements of Information Theory. New
York, NY: Wiley, 1991.

[5] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting codes and decoding: Turbo codes,” in Proc. IEEE Int.
Commun. Conf., 1993.

[6] J. Garcia-Frias and Y. Zhao, “Compression of correlated binary sources
using turbo codes,” IEEE Commun. Lett., vol. 5, pp. 417–419, Oct.
2001.

[7] A. Aaron and B. Girod, “Compression with side information using
turbo codes,” in Proc. IEEE Data Compress. Conf., Apr. 2002, pp.
252–261.

[8] J. Bajcsy and P. Mitran, “Coding for the Slepian–Wolf problem with
turbo codes,” in IEEE Proc. GLOBECOM, Nov. 2001, pp. 1400–1404.



COLEMAN et al.: LOW-COMPLEXITY APPROACHES TO SLEPIAN–WOLF NEAR-LOSSLESS DISTRIBUTED DATA COMPRESSION 3561

[9] A. Liveris, Z. Xiong, and C. Georghiades, “Distributed compression
of binary sources using conventional parallel and serial concatenated
convolutional codes,” in Proc. IEEE DCC, Brest, France, Mar. 2003,
pp. 193–202.

[10] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory,
vol. 8, pp. 21–28, Jan. 1962.

[11] T. Tian, J. Garcia-Frias, and W. Zhong, “Compression of correlated
sources using LDPC codes,” in Proc. IEEE Data Compress. Conf.,
2003.

[12] D. Schonberg, S. S. Pradhan, and K. Ramchandran, “LDPC codes can
approach the Slepian–Wolf bound for general binary sources,” in Proc.
40th Allerton Conf. Commun., Contr. Comput., Oct. 2002.

[13] A. D. Liveris, Z. Xiong, and C. Georghiades, “Compression of binary
sources with side information at the decoder using LDPC codes,” IEEE
Commun. Lett., vol. 6, pp. 440–442, Oct. 2003.

[14] J. Garcia-Frias and W. Zhong, “LDPC codes for compression of
multi-terminal sources with hidden Markov correlation,” IEEE
Commun. Lett., vol. 7, pp. 115–117, Mar. 2003.

[15] A. Liveris, C. Lan, K. Narayanan, Z. Xiong, and C. Georghiades,
“Slepian–Wolf coding of three binary sources using LDPC codes,” in
Proc. Int. Symp. Turbo Codes Rel. Topics, Brest, France, Sep. 2003.

[16] B. Rimoldi and R. Urbanke, “A rate-splitting approach to the Gaussian
multiple access channel,” IEEE Trans. Inf. Theory, vol. 42, pp.
364–375, 1996.

[17] A. Grant, B. Rimoldi, R. Urbanke, and P. A. Whiting, “Rate-splitting
multiple access for discrete memoryless channels,” IEEE Trans. Inf.
Theory, vol. 47, pp. 873–890, 2001.

[18] B. Rimoldi and R. Urbanke, “Asynchronous Slepian–Wolf coding via
source-splitting,” in Proc. IEEE Int. Symp. Inf. Theory, Ulm, Germany,
Jun.–Jul. 29–4, 1997, p. 271.

[19] F. M. J. Willems, “Totally asynchronous Slepian–Wolf data compres-
sion,” IEEE Trans. Inf. Theory, vol. 34, pp. 35–44, 1988.

[20] I. Csiszár, “The method of types,” IEEE Trans. Inf. Theory, vol. 44, pp.
2205–2523, 1998.

[21] B. Rimoldi, “Generalized time sharing: A low-complexity capacity-
achieving multiple-access technique,” IEEE Trans. Inf. Theory, vol. 47,
pp. 2432–2442, 2001.

[22] G. Forney, R. Koetter, J. Kschischang, and A. Reznik, “On the effective
weights of pseudocodewords for codes defined on graphs with cycles,”
Codes, Syst. Graph. Models, pp. 101–112, 2001.

[23] B. J. Frey, R. Koetter, and A. Vardy, “Signal space characterization
of iterative decoding,” IEEE Trans. Inf. Theory, vol. 47, pp. 766–781,
2001.

[24] R. Koetter and P. O. Vontobel, “Graph-covers and iterative decoding
of finite length codes,” in Proc. Turbo Codes Conf., Brest, 2003.

[25] P. O. Vontobel and R. Koetter, “On the relationship between linear pro-
gramming decoding and min-sum algorithm decoding,” in Proc. Int.
Symp. Inf. Theory Appl., Parma, Italy, Oct. 2004.

[26] J. Feldman, T. Malkin, C. Stein, R. A. Servedio, and M. J. Wainwright,
“LP decoding corrects a constant fraction of errors,” in Proc. IEEE Int.
Symp. Inf. Theory, Chicago, Ill, Jun.–Jul. 27–2, 2004.

[27] J. Feldman, M. Wainwright, and D. R. Karger, “Using linear program-
ming to decode linear codes,” in Proc. Conf. Inf. Sci. Syst., The John
Hopkins University, Baltimore, MD, Mar. 2003.

[28] J. Feldman, “Decoding Error-Correcting Codes via Linear Program-
ming,” Ph.D., Department of Electrical Engineering and Computer Sci-
ence, Massachusetts Institute of Technology, Cambridge, MA, 2003.

[29] M. Sipser and D. Spielman, “Expander codes,” IEEE Trans. Inf.
Theory, vol. 42, pp. 1710–1722, 1996.

[30] A. Barg and G. Zémor, “Error exponents of expander codes,” IEEE
Trans. Inf. Theory, vol. 48, pp. 1725–1729, 2002.

[31] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson, “Random-
ness conductors and constant-degree expansion beyond the degree/2
barrier,” in Proc. 34th ACM Symp. Theory Comput., 2002, pp. 659–668.

[32] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, pp. 498–519,
2001.

[33] G. D. Forney, “Codes on graphs: Normal realizations,” IEEE Trans. Inf.
Theory, pp. 101–112, 2001.

[34] A. Amarou and R. Urbanke, Ldpcopt [Online]. Available: http://
lthcwww.epfl.ch/research/ldpcopt/

[35] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimiza-
tion. Belmont, MA: Athena Scientific, 1997.

[36] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, “On the
intractability of certain coding problems,” IEEE Trans. Inf. Theory, vol.
24, pp. 384–386, 1978.

[37] T. P. Coleman, A. H. Lee, M. Médard, and M. Effros, “On some new
approaches to practical Slepian–Wolf compression inspired by channel
coding,” in Proc. IEEE Data Compress. Conf., Snowbird, Utah, Mar.
23–25, 2004.


