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Secure multimedia communication presents new challenges that are difficult to handle using by currently adopted encryption schemes

(RSA—Rivest-Shamir-Adelman, AES—Advanced Encryption Standard, and IDEA—International Data Encryption algorithm) [28]. It re-

quires the processing of huge amounts of information at speeds ranging from Kilobits/sec (Kbs) to the order of Megabits/sec (Mbs). With

this in mind, we propose a secure low-complexity encryption system based on a 4-array of independently iterated chaotic logistic maps with

a new Spatiotemporal feedback scheme as a diffusion process. The robustness of the system to opponents’ attack is enhanced by using a

periodic three-level pseudo-random perturbation scheme, one at the system-key level and two at the map array level. An analysis of the

proposed scheme regarding its vulnerability to attacks, statistical properties and implementation performance is presented. To the best of our

knowledge we provide a simple and secure encryption system for real-time multimedia communications with the fastest software execution

time reported in the literature.
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La seguridad en sistemas de comunicación de multimedia (texto, audio, imagen y video) representa un reto difı́cil de alcanzar para los

actuales estándares de cifrado (RSA-Rivest-Shamir-Adelman, AES-Advanced Encryption Standard e IDEA-International Data Encryption

algorithm) [28]. Se requiere el procesamiento de grandes cantidades de información a velocidades que fluctúan entre los Kilobits/seg (Kbs)

hasta los Megabits/seg (Mbs). Enfocados en este problema se propone un sistema de cifrado seguro y eficiente basado en un arreglo de

mapas logı́sticos independientemente iterados junto con un sistema de retroalimentación espacio-temporal usado como proceso de difusión

de la información. Adicionalmente se hace uso de tres niveles de perturbación para modificar el estado actual del sistema e incrementar ası́

su robustez contra ataques de oponentes; una perturbación es a nivel de la llave del sistema y dos adicionales a nivel de los mapas caóticos.

El análisis de resultados muestra excelentes propiedades estadı́sticas del sistema propuesto, sensibilidad a las condiciones iniciales y la más

alta velocidad de ejecución reportada en la literatura para llevar a cabo comunicaciones de multimedia en tiempo real.

Descriptores: Encriptación caótica discreta; cifradores de bloque; encriptación simétrica.

PACS: 05.45.Gg/Pq/Ac

1. Introduction

Discrete Chaotic Systems (DCSs) have many of the good

properties required in cryptography; the most prominent are

sensitivity to parameters, sensitivity to initial conditions and

unpredictable trajectories [1,14,21]. The first two properties

are related to diffusion, and the last one to confusion in the

cryptographic nomenclature. Confusion is intended to make

the relationship between ciphertext and plaintext statistically

independent, while diffusion is intended to spread out the in-

fluence of a single plaintext digit over many ciphertext digits

to hide the statistical structure of the plaintext [16]. These

properties have been the basis to develop secure analog and

digital communication systems.

A discrete chaotic encryption system consists of a dig-

ital generator of chaos (nonlinear dynamic map), which

takes an input message known as plaintext and produces

an independent masked output message known as cipher-

text. General purpose (data or compression independent)

chaotic encryption schemes, which include the great major-

ity in the literature, iterate a single, one-dimensional chaotic

map [1,3,12,19,21,26,27]. Higher dimensional maps (2-D

and 3-D) have been proposed for image data confusion and

diffusion [6,8,10,11,13,27]. Confusion is performed by a

chaotic permutation of pixel coordinates and diffusion by a

(linear or non-linear) transformation on the gray level. Few

proposals based on chaos theory have emerged for voice and

video encryption [18,20,22,24] with limited speed process-

ing, to fulfill current multimedia demands.

DCSs have a relevant drawback not found in their con-

tinuous counterpart; the number of iterations for a chaotic

state to repeat itself (known as cycling length) is finite. This

means that DCSs are short-cycled, with their largest the-

oretical cycle length CL = 2L states, where L is the bit

precision of the machine [4]. In practice, CL ≪ 2L for

almost every chaotic trajectory with a maximal length of

O(2εL), 0<ε<1[17]. In spite of this, sensitivity to param-

eter and initial conditions is maintained [23]. Current re-

search in DCSs has focused on increasing the cycle length

using Perturbance-based schemes, which transform stable

chaotic cycles into non-stable ones. Tao and Ruli, 1998 [23],

proved that periodic perturbations increase the cycle length

of chaotic systems by σ∆(2L − 1) ≫ 2L , where σ is a

positive integer and ∆ is the perturbation period. They ob-

tained a lower bound of ∆(2L − 1) ≫ 2L, which consider-

ably improves the maximum cycle length with respect to the
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unperturbed case [O(2εL)]. Ideally, perturbation magnitudes

should be obtained by a uniform pseudo-random number gen-

erator to improve the dynamical properties of digital chaotic

systems [4,5,23].

In this work, we propose a novel symmetric encryption

system based on a 4-array of independently iterated chaotic

maps, a three-level periodic perturbation, and a two-mode

feedback called spatiotemporal feedback. The perturbation

scheme changes the current system condition by modifying

the system-key (third-level perturbation) and the trajectory of

the chaotic maps (first and second level perturbations) to in-

crease the system’s security against statistical and differential

attacks [15]. The system key is periodically modified using a

pseudo-random number generator called RANROT [9], while

every map trajectory is modified using the system’s output it-

self (ciphertext) rather than a predefined perturbation equa-

tion as currently used in the literature [4,5,23]. Since chaotic

maps are iterated independently, ciphertext inter-dependency

is created by adding spatiotemporal feedback to current ci-

phertext value. Spatiotemporal feedback takes into account

the evolution of a single chaotic map and the cross-evolution

of all maps, making the system extremely sensitive to plain-

text and system-key. Our final goal is to develop a simple,

secure, and compression-independent encryption system for

current real-time multimedia demands.

The rest of the paper is organized as follows. In the next

section we discuss the properties of the chosen chaotic map

and describe the proposed encryption/decryption system. In

Sec. 3 experimental results and security of the proposed sys-

tems are analyzed. Conclusions are presented in Sec. 4.

2. Chaotic encryption scheme

2.1. Logistic map

An important step in discrete chaotic encryption is the selec-

tion of the map. For its mathematical simplicity and good

chaotic properties, our selection is the well-known logistic

map represented by:

Xn = λXn−1(1 − Xn−1), λ ∈ [1, 4], X ∈ [0, 1], (1)

FIGURE 1. Bifurcation diagram for the logistic map.

with a corresponding bifurcation diagram depicted in Fig. 1.

As λ increases from 1 to 4, the map experiences a period

doubling to chaos [25]. In particular for λ ≥ 3.5699 (known

as an accumulation point), it shows chaotic behavior; how-

ever, there are many periodic windows (with all kinds of peri-

ods) that appear abruptly. A very well-known and prominent

period-3 window appears atλ = 1 +
√

8 = 3.8284. Short

period windows of the logistic map should be avoided during

the encryption process, because they reveal statistical infor-

mation useful for attackers to break into the system. This

problem can be alleviated by perturbing the cycling chaotic

signal with period T every ∆ iterations for ∆ ≤ T [23].

The perturbation will drive the signal away from its cycle af-

ter i number of iterations, where i depends directly on the

perturbation magnitude [21]. Therefore, the new period in

the perturbed cycle is nowσ∆T , where in the average case

T =
√

2L [7].

2.2. Proposed encryption scheme

We propose a symmetric block-based cipher described by the

following components: 1) chaotic system-key generation; 2)

an array of chaotic logistic maps with spatiotemporal feed-

back; and 3) a three-level perturbation process. Each compo-

nent works as follows.

1. System-key Generation

An initial seed is first created for the generation of a

B bits (≥ 128) system-key (K) using RANROT [9].

As part of the encryption system’s security, K is con-

stantly modified using both fixed and forced updates.

Fixed-key update is part of the three-level perturbation

scheme in which K is replaced periodically after a ran-

dom number of iterations using RANROT. Forced-key

update on the other hand is used as a resynchroniza-

tion process between cipher and decipher in the case

of data errors during transmission (or when security

is compromised). When errors occur, decipher cannot

continue doing its job (due to dependencies between

current and previous ciphertexts), and issues a resyn-

chronization signal to the cipher to initialize the sys-

tem with a new K. The resynchronization process is

allowed at any time of the encryption/decryption pro-

cess.

2. Encryption System

Once K is generated, it is divided into 8 equal parts

(Fig. 2) in order to initialize the maps’ variables and

parameters of the 4-array logistic map as follows:

Xi,0 = K(2i − 1), λi = 3.73364

+ [K(2i)/2B/8 + K(2i)/10h8 + (a ⊕ b)/2B/16]/10,

i ∈ {1, 2, 3, 4, } (2)

where Xi,0 and λi are theith map variable

initial condition and parameter, respectively,
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with 0.2 ≤ Xi,0 ≤ 0.8 (except Xi,0 ≈ 0.5) and

3.73364 ≤ λi ≤ 3.9987, h8 is the number of digits

in the largest decimal number represented by B/8 bits

(K(2i)/10h8 = 0.(2B/8)), a⊕ b term is the exclusive-

OR (XOR) of the most and least significant bits of

K(2i) respectively having both equal size bit repre-

sentation of B/16. Xi,0 and K are de-correlated by

iteratingXi,0, 1 ≤ i ≤ 4 an RT random number of

times over all maps:

For i ∈ {1, 2,3, 4}

γ = Xi,0

repeat RT times

γ = γ.λ1.(1 − γ)

γ = γ.λ2.(1 − γ)

γ = γ.λ3.(1 − γ)

γ = γ.λ4.(1 − γ)

end − repeat

Xi,0 = γ

end − for (3)

Even a one-bit change in K will generate a completely

different map orbit, which in turn generates different

ciphertexts (note that Xi,0 is influenced by all system

maps). RT loop does not affect the system perfor-

mance, since it is executed when the cryptosystem is

restarted or after the fixed-key update.

Once Xi,j and λivalues have been obtained, the

4 − array of logistic maps can be written as:

Xi,j = λi.Xi,j−1.[1 − Xi,j−1],

i ∈ {1, 2, 3, 4}, j ∈ {1, 2, 3, ...},

X ∈ [0, 1], λ ∈ (3.7, 4] (4)

where i andj represent the map and state indexes re-

spectively. For a fixed state j, four map variables

(Xi,j , i ∈ {1, 2, 3, 4}) are obtained to encrypt their

corresponding plaintext of sizeB/4 using the follow-

ing equation:

Ci,k = ([Pk + X ′

i,k] mod 2B/4) ⊕ X ′

i,k

⊕ ([X ′

i+1,k + X ′

i+2,k] mod 2B/4)

⊕ ([Ci−1,k + Ci,k−1] mod 2B/4),

i ∈ {1, 2, 3, 4}, k = (j + i − 1), (5)

where k is the cipher iteration index (k = 4j at the

end of state j), X ′ is the corresponding integer repre-

sentation of X using B/4 bits, Pk is the kth plaintext

input, Ci−1,k is the previous cyphertext output (i − 1)

of the current iteration (kth), and Ci,k−1 is the previ-

ous cyphertext output of the same ith map, but from

the k − 1 iteration. A total of B bits (the size of the

system-key) are encrypted per state iteration (B/4 en-

crypted bits per map). Ci−1,k and Ci,k−1 represent the

temporal and spatial feedback respectively. The initial

spatial feedback C0,k takes in the last ciphertext output

of the previous iteration (C4,k−1) to spread the system

changes on to future ciphertexts and all four logistic

map variables (see next subsection). To increase the

encryption system’s security, ciphertext output Ci,k is

masked using all four map variables:

Cp
i,k = Ci,k + X ′

T ,

X ′

T = X ′

1,k ⊕ X ′

2,k ⊕ X ′

3,k ⊕ X ′

4,k (6)

Therefore, decipher cannot use Cp
i,kdirectly to find its

corresponding plaintext, it needs to knowX ′

T .

3. Three-Level Perturbation

In order to increase the cycle length of the logistic

maps and hence the system’s security, a three-level pe-

riodic perturbation scheme is proposed. The first two

perturbation levels are related to the system variables

and the third one is related to the system-key. At the

first perturbation level, the trajectory of every map is

slightly modified to increase its cycle length [5,23]; at

the second perturbation level, the current system vari-

able is randomly changed, creating a totally new tra-

jectory for the system; and at the third perturbation

level, the system-key value is renewed using RANROT.

Third-level perturbation represents a reset operation,

since the entire encryption/decryption system param-

eters are completely modified (system-key, map’ vari-

able and parameter).

The first-level perturbation is expressed as:

Xp
i,j = Xi,j +

1.1 + C4,j(i)

10h16

i ∈ {1, 2, 3, 4} (7)

where C4,j(i) is the ith element of the spatial feed-

back C4,j at the current state j (Fig. 3). We post-

process Xp
i,j so that its first digit after the dec-

imal point stays the same as inXi,j ; therefore,

abs(Xp
i,j −Xi,j) < 10−1. The reason for using C4,j to

perturb the encryption system can be seen by consider-

ing a differential attack, where the attacker can choose

a pair of plaintexts (with a predefined distance) and get

their corresponding ciphertext outputs. If the cipher

is not robust, the attacker may find a relationship be-

tween plaintext and ciphertext and consequently find

the system-key (for more information on differential

attack see Ref. 14). To prevent this from happening

in our proposed system, every single plaintext change

is exacerbated by disturbing not only future ciphertext

outputs through spatiotemporal feedback, but also the

Rev. Mex. Fı́s. 53 (1) (2007) 58–65
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maps’ variables through the first-level perturbation [Eq. (7)]. The combined effects (feedback and perturbation) generate

totally different trajectories for any pair of plaintexts when iterated by the system. Another reason for using C4,j is

because of its uniform distribution (as discussed in Sec. 3), a basic requirement for perturbation schemes [23]. The

second-level perturbation replaces each map variable by a new value occurring as a result of cross-iterating the map

variable through all maps [similar process as in Eq.(3)]. For theith map in state j, its new system variable is obtained by:

For i ∈{1, 2, 3, 4}

γ = Xi,j

For k ∈ {i, [i mod 4] + 1, [(i + 1) mod 4] + 1, [(i + 2) mod 4] + 1}

γ = γ.λk.(1 − γ)

end−for

XP
i,j = γ

end − for (8)

That is, new system variables are influenced by all

maps. The third level perturbation replaces cur-

rent system-key using RANROT every random num-

ber of iterations. Every time the system-key is

updated, the new key is sent to decipher in or-

der to update system maps variables and parame-

ters. The cycle of the perturbations represented by

PTi, 1 ≤ i ≤ 3,can be randomly selected to increase

the system-key space in case of a brute force attack (the

opponent tries every possible system-key combination

until the right one is found). We define the perturba-

tion cycles as follows: PT1 = [(a random number)

modulus 10] + 30, PT2=n1 .PT1 + PT1/2 and

PT3 = n2 .PT2 + PT1/4 for n1 and n2 positive in-

tegers greater than one. The simpler it is the more

frequent the perturbation. The value of PT1 is related

to the sensitivity of the logistic map to a magnitude

change of 1/2B/8 in the initial condition. For B = 128
bits, the minimum magnitude change of two system

variables is ∼10−5, which requires about 30 map iter-

ations for their trajectories to diverge chaotically [21].

This result is important for the cipher in order to pro-

duce different trajectories when input values differ in

the least significant bits. Since the second-level per-

turbation is more severe than the first-level (the sys-

tem variable is completely replaced, allowing the sys-

tem to find its way out of short cycles immediately),

we defined PT2 to be a multiple of PT1 plus a de-

synchronization term to avoid the application of PT1

and PT2 at the same time. The same scheme applies to

third level perturbation (system-key), where PT3can be

any number times PT2 plus a de-synchronization term

(PT1/4).

2.3. Decryption scheme

The corresponding decryption system resembles to a certain

extent the encryption system except for Eqs. (6) and (5),

FIGURE 2. System-key (K) partition (B/8) for the creation of map

variables (Xi,0) and corresponding parameters (λi).

FIGURE 3. Ciphertext of the fourth map at state j (C4j) used for

perturbing the array of logistic maps. C4j(i) size is B/16 bits.

where the decipher solves for Ci,k and Pk respectively. For

successful deciphering, the cipher creates an initial seed and

sends it to the decipher (encrypted using the Advanced En-

cryption Standard—AES for example) in order for both sys-

tems to recreate independently the same system-key, map’

variables and parameters, RT, and perturbation values along

the entire encryption/decryption process. The seed can be

either a predefined value (password, keyword, etc) or cal-

culated on the fly by the cipher (by reading the computer

clock, communication identifier, etc.). The cipher computes

the ciphertext corresponding to the current plaintext input

CP
i,k=F (Pk) [see Eqs. (5) and (6)], and the deci-

pher upon receiving CP
i,k performs the inverse operation

PK = F−1(CP
i,k) represented by:

Cl,k = CP
l,k − X ′

T ;

Rev. Mex. Fı́s. 53 (1) (2007) 58–65



62 R. HASIMOTO-BELTRÁN

FIGURE 4. Pseudocode of the encryption/decryption system.
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TABLE I. File type and size used in the encryption process.

File Type Size (Kbytes)

Text 1.07

Audio (.wav) 91.8

Image (lenna) 256

Movie (pres-clinton-final-days.mov) 16281.6

FIGURE 5. Histogram of plaintext (left column) and corresponding

ciphertext for two different system-keys (center and right columns).

Plaintext corresponds to data shown in Table I: (a) text file, (b) au-

dio file, (c) image file, and (d) movie file.

Pk = [Cl,k ⊕ X′i,k ⊕ ([Ci−1,k + Ci,k−1] mod 2B/4)

⊕([X ′

i,k+1+Xi,k+2] mod 2B/4)+2B/4−X ′

i,k] mod 2B/4,

i ∈ {1, 2, 3, 4}, k = (j + i − 1) (9)

Figure 4 shows the pseudocode of both cipher and deci-

pher systems.

3. Security analysis and experimental results

Our proposed scheme is flexible regarding the system-key

size and number of chaotic maps used for the encryption pro-

cess; however, there must be some congruency between their

corresponding bit sizes. In general, B (size of K) can be a

multiple of m bits (Bm) form ∈ {8, 16, 32}, and the number

of chaotic maps can be at least Bm/m (one map perm bits

of K) and at the most Bm/8. A recommendation is not to

use more than 32 bits of K for the generation of Xi,0 andλi,

i ∈ {1, 2, 3, . . .} (16 bits for each value), since a change in

the least significant bit of K may be imperceptible (unless

1st and 2nd level perturbation frequencies are increased).

Our proposed scheme has been applied to different data

files (see Table I) with different statistical properties (see

original histograms in Fig. 5). For the experiment we use

the following setting: B32 =128 bits (creating four logistic

maps), initial spatiotemporal feedback is selected randomly

using RANROT, RT = 20, PT1 = 35 iterations, PT2 = n1

PT1, and PT3= n2PT2, for n1 = n2 = 5 (these two variables

could have also been computed randomly to increase system

space search). Recall that the actual value of PT1 represents

the number of iterations needed to capture system-key mag-

nitude changes of 10−5.

3.1. Security analysis

As previously mentioned, a good cryptosystem must have the

following properties [2,7,10]:

• Sensitivity to system-key: for two keys (or plaintexts)

with the slightest difference, no distinguishable dif-

ference between the corresponding ciphertext can be

found by any known statistical analysis.

• Sensitivity to plaintext: flipping one bit in the plaintext

should create a completely different ciphertext.

• Statistical independency: the cipher text should be sta-

tistically indistinguishable from the output of a truly

random function, and should be statistically the same

for all keys.

We will question the security of our scheme by using

these three properties (not in the same order). Figure 5 shows

the histograms of plaintext and corresponding ciperhtext of

data files described in Table I. For each plaintext, we use two

Rev. Mex. Fı́s. 53 (1) (2007) 58–65
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FIGURE 6. Sensitivity to system-key changes. Plaintext (circled

continuous line) encrypted with two slightly different system-keys

(least significant bit changed).

FIGURE 7. Sensitivity to system-key changes without perturbation

scheme. (a) Ciphertexts of a pair of chosen plantexts with the least

significant bit changed; (b) Hamming distance of corresponding ci-

phertexts.

FIGURE 8. Same as in Fig. 7a with first level perturbation at 9th

cipher iteration (dashed line).

FIGURE 9. Same as in Fig. 8 with second level perturbation.

randomly chosen keys in order to prove statistical indepen-

dence from the scheme. In all cases, the ciphertext histogram

is uniform and independent of the plaintext histogram and

system-key. As an average over all data files, 99.6% of the

total bytes and 50% of the total bits were changed during the

encryption process, providing the best protection against at-

tacks. The scheme response to a slight change in the system-

key (flipping the least significant bit) is shown in Fig. 6. Be-

cause of the de-correlation process between the system-key

and maps’ variables and parameters [Eq. (3)], the ciphertext

output diverges from practically the first iteration. Let us now

analyze the effect in the difference (in the least significant bit)

of a pair of plaintexts on the ciphertext output sequence with-

out perturbation (this is known as differential attack). Fig-

ure 7a shows that apparently the scheme reacts slowly un-

til it reaches cipher iteration 30; but if we look at the Ham-

ming distance between the ciphertexts (original and modi-

fied) shown in Fig. 7b, we see an immediate reaction from

the first iteration, with only one bit changed initially. After

ten iterations, approximately eight of the bits are different;

at ciphertext iteration 30 and thereafter, the Hamming dis-

tance fluctuates around 15 bits meaning that the two cipher-

texts outputs diverge chaotically. The number of iterations for

the system to reach HD=15 bits can be reduced if plaintext

is iterated chaotically before the encryption. This can con-

siderably affect the performance of the scheme; instead, we

use map perturbation together with spatiotemporal feedback

(see Sec. 2) as a better alternative. Figures 8 and 9 depict

the perturbed case of Fig. 7a for first and second level pertur-

bation, respectively [see Eqs. (7) and (8)] at ciphertext 9th.

In both cases, the reaction of the cryptosystem is immediate,

influencing future ciphertexts output values. Since perturba-

tion modifies map variables, the rest of the cipher trajectory

is completely different from the unperturbed case.

If the opponent chooses brute force attack, he will need

to search for at least 2128 ≈ 3.4×1038 key possibilities in

our current setting. In addition, there are four more random

numbers with 5-bit representation each, RT, P1, P2, and P3;

so brute force attack will need to consider a total space anal-

ysis of (2128).(220). Recall that the system-key size is very

flexible and can be a multiple of 8, 16, or 32 bits depending

on the desired level of security by a particular application.
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Finally, a C-language implementation of the cipher sys-

tem on a 940Mhz Pentium R©-III, with 190Mb of memory un-

der the Red Hat Linux operating system version 2.4.20-28.9,

shows an average speed of 220Mbs (Megabits/sec), which is

much faster than any other scheme reported in the literature.

This reported speed is fast enough for real-time multimedia

communications.

4. Conclusions

We have proposed a simple and robust symmetric block-

cipher cryptosystem based on a 4-array of chaotic logistic

maps, a spatiotemporal feedback, and a three-level perturba-

tion scheme. We have shown the perfect statistical properties

of the system, as well as its sensitivity to initial conditions.

The system is scalable in the sense that it allows the number

of maps and system-key size to increase by multiples of 8,

16 or 32 bits to add security to the system (making brute

force attacks impossible). Finally, a software implementation

of the system shows excellent performance to fulfill current

multimedia application demands, such as real-time audio and

video communications.
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