
Low Complexity Bit Parallel Architectures for
Polynomial Basis Multiplication over GF ð2mÞ

Arash Reyhani-Masoleh, Member, IEEE, and M. Anwar Hasan, Senior Member, IEEE

Abstract—Representing the field elements with respect to the polynomial (or standard) basis, we consider bit parallel architectures for

multiplication over the finite field GF ð2mÞ. In this effect, first we derive a new formulation for polynomial basis multiplication in terms of

the reductionmatrixQ. The main advantage of this new formulation is that it can be used with any field defining irreducible polynomial.

Using this formulation, we then develop a generalized architecture for the multiplier and analyze the time and gate complexities of the

proposed multiplier as a function of degree m and the reduction matrix Q. To the best of our knowledge, this is the first time that these

complexities are given in terms of Q. Unlike most other articles on bit parallel finite field multipliers, here we also consider the number

of signals to be routed in hardware implementation and we show that, compared to the well-known Mastrovito’s multiplier, the

proposed architecture has fewer routed signals. In this article, the proposed generalized architecture is further optimized for three

special types of polynomials, namely, equally spaced polynomials, trinomials, and pentanomials. We have obtained explicit formulas

and complexities of the multipliers for these three special irreducible polynomials. This makes it very easy for a designer to implement

the proposed multipliers using hardware description languages like VHDL and Verilog with minimum knowledge of finite field

arithmetic.

Index Terms—Finite or Galois field, Mastrovito multiplier, all-one polynomial, polynomial basis, trinomial, pentanomial and equally-

spaced polynomial.
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1 INTRODUCTION

WITH the rapid expansion of the Internet and wireless
communications, more and more digital systems are

becoming increasingly equipped with some form of

cryptosystems to provide various kinds of data security.

Many such cryptosystems rely on computations in very

large finite fields and require fast computations in the fields

[14], [2]. Finite field arithmetic operations are also used in

error control coding [11], [16], VLSI testing [6], [27], and
digital signal processing [5]. Among the basic arithmetic

operations over the finite field GF ð2mÞ, addition is easily

realized using m two-input XOR gates, while multiplication

is costly in terms of gate count and time delay. The other

operations of finite fields, such as exponentiation, division,

and inversion can be performed by repeated multiplications

[21], [26], [1], [7]. In order to satisfy the high speed

requirements of many such applications, there is a need to
develop an efficient architecture for finite field multi-

plication which is suitable for VLSI implementation. In this

paper, a new general bit parallel structure for the

polynomial basis multiplication which is applicable to all

types of irreducible binary polynomials is proposed.

1.1 Summary of Previous Work

The earliest parallel polynomial basis (PB) multiplier over
GF ð2mÞ was suggested by Bartee and Schneider [3].
Depending on the irreducible polynomial, this implementa-
tion requires as many as m3 �m two-input adders over
GF ð2Þ (i.e., XOR gates) [4]. Because of its high circuit
complexity and lack of regularity, it is often advantageous
to use other hardware structures to implement the multi-
plier [16]. In [13], [12], Mastrovito has proposed an
algorithm along with its hardware architecture (hereafter
referred to as the Mastrovito algorithm/multiplier) for PB
multiplication. Sunar and Koc [24] have presented a new
formulation for the Mastrovito algorithm using trinomials
and have shown that m2 � 1 XOR and m2 AND gates are
sufficient to implement the multiplier. In [8], Halbutogullari
and Koc have generalized the approach of Sunar and Koc
and have found a method for constructing the Mastrovito
multiplier for arbitrary irreducible polynomials. Thismethod
considers general as well as special classes of irreducible
polynomials such as trinomials, all-one polynomials (AOPs)
and equally spaced polynomials (ESPs). So far, for these
special polynomials, theXORgate count and timedelayof the
Halbutogullari-Koc algorithmappear tobe the lowest. In [28],
Zhang and Parhi propose a systematic method to design the
Mastrovito multiplier. Moreover, they extend the method to
systematicallydesign themodifiedMastrovitomultiplication
scheme proposed in [23]. They also present new results of the
complexities of the Mastrovito multiplier for two classes of
irreducible pentanomials.

Unlike Mastrovito’s method, a GF ð2mÞ multiplication
can also be performed by a straightforward polynomial
multiplication followed by modular reduction. This
approach has been used in a number of papers. For
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example, in [25], Wu considered irreducible trinomials as
reduction polynomials and showed that a modular multi-
plication operation in GF ð2mÞ can be performed with ð!�
1Þðm� 1Þ bit additions, where ! is the Hamming weight of
the irreducible polynomial. In hardware implementation, its
multiplication operations can be realized with m2 AND and
ðm� 1Þ2 þ ð!� 1Þðm� 1Þ XOR gates. Recently, Rodriguez-
Henriquez and Koc in [20] proposed a PB multiplier for
special case of pentanomials and have obtained its time
delay and gate count. Although they have referred to it as
the Mastrovito multiplier, their architecture is different
from the original Mastrovito multiplier and uses the two
steps of multiplication separately.

1.2 Scope of Our Work

In this paper, we present a new formulation for polynomial
basis multiplication and then a generalized bit-parallel
hardware architecture. We consider the time delay and gate
count of the proposed multiplier as a function of degree m
and the reduction matrix Q. Using the Q matrix, the
complexities of multipliers based on special reduction
polynomials, namely: 1) trinomials, 2) ESPs, and 3) two
classes of pentanomials are obtained. We also present
explicit formulas for multiplication for the above three
special classes. These formulas maximize the number of
intermediate signals that are reused. These formulas can be
easily coded using hardware description languages such as
VHDL or Verilog to implement an optimized multiplier.
These codings can be done by a hardware designer without
running an algorithm for precomputation or even having
any knowledge of finite field arithmetic. In this paper, we
also show that, for general irreducible polynomials, both the
time delay and gate count of the proposed structures are,
overall, lower than those available in the literature.
Furthermore, these architectures have fewer routed signals
and are suitable for VLSI implementation.

The organization of this paper is as follows: In Section 2,
polynomial basis multiplication over GF ð2mÞ and the
Mastrovito multiplier in particular are considered. The
new architecture and its complexities are introduced in
Section 3. In Sections 4, 5, 6, and 7, optimized multiplication
schemes using irreducible equally spaced polynomials,
generic polynomials, trinomials, and pentanomials are
respectively considered and comparisons between our
architectures and other PB multipliers are made. Finally,
conclusions are given in Section 8.

2 POLYNOMIAL BASIS MULTIPLICATION OVER

GF ð2mÞ

Let P ðxÞ ¼ xm þ
Pm�1

i¼0 pix
i be a monic irreducible polyno-

mial over GF ð2Þ of degree m, where pi 2 GF ð2Þ for
i ¼ 0; 1; � � � ; m� 1. Let � 2 GF ð2mÞ be a root of P ðxÞ, i.e.,
P ð�Þ ¼ 0. Then, the set f1; �; �2; � � � ; �m�1g is referred to as
thepolynomial or standardbasis andeach element ofGF ð2mÞ
canbewrittenwith respect to thepolynomial basis (PB). LetA
be an element in GF ð2mÞ, then the representation of A w.r.t.
the PB is A ¼

Pm�1
i¼0 ai�

i; ai 2 f0; 1g, where ais are the
coordinates. For convenience, these coordinates will be
denoted in vector notation1 as a ¼ ½ a0; a1; a2; � � � ; am�1 �

T ,

where T denotes the transposition. Using this vector

notation, the representation of A can be written as

A ¼ ��Ta, where �� ¼ ½1; �; �2; � � � ; �m�1�T . Let S be the

binary polynomial of degree not more than 2m� 2 obtained

by the direct multiplication of the PB representations of any

two elements A and B of GF ð2mÞ, i.e.,

S ¼
X

m�1

i¼0

ai�
i

 !

X

m�1

j¼0

bj�
j

 !

¼
X

2m�2

k¼0

sk�
k; ð1Þ

where

sk ¼
X

iþj¼k

aibj; 0 � i; j � m� 1; 0 � k � 2m� 2: ð2Þ

Then, the product C ¼ A � B can be obtained by the

following modulo reduction:

C ¼
4
X

m�1

i¼0

ci�
i � S mod P ð�Þ: ð3Þ

Using (1) and (3), the product coordinates, i.e., cis, are

obtained in terms of ais, bis, and the irreducible polynomial

P ðxÞ. In [12], Mastrovito shows that these coordinates can

be calculated using a matrix equation as follows:

c ¼ Fb; ð4Þ

where b ¼ ½b0; b1; � � � ; bm�1�
T and c ¼ ½c0; c1; � � � ; cm�1�

T

are the vectors associated with B and C, respectively.

The exact definition of the product matrix F ¼ ½fi;j�
m�1
i;j¼0 can

be found in [13].

Remark 1. Matrix F is unique and depends on the

multiplicand A and the irreducible polynomial P ðxÞ.

Using (4), an architecture for the Mastrovito multiplier is

shown in Fig. 1a, which basically consists of two blocks,

namely, f-network and IP-network. The f-network generates

the entries of the product matrix F. The IP-network

performs the matrix-vector multiplication as shown in (4)

and consists of m inner product units, each generating one

coordinate of C, i.e.,

ci ¼ ½fi;0; fi;1; � � � ; fi;m�1�½b0; b1; � � � ; bm�1�
T
; 0 � i � m� 1:

In Fig. 1a, block IP ðmÞ corresponds to an inner product

unit which has two input vectors of m elements each.

Assuming that only two-input logic gates are used, IP ðkÞ

for k > 0, requires k AND gates and k� 1 XOR gates and

has a gate delay of TA þ log2 kd eTX , where TA and TX

correspond to the delays due to an AND and an XOR gate

respectively (see Fig. 1b where k ¼ m).
In Fig. 1a, there are two buses: the coordinates ofB and the

interconnection bus IB which contains the coordinates of A.

The interconnection bus IB carries the elements fi;j of F from

the f-network to the IP-network. The number of lines on IB

depends on the irreducible polynomial P ðxÞ and varies

between 2m� 1 (for trinomials) and mðmþ1Þ
2

(for AOPs) [13].
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3 AN EFFICIENT MULTIPLICATION SCHEME

In this section, we first give a new formulation for

multiplication over GF ð2mÞ. Using this formulation, we

then present a bit parallel architecture for the multiplier. At

the end, we give upper bounds of the space and time

complexities of the architecture.

3.1 New Formulation

Definition 1 [12]. The reduction matrix Q is an m� 1 by m

binary matrix which is obtained from

��" � Q�� ðmod P ð�ÞÞ; ð5Þ

where ��" ¼ ½�m; �mþ1; � � � ; �2m�2�T .

Remark 2. For each irreducible P ðxÞ, the reduction matrix Q is

unique.

In order to present our new multiplication scheme, we

introduce the following two Toeplitz matrices

L ¼
4

a0 0 0 0 � � � 0

a1 a0 0 0 � � � 0

a2 a1 a0 0 � � � 0

..

. ..
. . .

. . .
. . .

. ..
.

am�2 am�3 � � � a1 a0 0

am�1 am�2 � � � a2 a1 a0

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

;

U ¼
4

0 am�1 am�2 � � � a2 a1

0 0 am�1 � � � a3 a2

..

. ..
. . .

. . .
. ..

. ..
.

0 0 � � � 0 am�1 am�2

0 0 � � � 0 0 am�1

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

;

ð6Þ

where ais are the coordinates of A. Note that L is an m�m

lower triangular matrix and U is an ðm� 1Þ �m upper

triangular matrix. Now, define the following two vectors

which are functions of A and B:

d ¼ Lb; ð7Þ

e ¼ Ub: ð8Þ

Then, we can state the following theorem, which is the key

step toward the development a new architecture for the

PB multiplication in GF ð2mÞ.

Theorem 1. Let C be the product of A and B 2 GF ð2mÞ. Then,

c ¼ dþQTe; ð9Þ

where Q, d, and e are defined in (5), (7), and (8) respectively.

Proof. In vector notation, (1) can be written as

S ¼ ��""""T s; ð10Þ

where

��"""" ¼ ½1; �; � � � ; �2m�2�T ¼
��

��""

� �

and s ¼ ½s0; s1; � � � ; s2m�2�
T . Using (5), we have

��"""" �
Im
Q

� �

��;

where Im is the m by m unity matrix. Note that

dk ¼ sk; 0 � k � m� 1, a n d el ¼ slþm; 0 � l � m� 2,

then

s ¼
d

e

� �

¼
L

U

� �

b

and, using (10), C is obtained as

C � S ðmodP ð�ÞÞ

¼
Im

Q

� �

��

� �T
L

U

� �

b ¼ ��T ½ Im QT �
L

U

� �� �

b

¼ ��T ðLþQTUÞb:

ð11Þ

Since C ¼ ��Tc, (11) yields (9) and the proof is complete.tu

3.2 Architecture

Using the formulation presented in the previous section, an

architecture for polynomial basis multiplication over

GF ð2mÞ is shown in Fig. 2. This structure is hereafter
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Fig. 1. (a) Architecture of the Mastrovito multiplier over GF ð2mÞ. (b) Details of IP ðmÞ.



referred to as the low complexity bit parallel (LCBP)
multiplier. It is divided into two parts: IP-network and
Q-network. The IP-network, which has m blocks (denoted
as I0; I1; � � � ; Im�1), generates vectors d and e in accor-
dance with (7) and (8). For 0 � i � m� 2, block Ii consists
of two inner product cells, namely, IP ðiþ 1Þ and
IP ðm� i� 1Þ; however, the last block Im�1 consists of only
one such cell, namely, IP ðmÞ.

In Fig. 2, the Q-network takes d and e as inputs and
generates c. It consists of m binary trees of XOR gates
(BTX0���m�1). The number of XOR gates in BTXi; 0 � i �
m� 1; is equal to the number of 1s in the ith column of the
Q matrix. It is noted that the number of lines on the
interconnection bus IB is fixed and is equal to the number of
ejs, i.e., m� 1. In Fig. 2a, there are three buses, A, B, and IB,
and the number of lines on these buses is 3m� 1.

In order to illustrate the new multiplier structure, we
consider the finite field of GF ð24Þ constructed by the
irreducible polynomial P ðxÞ ¼ x4 þ x3 þ 1. For this field,
the circuit diagram based on the new multiplier structure is
shown in Fig. 3. The total number of XOR gates of this
figure can be reduced by reusing signals. This is considered
later in this paper for special irreducible polynomials.

3.3 Complexities

For the LCBP multiplier structure shown in Fig. 2, we now
give its complexities, in terms of gate counts and time delay

due to gates. For this purpose, let qj; 0 � j � m� 1, be the

jth column of the reduction matrix, i.e.,

Q ¼ ½q0; q1; � � � ; qm�1�

and HðqjÞ be the Hamming weight (i.e., the number of 1s)

of qj. We denote � as the maximum Hamming weight of a

column of Q, i.e.,

� ¼ maxfHðqjÞ : 0 � j � m� 1g ð12Þ

and HðQÞ as the Hamming weight of Q, i.e.,

HðQÞ ¼
X

m�1

j¼0

HðqjÞ: ð13Þ

Now, consider the IP-network of the multiplier in Fig. 2.

Since each Ii for 0 � i � m� 2 has m AND and ðm� 2Þ

XOR gates and Im�1 hasm AND and ðm� 1Þ XOR gates, the

IP-network has a total of m2 AND gates and ðm� 1Þðm�

2Þ þm� 1 ¼ ðm� 1Þ2 XOR gates. For the Q-network, using

(13), one can determine the maximum number of XOR gates

needed as HðQÞ.
To determine the time complexity of this architecture, we

need to consider the time delays due to gates of the IP as

well as Q-networks. Using (7) and (8), the delays for

dj; 0 � j � m� 1, and ei; 0 � i � m� 2; are given as
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T ðdjÞ ¼ TA þ log2ðjþ 1Þd eTX; 0 � j � m� 1; ð14Þ

T ðeiÞ ¼ TA þ log2ðm� i� 1Þd eTX; 0 � i � m� 2; ð15Þ

respectively. In the IP-network, the maximum gate delay is

due to the Im�1 cell and is equal to TA þ log2 md eTX. Using

(12), it is notdifficult to see that themaximumgatedelay in the

Q-network is log2ð�þ 1Þd eTX. In the worst case, a signal will

have maximum delays of both the IP andQ-networks. Thus,

an upper bound for the time delay of the entire multiplier

structure is TC � TA þ log2 md e þ log2ð�þ 1Þd eð ÞTX. The fol-

lowing theorem summarizes the above results on the

complexities of the proposed multiplier structure.

Theorem 2. For the LCBP multiplier, the number of two-input

AND gates is

NA ¼ m2 ð16Þ

and the number of XOR gates and time delay due to gates are

upper bounded by

NX � ðm� 1Þ2 þHðQÞ; ð17Þ

TC � TA þ log2 md e þ log2ð�þ 1Þd eð ÞTX: ð18Þ

The above theorem gives upper bounds for the number

of XOR gates and time delay. However, the exact values can

be obtained by designing a multiplier which is either highly

space efficient or very fast. In order to minimize the number

of XOR gates, the intermediate signals can be reused. This is

illustrated in the following example.

3.4 An Example

We consider the field GF ð27Þ defined by the irreducible
polynomial P ðxÞ ¼ x7 þ x5 þ x3 þ xþ 1 for which gate and
time complexities have been reported in [8]. For this
irreducible polynomial, one has

Q ¼

1 1 0 1 0 1 0

0 1 1 0 1 0 1

1 1 1 0 0 0 0

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

: ð19Þ

Since HðQÞ ¼ 20 and � ¼ 4, then, using (17) and (18), the
upper bounds of XOR gate count and time delay are NX �
ð7� 1Þ2 þ 20 ¼ 56 and

TC � TA þ log2 7d e þ log2 5d eð ÞTX ¼ TA þ 6TX;

respectively.
Substituting (19) into Theorem 1, the coordinates of the

product C ¼ AB over GF ð27Þ can be obtained as

c0 ¼ d0 þ e0 þ e2

c1 ¼ ðd1 þ e0Þ þ ðe1 þ ðe2 þ e3ÞÞ

c2 ¼ ðd2 þ e4Þ þ ðe1 þ ðe2 þ e3ÞÞ

c3 ¼ ðd3 þ e0Þ þ ðe3 þ ðe4 þ e5ÞÞ

c4 ¼ d4 þ ðe1 þ ðe4 þ e5ÞÞ

c5 ¼ d5 þ e0 þ e5

c6 ¼ d6 þ e1;

ð20Þ

where dj; 0 � j � 6 and ei; 0 � i � 5 are from (7) and (8),
respectively. Note that the brackets in (20) show the order
of modulo two addition which defines the position of
XOR gates in the Q-network. Since we reuse partial sums
ðe1 þ ðe2 þ e3ÞÞ and ðe4 þ e5Þ in (20), for the realization of
(20), 17 XOR gates are needed in the Q-network and the
total number of XOR gates of the entire multiplier is
ð7� 1Þ2 þ 17 ¼ 53. Also, since the time delays of dj; 0 �
j � 6 and ei; 0 � i � 5 are TA þ log2ðjþ 1Þd eTX and
TA þ log2ð6� iÞd eTX, respectively, the time delay of the
entire multiplier is TC ¼ TA þ 5TX .

In the following sections, we attempt to minimize the
number of XOR gates for special irreducible polynomials,
namely, equally spaced polynomials, trinomials, and
pentanomials. The LCBP multipliers for the above-men-
tioned irreducible polynomials are achieved by properly
defining some intermediate signals and then reusing them
as much as possible. We start with equally spaced
polynomials which are very structured and will help us
present the remaining special cases with fewer difficulties.

4 MULTIPLIERS USING EQUALLY SPACED

POLYNOMIALS

Defintion 2. A polynomial

P ðxÞ ¼ xns þ xðn�1Þs þ � � � þ xs þ 1; ð21Þ

over GF ð2Þ, with ns ¼ m, is called an equally spaced
polynomial (denoted as s-ESP) of degree m.
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An s-ESP is a self-reciprocal polynomial. In (21), both n

and s are integers and 1 � s � m
2
. When s ¼ 1, we have

1-ESP and it is the same as the all-one polynomial (AOP).

The latter has the highest Hamming weight among all

polynomials of degree m. On the other hand, s ¼ m
2
results

in the least Hamming weight irreducible polynomial (i.e.,

trinomial) of degree m.

Theorem 3. For an s-ESP based LCBP multiplier over GF ð2mÞ,

the gate counts, time delay, and number of lines on the buses

are NA ¼ m2, NX ¼ m2 � s, TC ¼ TA þ 1þ log2 md eð ÞTX,

and NL ¼ 2mþ s; respectively.

Proof. When � is a root of the s-ESP in (21), we have

�mþi ¼
�i þ �sþi þ � � � þ �ðn�1Þsþi; 0 � i < s;

�i�s; s � i � m� 2:

�

ð22Þ

Using (22), the reduction matrix Q is obtained as

Q ¼
Is Is � � � Is

Im�s�1 0sþ1

� �

; ð23Þ

where Ij is the j� j unity matrix and 0sþ1 is a zero

matrix which has m� s� 1 rows and sþ 1 columns.
The graphical representations ofQ in (23) for different

values of s are shown in Fig. 4. In this figure, nonzero
entries of Q are shown with the small squares.

In order to obtain exact expressions for NX and TC ,
first we attempt to obtain the coordinates of C. Using (23)
into Theorem 1, one can write

cj ¼ d0j þ ejmods; 0 � j � m� 1; ð24Þ

where

d0j ¼
dj þ ejþs 0 � j � m� s� 2;

dj m� s� 1 � j � m� 1:

�

ð25Þ

Thus, using (24) and (25), the exact XOR gate count for
an s-ESP based multiplier is NX ¼ m2 � s. Referring to
Fig. 2, note that the gate delays to generate dj; 0 � j �
m� 1; and ei; 0 � i � m� 2, are TA þ log2ðjþ 1Þd eTX;

and TA þ log2ðm� i� 1Þd eTX; respectively. Thus, d0
j
of

(25) can be generated with a maximum delay of
TA þ log2 md eTX . Although, this changes the architecture
for the LCBP multiplier slightly, now each cj; 0 � j �
m� 1; has a maximum delay of TA þ 1þ log2 md eð ÞTX .

It is worth mentioning that the resultant number of
bus lines on IB reduces fromm� 1 to s. This corresponds
to e0 up to es�1 as used in (24). It is noted that ej for
s � j � m� 2 is not considered as a bus line because it is
used only once in the multiplication formulations, i.e.,
(24) and (25). Thus, the total number of lines on the buses
for the multiplier is 2mþ s. tu

Table 1 compares the proposed ESP-based multiplier
with a number of existing multipliers of the same kind. As
seen in the table, our gate count and time delay match the
best ones available in the literature.

5 EXTENSION TO MORE GENERIC POLYNOMIALS

Here, we consider irreducible polynomials of the form
P ðxÞ ¼ xm þ xkt þ � � � þ xk2 þ xk1 þ 1, where 1 � k1 < k2 <

� � � < kt �
m
2
: The Hamming weight of P ðxÞ is tþ 2 and

the degree of the second leading term is less than or equal to
m
2
. All five binary fields recommended by NIST for ECDSA

can be constructed by such irreducible polynomials [15].
In order to apply the general formulation stated in

Section 3 to these polynomials, first we obtain the
corresponding Q matrix. Note that all the rows of the Q

matrix are the PB representations of �mþi; 0 � i � m� 2,
where � is a root of P ðxÞ. Since P ð�Þ ¼ 0, then
�m ¼ 1þ �k1 þ �k2 þ � � � þ �kt . Thus, row 0 of Q has 1s in
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Fig. 4. Graphical representation of the locations of nonzero entries of Q for s-ESP P ðxÞ ¼ xns þ xðn�1Þs þ � � � þ xs þ 1, m ¼ ns. (a) 1 < s < m
2
.

(b) s ¼ 1 (AOP). (c) s ¼ m
2
(trinomial).

TABLE 1
Comparison of Related s-ESP-Based Polynomial Basis Multipliers



these tþ 1 columns: 0, k1; k2; � � � , kt. The consecutive rows

of this matrix can be obtained by using a linear feedback

shift register (LFSR). As a result, the number of 1s in rows 0

to m� kt � 1 is tþ 1. For the purpose of illustration, the

Q matrices for t ¼ 1 and t ¼ 3 (i.e., trinomials and

pentanomials, respectively) are shown in Fig. 5.
As shown above, row i, 0 � i � m� kt � 1 of Q has

tþ 1 1s which correspond to the tþ 1 segmented lines.

The last column of Q contains 1 in rows i ¼ m� kj � 1,

j ¼ t; � � � ; 2; 1. When a row ends with a 1, the following row

originates new tþ 1 lines in columns: 0, k1, k2, up to kt,

provided that there are no previous lines that pass these

columns. If there exists a previous line that passes the

column of kj, 1 � j � t, then the previous line terminates in

column kj � 1 and no new line originates from column kj

due to XORing of two lines. This happens in row m
2

and

column m
2
in Fig. 4c for trinomials when k1 ¼

m
2
. This is also

the case for pentanomials where t ¼ 3 and it is shown in

Fig. 5c and Fig. 5d for k1 ¼ 1 and 1 < k1 �
m
2
, respectively.

We divide the lines of Q into tþ 1 sets (see Fig. 6 for

t ¼ 3) such that Q ¼ Q0 þQ1 þQ2 þ � � � þQt where non-

zero entries of Qi; 0 � i � t start from column ki (assume

that k0 ¼ 0). It is noted that the last nonzero entry of

submatrix Qi; 1 � i � t is in column m� 1, whereas the

one inQ0 is in columnm� 2. Moreover, the number of 1s in

each column of Qi; 0 � i � t is at most tþ 1 if k1 > 1 and t

if k1 ¼ 1.

Theorem 4. The number ofXORgates, time delay, and the number

of lines on the buses of the multiplier based on the irreducible

polynomial P ðxÞ ¼ xm þ xkt þ � � � þ xk2 þ xk1 þ 1, 1 � k1 <

k2 < � � � < kt �
m
2
are NX ¼ ðmþ tÞðm� 1Þ,

TC ¼

TA þ log2ðtþ 1Þd e þ log2ð
t

2

� �

þ 1Þ

� �

þ log2ðm� 1Þd e

� �

TX;

and NL ¼ 3mþ kt � k1 � 2, respectively.

Proof. Let us denote eðiÞ ¼ ½e
ðiÞ
0 ; e

ðiÞ
1 ; � � � ; e

ðiÞ
m�1�

T ¼ QT
i e,

0 � i � t, then, using Theorem 1, we can obtain the

coordinates of C as

c ¼ dþ eð0Þ þ eð1Þ þ eð2Þ þ � � � þ eðtÞ: ð26Þ

First, let us assume that k1 6¼ 1. Using Q0 (see Fig. 6a for

t ¼ 3), the elements of eð0Þ can be written as follows:

e
ð0Þ
j ¼

ej þ ejþm�kt þ � � � þ ejþm�k2

þejþm�k1 ;
if 0 � j � k1 � 2

ej þ ejþm�kt þ � � � þ ejþm�k2 if k1 � 1 � j � k2 � 2

..

. ..
.

ej þ ejþm�kt if kt�1 � 1 � j � kt � 2

ej if kt � 1 � j � m� 2

0 if j ¼ m� 1:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

ð27Þ

For 0 � j � kt � 2 the total number of XOR gates to
form e

ð0Þ
j s, is
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Fig. 5. Graphical representations of the reduction matrix Q for a trinomial (t ¼ 1): (a) k ¼ k1 ¼ 1, (b) 1 < k < m
2

(see Fig. 4c for k1 ¼
m
2
), and a

pentanomial (t ¼ 3): (c) k1 ¼ 1, (d) 1 < k1 < k2 < k3 �
m
2
.

Fig. 6. Graphical representations of submatrices of Q ¼ Q0 þQ1 þQ2 þQ3 for pentanomials P ðxÞ ¼ xm þ xk3 þ xk2 þ xk1 þ 1, where 1 < k1 <

k2 < k3 �
m
2
(see Fig. 5d for Q). (a) Q0, (b) Q1, (c) Q2, (d) Q3.



N1 ¼ tðk1 � 1Þ þ ðt� 1Þðk2 � k1Þ þ � � � þ kt � kt�1

¼
X

t

i¼1

ki � t:

Let T ðe
ð0Þ
j Þ denote the time delay due to the gates

to generate e
ð0Þ
j . As seen in (27), the longest delay

is due to e
ð0Þ
0 ¼ e0 þ em�kt þ � � � þ em�k2 þ em�k1 , i.e.,

T ðe
ð0Þ
j Þ � T ðe

ð0Þ
0 Þ. In order to reduce this delay, we

first add any two terms except c0; e.g.,

em�kj þ em�ki , 1 � i; j � t, i 6¼ j. Then, add these t
2

� 	

terms/signals to c0 using a binary tree of XOR

gates. Since T ðejÞ ¼ TA þ log2ðm� j� 1Þd eTX, then

T ðem�kj þ em�kiÞ � TX þ T ðem�ktÞ

¼ TA þ ð1þ log2ðkt � 1Þd eÞTX

� TA þ log2ðm� 1Þd eTX;

where the last inequality is due to kt �
m
2
. Thus, we have

T ðe
ð0Þ
j Þ �

TA þ log2ð
t
2

� 	

þ 1Þ
� 	


þ log2ðm� 1Þd eÞTX;
if 0 � j � kt � 2

TA þ log2ðm� 1Þd eTX if kt � 1 � j � m� 2:

8

>

<

>

:

ð28Þ

By reusing the terms e
ð0Þ
j s, the coordinates of eðiÞ, for

1 � i � t, can be obtained as

e
ðiÞ
j ¼

0; if 0 � j � ki � 1

e
ð0Þ
j�ki

otherwise:

�

ð29Þ

Equations (29) and (26) result in the following:

cj ¼ dj þ

e
ð0Þ
j if 0 � j � k1 � 1

e
ð0Þ
j þ e

ð1Þ
j if k1 � j � k2 � 1

..

. ..
.

e
ð0Þ
j þ e

ð1Þ
j þ � � � þ e

ðt�1Þ
j if kt�1 � j � kt � 1

e
ð0Þ
j þ e

ð1Þ
j þ � � � þ e

ðtÞ
j if kt � j � m� 2

e
ð1Þ
j þ e

ð2Þ
j þ � � � þ e

ðtÞ
j if j ¼ m� 1:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

ð30Þ

To realize (30) in hardware, one requires

N2 ¼ mþ ðk2 � k1Þ þ 2ðk3 � k2Þ þ � � � þ ðt� 1Þðkt � kt�1Þ

þ tðm� k3 � 1Þ þ t� 1

¼ ðtþ 1Þm�
X

t

i¼1

ki � 1

XORgates. Thus, the total numberofXORgatesneeded for

the multiplier is ðm� 1Þ2 þN1 þN2 ¼ ðmþ tÞðm� 1Þ.

To obtain the time delay of the proposed multiplier,

we assume a binary tree of XOR gates for each

coordinate in (30). For j 62 ½kt;m� 2�, it can be seen from

(30) that TC � log2ðtþ 1Þd eTX þ T ðe
ð0Þ
0 Þ and the proof is

complete by using (28).

Now, we need only obtain the time delay of cjs for

kt � j � m� 2. For j 2 ½kt;m� 2�; , if we form cj ¼

ðdj þ e
ð0Þ
j Þ þ e

ð1Þ
j þ e

ð2Þ
j þ � � � þ e

ðtÞ
j such that dj þ e

ð0Þ
j is

calculated first, then

T ðdj þ e
ð0Þ
j Þ � TA þ ð1þ log2ðm� 1Þd eÞTX

� TA þ log2ð
t

2

� �

þ 1Þ

� �

þ log2ðm� 1Þd e

� �

TX:

ð31Þ

Also, using (29) and (28), one can see T ðe
ðtÞ
j Þ �

TA þ log2ð
t
2

� 	

þ 1Þ
� 	

þ log2ðm� 1Þd e

 �

TX which implies

that

TC � TA þ

�

log2ðtþ 1Þd e þ log2
t

2

� �

þ 1

� �� �

þ log2ðm� 1Þd e

�

TX

and the proof is complete.
In addition to the three buses shown in Fig. 2, now there

will be another bus in the middle of the Q-network for
signals e

ð0Þ
j , 0 � j � kt � 2. Also note that the signal ej,

0 � j � k1 � 1, is used once in (27) and (30). Thus, the total
number of bus lines is 3mþ kt � k1 � 2. tu

Corollary 1. For k1 ¼ 1 and t > 1, the time delay would reduce to

TA þ log2ðtþ 1Þd e þ log2
t

2

� �� �

þ log2ðm� 1Þd e

� �

TX:

For this special case of irreducible polynomials, our

multiplier has the same gate complexities with shorter time

delay compared to the Mastrovito multiplier reported in

[28]. This comparison is shown in Table 2.

6 TRINOMIALS

Let P ðxÞ ¼ xm þ xk þ 1 be an irreducible trinomial generat-

ing GF ð2mÞ. Trinomial P ðxÞ has only three nonzero coeffi-

cients and (for m > 1) no binary irreducible polynomial can

have any fewer nonzero coefficients. Since low Hamming

weight polynomials can potentially reduce the space and

time complexities of a finite field multiplier, irreducible

trinomials have drawn significant attention in the past.

Reference [22] lists an irreducible trinomial for every

degreem (� 10; 000) for which such a polynomial exists.
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TABLE 2
Comparison of Related Polynomial Basis Multipliers for P ðxÞ ¼ xm þ xkt þ � � � þ xk2 þ xk1 þ 1, 1 � k1 < k2 < � � � < kt �

m
2



Now, we derive Q for the trinomial to obtain the

complexities of the LCBP multiplier. The graphical repre-

sentations of the locations of the nonzeros of Q for

irreducible trinomials with k ¼ 1 and 1 < k < m
2

have

already been shown in Fig. 5a and Fig. 5b, respectively.

Similarly, for m
2
< k < m and k ¼ m� 1, Q can be obtained

and their graphical representation of the locations of the

nonzeros is shown in Fig. 7a and Fig. 7b, respectively. Now,

using the representation of Q, we can state the following

theorem.

Theorem 5. The number of XOR gates and the time delay of the

LCBP multiplier based on the trinomial xm þ xk þ 1 are

NX ¼
m2 � m

2
; for k ¼ m

2

m2 � 1; otherwise

�

and

TC ¼

TA þ 2þ log2ðm� 1Þd eð ÞTX; for 1 � k < m
2
;

TA þ 1þ log2 md eð ÞTX; for k ¼ m
2
;

TA þ 1þ m�2
m�k

� 



þ log2 m� 1� k�2
m�k

� 


ðm� kÞ

 �� 	�

TX;
for m

2
< k < m:

8

>

>

>

<

>

>

>

:

Proof. Based on the results obtained in Section 5, one can

obtain the time delay and the number of XOR gates by

substituting t ¼ 1 in Theorem 4, for 1 � k < m
2
. Since the

trinomial with k ¼ m
2
, i.e., P ðxÞ ¼ xm þ x

m
2 þ 1, is an

m
2
-ESP, the complexities of the multiplier based on this

type of trinomial can also be obtained from Theorem 3

with s ¼ m
2
.

Below, we discuss trinomials with k > m
2
.

Case: m
2
< k � m� 1.

Using Fig. 7a and Theorem 5, one can generate the
coordinates of C as

cj ¼ dj þ

e0j for 0 � j � k� 2

ek�1 for j ¼ k� 1

ej þ e0j�k for k � j � 2k� 2

ej þ ej�k for 2k� 1 � j � m� 2

em�k�1 for j ¼ m� 1:

8

>

>

>

>

<

>

>

>

>

:

ð32Þ

where e0j can be obtained recursively from j ¼ k� 2

down to j ¼ 0 as follows:

e0j ¼
ej þ ejþm�k; for k� 2 � j � 2k�m� 1;

ej þ e0jþm�k; for 2k�m� 2 � j � 0:

�

ð33Þ

These require the same number of XOR gates as in the

case of 1 � k < m
2
, which is m2 � 1. Also, the time delay

of the multiplier is determined by

ck ¼ ððdk þ ekÞ þ ðe0 þ ðem�k

þ � � � þ ðeðr�1Þðm�kÞ þ erðm�kÞÞ � � �ÞÞÞ;

where r ¼ m�2
m�k

� 


. Thus, TC ¼ ðrþ 1ÞTX þ T ðeðr�1Þðm�kÞÞ

and, using (15), the total time delay of the multiplier is

TC ¼ TA

þ 1þ
m� 2

m� k

� �

þ log2 m� 1�
k� 2

m� k

� �

ðm� kÞ

� �� �� �

TX:

Note that for, k ¼ m� 1, (33) becomes

e0j ¼

Pm�2
i¼j ei; for 0 � j � m� 2;

e00; for j ¼ m� 1;

�

which requires the same number of XOR gates and the

corresponding delay is TA þmTX . tu

In [25], a trinomial based multiplier for the cases of 1 �

k � m
2

has been proposed. For these values of k, the above

results match those reported in [25]. Table 3 compares the

presented multiplier with other trinomial-based multipliers.

As shown in this table, the proposed multiplier has the

same gate complexities as the Mastrovito multiplier. For

k ¼ 1, the proposed multiplier has a time delay which is

longer by TX than the Mastrovito multiplier. However, for

the other values of k; i.e., 1 < k < m, it has the same or

shorter delay compared to the Mastrovito multiplier.
To reduce the time delay of the Mastrovito multiplier for

m
2
< k < m, a hybrid tree structure is used in [28]. One can

also use a similar technique to the proposed multiplier by

applying a hybrid tree to generate e0j in (33).
If one attempts to apply Theorem 5 to the multiplier in

Fig. 3, theQ-network should be modified by reusing signals

ðe00; e
0
1; e

0
2Þ instead of signals ðe0; e1; e2Þ. The coordinates of

C can be obtained as cj ¼ dj þ e0j; 0 � j � 3, where e00 ¼

e03 ¼ e0 þ e01; e01 ¼ e1 þ e2, e
0
2 ¼ e2.

7 SPECIAL CLASSES OF PENTANOMIALS

A polynomial with five nonzero coefficients, i.e.,

P ðxÞ ¼ xm þ xk3 þ xk2 þ xk1 þ 1, where

1 � k1 < k2 < k3 � m� 1;

is called a pentanomial of degree m. The nonzero constant

term is due to the irreducible property needed to define the

representation of the field. In terms of the values of kis, the

pentanomials can be divided into a number of different

classes. Below we consider two special classes of irreducible

pentanomials as proposed in [28].

7.1 Class 1: k3 �
m
2

For this class of irreducible pentanomial where k3 �
m
2
, one

can apply t ¼ 3 to the complexity results we have presented

in Section 5. This yields the following:
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Fig. 7. Graphical representations of the reduction matrix Q for trinomial

P ðxÞ ¼ xm þ xk þ 1. (a) m
2
< k < m� 1, r ¼ bm�2

m�k
c, (b) k ¼ m� 1 (see

Fig. 5a, Fig. 5b, and Fig. 4c for k ¼ 1, 1 < k < m
2
, and k ¼ m

2
,

respectively).



Corollary 2. The gate counts and time delay of the multiplier for

the pentanomial P ðxÞ ¼ xm þ xk3 þ xk2 þ xk1 þ 1, where

k1 < k2 < k3 �
m
2
, are

NA ¼ m2;

NX ¼ m2 þ 2m� 3;

TC ¼
TA þ 3þ log2ðm� 1Þd eð ÞTX; if k1 ¼ 1

TA þ 4þ log2ðm� 1Þd eð ÞTX; otherwise;

�

and the number of lines on the buses isNL ¼ 3mþ k3 � k1 � 2.

The number of XOR gates can be reduced if we choose a

pentanomial such that k1 ¼ k3 � k2. Toward this, let us

introduce the following set of intermediate terms/signals:

e0j ¼ ejþm�k3 þ ejþm�k2 ; 0 � j � k2 � 2: ð34Þ

Equation (34) can be used to generate e
ð0Þ
j , 0 � j � k2 � 2, by

substituting t ¼ 3 in (27) as follows:

e
ð0Þ
j ¼

ej þ e0j þ ejþm�k1 ; if 0 � j � k1 � 2

ej þ e0j if k1 � 1 � j � k2 � 2

ej þ ejþm�k3 if k2 � 1 � j � k3 � 2

ej if k3 � 1 � j � m� 2

0 if j ¼ m� 1:

8

>

>

>

>

<

>

>

>

>

:

ð35Þ

The total number of XOR gates needed to generate e
ð0Þ
j s (see

(35)) is N1 ¼ k1 þ k2 þ k3 � 3 in which (34) contributes

k2 � 1. Also, the maximum delay due to gates in (35) is

T ðe
ð0Þ
j Þ �

TA þ 2þ log2ðm� 1Þd eð ÞTX if 0 � j � k1 � 2

TA þ 1þ log2ðm� 1Þd eð ÞTX if k1 � 1 � j � k3 � 2

TA þ log2ðm� 1Þd eTX if k3 � 1 � j � m� 1:

8

>

<

>

:

ð36Þ

Lemma 1. With symbols defined as above, one has

e
ð0Þ
j þ e

ð1Þ
j ¼ e0jþk2�m; for m� k2 � j � m� 2;

e
ð2Þ
j þ e

ð3Þ
j ¼ e

ð0Þ
j�k2

þ e
ð1Þ
j�k2

; for k3 � j � m� 1:

Proof. Since k3 �
m
2
, one can easily verify that, for all js,

k3 � 1 � j� k1 (and, hence, k3 � 1 � j). Thus, using (35)
and (29), one can simply obtain

e
ð0Þ
j þ e

ð1Þ
j ¼ e

ð0Þ
j þ e

ð0Þ
j�k1

¼ ej þ ej�k1

¼ e0jþk2�m; for m� k2 � j � m� 2:

Similarly, the second equation can be proven by using
(35), (29), and k2 ¼ k3 � k1 as follows:

e
ð2Þ
j þ e

ð3Þ
j ¼ e

ð0Þ
j�k2

þ e
ð0Þ
j�k3

¼ e
ð0Þ
j�k2

þ e
ð1Þ
jþk1�k3

¼ e
ð0Þ
j�k2

þ e
ð1Þ
j�k2

; for k3 � j � m� 1:

ut

Let us represent e
ð01Þ
j ; 0 � j � m� 1, as the elements of

ðQ0 þQ1Þ
T
e, where Q0 and Q1 are shown in Fig. 6a and

Fig. 6b, respectively. Then, substituting t ¼ 3 in the general
case given in (30) and using the above lemma, we can obtain
the coordinates of C ¼ AB as follows:

cj ¼ dj þ e
ð01Þ
j þ e

ð01Þ
j�k2

; 0 � j � m� 1; ð37Þ

where e
ð01Þ
j�k2

¼ 0 for j < k2, and

e
ð01Þ
j ¼

e
ð0Þ
j if 0 � j � k1 � 1

e
ð0Þ
j þ e

ð1Þ
j if k1 � j � m� k2 � 1

e0jþk2�m if m� k2 � j � m� 2

e
ð1Þ
j if j ¼ m� 1:

8

>

>

>

>

<

>

>

>

>

:

ð38Þ

As seen in (38), one has to realize e
ð0Þ
j þ e

ð1Þ
j for all

k1 � j � m� k2 � 1, which requires m� k2 � k1 XOR gates.
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Once e
ð01Þ
j ’s are obtained, then (37) requires 2m� k2 XOR

gates. Thus, the total number of XOR gates needed for the

multiplier is

ðm� 1Þ2 þN1 þm� k2 � k1 þ 2m� k2 ¼ m2 þmþ k1 � 2:

Due to the reuse of terms e0j, 0 � j � k2 � 1, and e
ð0Þ
j þ e

ð1Þ
j ,

k1 � j � m� k2 � 1, additional lines needed on the bus in

the Q-network are ðk2 � 1Þ and ðm� k1 � k2Þ, respectively.

Thus, the total number of lines on the buses is increased to

4mþ k2 � k1 � 3.
To obtain the time delay of the proposed multiplier, we

use Table 4 which shows the maximum delay of the signals

in (37) for the given ranges of j in each row. In this table,

the parameter tðiÞ, 0 � i � 4, represents the time delay of

tðiÞ ¼ TA þ iþ log2ðm� 1Þd eð ÞTX and the numbers inside

square brackets are for k1 ¼ 1. Also, x determines whether

e
ð01Þ
j or e

ð01Þ
j�k2

is to be added to dj first to obtain cj. For

example, using the fifth row of this table, ck3 can be

obtained as ck3 ¼ ðdk3 þ e
ð01Þ
k3

Þ þ e
ð01Þ
k1

. In each row of this

table, the delays are obtained for the first digit of the given

range. This is because, as j increases, the time delays of the

used signals in each row of this table decreases. As seen in

this table, the maximum delay of the multiplier is

TA þ 4þ log2ðm� 1Þd eð ÞTX. For k1 ¼ 1; only one signal,

i.e., ck3 , has the delay of TA þ 4þ log2ðm� 1Þd eð ÞTX. One

can reduce this delay to TA þ 3þ log2ðm� 1Þd eð ÞTX if only

ck3 is realized as ck3 ¼ ððdk3 þ e
ð0Þ
j Þ þ e

ð1Þ
j Þ þ e

ð01Þ
k3�k2

by using

one extra XOR gate.
Based on the above results, we can state the following:

Theorem 6. The gate counts and time delay of the multiplier

based on the pentanomial P ðxÞ ¼ xm þ xk3 þ xk2 þ xk1 þ 1,

where k1 < k2 < k3 �
m
2
and k3 � k2 ¼ k1 are

NA ¼ m2;

NX ¼
m2 þm if k1 ¼ 1

m2 þmþ k1 � 2 otherwise;

�

TC ¼
TA þ 3þ log2ðm� 1Þd eð ÞTX; if k1 ¼ 1

TA þ 4þ log2ðm� 1Þd eð ÞTX; otherwise;

�

and the number of lines on the buses isNL ¼ 4mþ k2 � k1 � 3.

Remark 3. To verify that class 1 irreducible pentanomials exist,
we have used a Maple2 program form 2 ½160; 600� and have
found that at least one such irreducible pentanomial exists for
everym in the range of 160 to 600. This is of interest to elliptic
curve cryptosystem designers. In order to minimize the
number of XOR gates of the multiplier, we have obtained
irreducible pentanomials such that k1 is minimum. These are
shown in Tables 5 and 6 in [18]. As can be seen from these
tables, k is less than or equal to 6 for any m in the above
mentioned range.

It is noted that the pentanomial presented in [20] is the
special case of k1 ¼ 1.

7.2 Class 2: m� k3 ¼ k3 � k2 ¼ k2 � k1 ¼ s,
m�1
8

� s � m�1
3

We refer to polynomials P ðxÞ ¼ xm þ xk3 þ xk2 þ xk1 þ 1,
where 1 � k1 < k2 < k3 � m� 1 and m� k3 ¼ k3 � k2 ¼
k2 � k1 ¼ s as class 2 type pentanomials. Similar to the
other special irreducible polynomials, here we first obtain
the corresponding reduction matrix. Then, the coordinates
and complexities of the multiplier can be obtained. Based
on the values of s (or k1 ¼ m� 3s), we can divide the
reduction matrix into different forms. Here, only three of
them are presented. These Q matrices for m�1

8
� s � m�1

3
(or

1 � k1 � 5sþ 1) are shown in Fig. 8. Based on this figure,
we can state the following theorem.
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TABLE 4
Maximum Time Delays of the Signals, where tðiÞ, 0 � i � 4, Represents the Time Delay of TA þ ðiþ dlog2ðm� 1ÞeÞTX, Numbers

inside Square Brackets Are for k1 ¼ 1, and x to Indicate whether e
ð01Þ
j or e

ð01Þ
j�k2

Is to Be Added First to dj

Fig. 8. Graphical representations of the reduction matrix Q for class 2 pentanomials P ðxÞ � xm þ xk3 þ xk2 þ xk1 þ 1, where

m� k3 ¼ k3 � k2 ¼ k2 � k1 ¼ s. (a) m�1
4

� s � m�1
3

or 1 � k1 � sþ 1 (see Fig. 4a for k1 ¼ s), (b) m�1
5

� s < m�1
4

or sþ 1 < k1 � 2sþ 1, (c) m�1
8

�

s < m�1
5

or 2sþ 1 < k1 � 5sþ 1.



Theorem 7. The gate counts and the time delay of the multiplier

for the pentanomial P ðxÞ ¼ xm þ xm�s þ xm�2s þ xm�3s þ 1,

for m�1
8

� s � m�1
3

are NA ¼ m2;

NX ¼

m2 þm� s� 1; if m�1
4

� s � m�1
3

m2 þ 2m� 5s� 2 if m�1
5

� s < m�1
4

m2 þm� 2 if m�1
8

� s < m�1
5

8

>

<

>

:

TC ¼
TA þ 3þ log2ðm� 1Þd eð ÞTX; if m�1

5
� s � m�1

3

TA þ 4þ log2ðm� 1Þd eð ÞTX; otherwise;

�

and

NL ¼
4m� 2; if m�1

4
� s � m�1

3

5m� 4s� 3 if m�1
5

� s < m�1
4

5k3 � 3 if m�1
8

� s < m�1
5

:

8

<

:

Proof. Case I: 1 � k1 � sþ 1, m�1
4

� s � m�1
3

.
Using (9) and Fig. 8a, one can compute the coordi-

nates of C as

cj ¼

dj þ

ej þ ejþs if 0 � j � k1 � 1

ej�k1 þ ej þ ej�k1þs þ ejþs if k1 � j � k2 � 1

ej�k2 þ ej þ ej�k1þs þ ejþs if k2 � j � k3 � 2

ej�k2 þ ej þ ej�k1þs if j ¼ k3 � 1

ej�k3 þ ej þ ej�k1þs if k3 � j � k1 þ k3 � 2

ej�k3 þ ej if k1 þ k3 � 1 � j � m� 2

ej�k3 if j ¼ m� 1:

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

ð39Þ

In order to reduce the number of XOR gates needed
for implementing (39), one can precompute

e0j ¼ ej þ ejþs; for 0 � j � k2 � 1;

e00j�k2
¼ ej�k2 þ ejþs; for k2 � j < k3 � 1:

The precomputation requires a total of k3 � 1

XOR gates with a maximum time delay of

TA þ ð1þ log2ðm� 1Þd eÞTX. Then, by reusing the first

s terms of e0js and al l s ignals of e00j�k2
s , i .e . ,

e00; e
0
1; � � � ; e

0
s�1, e

00
0 ; e

00
1 ; � � � ; e

00
k3�2, one can simplify (39) as

cj ¼ dj þ

e0j if 0 � j � k1 � 1

e0j þ e0j�k1
if k1 � j � k2 � 1

e00j�k2
þ ej þ ej�k1þs if k2 � j � k3 � 2

ej�k2 þ ej þ ej�k1þs if j ¼ k3 � 1

e00j�k3
þ ej�k1þs if k3 � j � k1 þ k3 � 2

e00j�k3
if k1 þ k3 � 1 � j � m� 2

ej�k3 if j ¼ m� 1:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð40Þ

Equation (40) requires mþ ðk2 � k1Þ þ 2ðk3 � k2 � 1Þ þ

2þ ðk1 � 1Þ ¼ mþ 2k3 � k2 � 1 ¼ 2m� 1 XOR ga t e s

with a time delay of 2TX: Thus, the total number of

XOR gates required for the whole multiplier is

ðm� 1Þ2 þ k3 � 1þ 2m� 1 ¼ m2 þ k3 � 1 ¼ m2 þm� s� 1

with a time delay of TC ¼ TA þ ð3þ log2ðm� 1Þd eÞTX.

The number of lines on the buses has now increased

by the number of reused e0js and e00j�k2
s, i.e.,

3m� 1þ sþ k3 � 1 ¼ 4m� 2.
It is noted that, for the special case of k1 ¼ 1, (40)

should be modified by simply removing the fifth line
with condition k3 � j � k1 þ k3 � 2. This does not affect
the complexities of the whole multiplier structure.

Case II: sþ 1 < k1 � 2sþ 1, m�1
5

� s < m�1
4

.
By comparing Fig. 8b with Fig. 8a, one can see that the

Q matrix in this case has four more small lines at the
bottom of Fig. 8b. This results in more terms in the
representations of the coordinates of C. In order to be
consistent with the previous case and to use (40), one can
introduce the following terms:

e0j ¼
ej þ ejþ4s þ ejþs for 0 � j � m� 2� 4s

ej þ ejþs for m� 1� 4s � j � k2 � 1;

�

ð41Þ

and

e00j�k2
¼

ej�k2 þ ej�k2þ4s þ ejþs for k2 � j � k2 þm� 2� 4s

ej�k2 þ ejþs for k2 þm� 1� 4s � j < k3 � 1:

�

ð42Þ

These new terms cause Case II to require m� 1� 4s

more XOR gates than Case I. Note that the following

terms: ej þ ejþ4s, 0 � j � m� 2� 4s, are common be-

tween (41) and (42). Thus, using (40) with new e0js and

e00j�k2
s, i.e., (41) and (42), we have a total number of XOR

gates as m2 þ k3 � 1þm� 1� 4s ¼ m2 þ 2m� 5s� 2

and the total number of lines on the buses is

4m� 2þm� 1� 4s ¼ 5m� 4s� 3. The maximum de-

lays in (41) and (42) are due to e00 and e000 , respectively,

and are equal to TA þ ð2þ log2ðm� 1Þd eÞTX each. Com-

pared to Case I, this delay is increased by TX, however,

for an implementation similar to Case I, one can obtain

TC ¼ TA þ ð3þ log2ðm� 1Þd eÞTX .
Case III: 2sþ 1 < k1 � 5sþ 1 m�1

8
� s < m�1

5
.

Let us introduce

e0j ¼ ej þ ejþ4s; for 0 � j � m� 2� 4s;

which requires m� 1� 4s XOR gates and a delay of

TA þ ð1þ log2ðm� 1Þd eÞTX . Let Q0 be a submatrix which

contains all four lines starting from column 0 in Fig. 8c.

Then, the coordinates of eð0Þ ¼ QT
0 e can be obtained as

e
ð0Þ
j ¼

e0j þ e0jþs if 0 � j � m� 2� 5s

e0j þ ejþs if m� 1� 5s � j � m� 2� 4s

ej þ ejþs if m� 1� 4s � j � k3 � 2

ej if k3 � 1 � j � m� 2

0 if j ¼ m� 1;

8

>

>

>

>

<

>

>

>

>

:

ð43Þ

which requires k3 � 1 XOR gates and a maximum time

delay of TA þ ð2þ log2ðm� 1Þd eÞTX. Thus, using Fig. 8c

and (9), the coordinates of C can be obtained as
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cj ¼

dj þ

e
ð0Þ
j if 0 � j � k1 � 1

e
ð0Þ
j þ e

ð0Þ
j�k1

if k1 � j � k2 � 1

e
ð0Þ
j þ e0j�k2

þ e0jþs�k1
if k2 � j � k3 � 1

e
ð0Þ
j þ e0j�k3

þ e0jþs�k1
if k3 � j � k1 þm� 2� 5s

e
ð0Þ
j þ e0j�k3

þ ejþs�k1 others:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð44Þ

To implement (44), one requires 3m� k1 � k2 � 1 XOR

gates with the time delay of 2TX. Thus, the total number

of XOR gates and time delay of the multiplier are

ðm� 1Þ2 þ ðm� 1� 4sÞ þ ðk3 � 1Þ þ ð3m� k1 � k2 � 1Þ

¼ m2 þm� 2

and TA þ ð4þ log2ðm� 1Þd eÞTX , respectively. Also, simi-
lar to the previous cases, one can obtain the number of
lines on the buses as 5k3 � 3. tu

A comparison of our newly obtained gate counts and
delays as presented above with those of existing ones for
pentanomial based multiplier is shown in Table 5. As seen
in this table, for class 1 pentanomials with k3 � k2 ¼ k1, the
proposed multiplier is faster than [28] and has fewer XOR
gates. This proposed special case of class 1 covers the case
of pentanomials reported in [20], where k1 ¼ 1: Compared
to the multiplier proposed in [20], the proposed multiplier
for the special case of k1 ¼ k3 � k2 ¼ 1 has 2k2 fewer XOR
gates and matches the ones proposed in [20] which uses
k1 ¼ 1 and k2 ¼ 2: Also, for class 2 pentanomials, our
multiplier is either faster than or has the same gate delay
and has at least 1:33m� 7 fewer XOR gates than the
multiplier reported in [28].

Remark 4. Using Maple2, we have found that there exist

147values ofm, as shown inTable 6,wherem 2 ½160; 600� such
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TABLE 5
Comparison of Related Pentanomial-Based Multipliers

TABLE 6
Values m 2 ½160; 600� and s such that Polynomial P ðxÞ ¼ xm þ xm�s þ xm�2s þ xm�3s þ 1, 1 � s � m�1

3
Is Irreducible



that polynomial P ðxÞ ¼ xm þ xm�s þ xm�2s þ xm�3s þ 1,

1 � s � m�1
3

is irreducible. Among them, only 23 have

1 � s < m�1
8

.

8 CONCLUDING REMARKS

In this paper, new bit parallel polynomial basis multipliers

over GF ð2mÞ have been proposed. Time and space complex-

ities of such a multiplier heavily depend on the field

defining irreducible polynomials. Based on a number of

important classes of irreducible polynomials, we have given

an exact complexity analysis of the multiplier. In general,

our results match or outperform the previously known best

results in similar classes. We have also presented exact

formulations for the coordinates of the multiplier output.

Such formulations are expected to be useful to efficiently

implement the multiplier using hardware description

languages, such as VHDL and Verilog, without having

much knowledge of finite field arithmetic.
Moreover compared to the well-known Mastrovito

multiplier, the architectures discussed here have fewer

number of lines on the buses. This is shown in Table 7.

Fewer number of lines on the buses can be advantageous

for VLSI implementation, especially for cryptographic

applications where m is usually very large.
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