SCISPACE

formerly Typeset

@ Open access - Journal Article = DOI:10.1109/TCOMM.2010.05.070096
Low-complexity decoding for non-binary LDPC codes in high order fields
— Source link (4

Adrian Voicila, David Declercq, Francgois Verdier, Marc P. C. Fossorier ...+1 more authors

Institutions: Cergy-Pontoise University, STMicroelectronics

Published on: 01 May 2010 - IEEE Transactions on Communications (IEEE)

Topics: Soft-decision decoder, Low-density parity-check code, Decoding methods, Binary code and
Error detection and correction

Related papers:

» Low-density parity check codes over GF(q)

« Decoding Algorithms for Nonbinary LDPC Codes Over GF (q)
« Fast decoding algorithm for LDPC over GF(2/sup q/)

» Low-Density Parity-Check Codes

» Log-domain decoding of LDPC codes over GF(q)

Share this paper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/low-complexity-decoding-for-non-binary-ldpc-codes-in-high-
dtnw9lhdef

https://typeset.io/
https://www.doi.org/10.1109/TCOMM.2010.05.070096
https://typeset.io/papers/low-complexity-decoding-for-non-binary-ldpc-codes-in-high-dtnw9lhd6f
https://typeset.io/authors/adrian-voicila-3411ud11z1
https://typeset.io/authors/david-declercq-5e2k3rlpdw
https://typeset.io/authors/francois-verdier-arvjso58b4
https://typeset.io/authors/marc-p-c-fossorier-2v99gr6dx2
https://typeset.io/institutions/cergy-pontoise-university-16fnrkc6
https://typeset.io/institutions/stmicroelectronics-27g14r9i
https://typeset.io/journals/ieee-transactions-on-communications-r4vy07z3
https://typeset.io/topics/soft-decision-decoder-yxc3u3bq
https://typeset.io/topics/low-density-parity-check-code-3k9aqckr
https://typeset.io/topics/decoding-methods-ifn58ous
https://typeset.io/topics/binary-code-10iu6rxs
https://typeset.io/topics/error-detection-and-correction-gbvyc495
https://typeset.io/papers/low-density-parity-check-codes-over-gf-q-50bjem2qhx
https://typeset.io/papers/decoding-algorithms-for-nonbinary-ldpc-codes-over-gf-q-1yf2l1niih
https://typeset.io/papers/fast-decoding-algorithm-for-ldpc-over-gf-2-sup-q-3u5jbzrdxn
https://typeset.io/papers/low-density-parity-check-codes-vltmv2dex4
https://typeset.io/papers/log-domain-decoding-of-ldpc-codes-over-gf-q-1f26741xvq
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/low-complexity-decoding-for-non-binary-ldpc-codes-in-high-dtnw9lhd6f
https://twitter.com/intent/tweet?text=Low-complexity%20decoding%20for%20non-binary%20LDPC%20codes%20in%20high%20order%20fields&url=https://typeset.io/papers/low-complexity-decoding-for-non-binary-ldpc-codes-in-high-dtnw9lhd6f
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/low-complexity-decoding-for-non-binary-ldpc-codes-in-high-dtnw9lhd6f
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/low-complexity-decoding-for-non-binary-ldpc-codes-in-high-dtnw9lhd6f
https://typeset.io/papers/low-complexity-decoding-for-non-binary-ldpc-codes-in-high-dtnw9lhd6f

& HAL

open science

\

Low-Complexity Decoding for Non-Binary LDPC Codes
in High Order Fields
Adrian Voicila, David Declercq, Francois Verdier, Marc Fossorier, Pascal
Urard

» To cite this version:

Adrian Voicila, David Declercq, Francois Verdier, Marc Fossorier, Pascal Urard. Low-Complexity
Decoding for Non-Binary LDPC Codes in High Order Fields. IEEE Transactions on Communications,
Institute of Electrical and Electronics Engineers, 2010, 58 (5), pp.1365-1375. hal-00521074

HAL Id: hal-00521074
https://hal.archives-ouvertes.fr /hal-00521074

Submitted on 26 Sep 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.archives-ouvertes.fr/hal-00521074
https://hal.archives-ouvertes.fr

Low-complexity decoding for non-binary

LDPC codes 1n high order fields

Adrian Voicila**, David Declercq*, Francois Verdier!, Marc Fossorier!, Pascal
Urard*
'ETIS ENSEA/UCP/CNRS UMR-8051 95014 Cergy-Pontoise, (France)
"Dept. Electrical Engineering Univ. Hawaii at Manoa Honolulu, HI 96822, (USA)

*STMicroelectronics Crolles, (France)

Abstract

In this paper, we propose a new implementation of the Extended Min-Sum (EMS) decoder for
non-binary LDPC codes. A particularity of the new algorithm is that it takes into accounts the memory
problem of the non-binary LDPC decoders, together with a significant complexity reduction per decoding
iteration. The key feature of our decoder is to truncate the vector messages of the decoder to a limited
number n,, of values in order to reduce the memory requirements. Using the truncated messages, we
propose an efficient implementation of the EMS decoder which reduces the order of complexity to
O(ny, logy nyy,). This complexity starts to be reasonable enough to compete with binary decoders. The
performance of the low complexity algorithm with proper compensation is quite good with respect to
the important complexity reduction, which is shown both with a simulated density evolution approach

and actual simulations.

Index Terms

Iterative decoding, non-binary LDPC codes, low complexity algorithm

I. INTRODUCTION

It is now well known that binary low density parity check (LDPC) codes achieve rates close
to the channel capacity for very long codeword lengths [1], and more and more LDPC solutions
have been proposed in standards (DVB, WIMAX, etc). In terms of performance, binary LDPC

codes start to show their weaknesses when the code word length is small or moderate, or when

August 8, 2007 DRAFT

higher order modulation is used for transmission. For these cases, non-binary LDPC (NB-LDPC)
codes designed in high order Galois fields have shown great potential [2], [3], [4], [5].

However, the performance gain provided by LDPC codes over GF(q) comes together with
a significant increase of the decoding complexity. NB-LDPC codes can be decoded efficiently
with message passing algorithms as the belief propagation (BP) decoder, but the size of the
messages varies in the order ¢ of the field. Therefore, a straightforward implementation of the
BP decoder has complexity in O(¢?). A Fourier domain implementation of the BP is possible like
in the binary case, reducing the complexity to O(qlog ¢) [2], [6], but this implementation is only
convenient for messages expressed in the probability domain. This is a problem since several
authors have identified that the use of log-density-ratios (LDR) representation is mandatory to
avoid complicated operations like multiplications and divisions. Any LDR-based implementation
of the BP requires also ¢ — 1 values per message in the graph.

In this paper, we propose a new decoding algorithm for NB-LDPC codes. Our algorithm has
both low computing complexity and reduced storage requirements, and therefore becomes a good
solution for hardware implementation.

In one of the algorithms presented in [7] the authors introduced the idea of using only a limited
number n,, of reliabilities in the messages at the input of the check node in order to reduce the
computational burden of the check node update. The complexity at each check node was reduced
to the order of O(n,, ¢), and the same memory storage complexity as BP was needed. In this
paper, we keep the basic idea of using only n,, < ¢ values for the computation of messages,
but we extend the principle to all the messages in the Tanner graph, that is, both at the check
nodes and the variable nodes input. Moreover, we propose to store only n,, reliabilities instead
of ¢— 1 for each message. The truncation of messages from ¢—1 to n,, values has to be done in
an efficient way in order to reduce its impact on the performance of the decoder. The truncation
technique that we propose is described in details in Section III, together with an efficient offset
correction to compensate the performance loss. Using the truncated messages representation,
and a recursive implementation of the check node update, we propose a new implementation of
the Extended Min-Sum (EMS) decoder whose complexity is dominated by O(n,, logn,,), with
N, < ¢. This is an important complexity reduction compared to all existing methods [7], [8],
[9]. Our new algorithm is developed in Section IV and a study of its complexity/performance
trade-off is presented in Section V. Section VI is dedicated to non-binary adaptation of the

shuffled scheduling for the special class of cycle codes. In Section VII the robustness of the

August 8, 2007 DRAFT

algorithm to the effects of a finite precision representation of messages is studied. In Section
VIII-A, the simulation results verify that the proposed low complexity decoder still performs
very close to the BP decoder that we use as benchmark. We conclude the paper in section VIII-
A by a fair comparison between the proposed non-binary decoding algorithm and the binary
corrected Min-Sum (MS) algorithm [10] applied to binary irregular LDPC codes, in terms of

computational complexity and error performance.

II. PRELIMINARIES

An NB-LDPC code is defined by a very sparse random parity check matrix H, whose
components belong to a finite field GF(q). The matrix H consists of M rows and N columns;
the code rate is defined by R < % Decoding algorithms of LDPC codes are iterative message
passing decoders based on a factor (or Tanner) graph representation of the matrix A [11]. In
general, an LDPC code has a factor graph consisting of /N variable nodes and M parity check
nodes with various degrees. To simplify the notations, we will only present the decoder equations
for isolated nodes with given degrees. We denote d, the degree of a symbol node and d. the
degree of a check node. In order to apply the decoder to irregular LDPC codes, simply let d,
(resp. d.) vary with the symbol (resp. check) index. A single parity check equation involving d.

variable nodes (codeword symbols) ¢,, is of the form:
de—1

> ey =0 in GF(q) (1)

n=0

where each h,, is a nonzero value of the parity matrix H.

As for binary decoders, there are two possible representations for messages : probability
weights vectors or LDR vectors. The use of the LDR form for messages has been advised
by many authors who proposed practical LDPC decoders. The LDR values, which represent
real reliability measures on the bits or the symbols are less sensitive to quantization errors
due to the finite precision coding of the messages [12]. Also, LDR measures operate in the
logarithm domain, which avoids complicated operations (in terms of hardware implementation)
like multiplications or divisions. The following notation will be used for an LDR vector of a

random variable z € GF(q):

where

2)

August 8, 2007 DRAFT

with P(z = «;) being the probability that the random variable z takes on the values o; € GF(q).
With this definition L[0] =0, L[] € R.

The log-likelihood-ratio (LLLR) messages at the channel output are ¢ — 1 dimensional vectors
The values of the probability weights P(z = «;) depend on the transmission channel statistics.
The decoding algorithm that we propose is independent of the channel, and we just assume
that a demodulator provides the LLR vector L., to initialize the decoder. We have applied the
NB-LDPC codes to communicate over two types of channels: BILAWGN and QAM-AWGN.

For the BI-AWGN case, each symbol of the codeword ¢,,, n € {0,..., N—1} can be converted
into a sequence of log,(q) bits ¢,, € GF(2), i € {0,...,log,(q) — 1}. The binary representation
of the codeword is then mapped into a BPSK constellation and sent on the AWGN channel:

Yn; = BPSK (an) + Wy,

with y,,. being the received noisy BPSK symbol, and w,,, being a real white Gaussian noise

No
2E,R’

random variable with variance where % is the SNR per information bit.

The NB-LDPC iterative decoding algorithms are characterized by three main steps corresponding
to the different nodes depicted in Fig. 1: (i) the variable node update, (ii) the permutation of
the messages due to non zeros values in the matrix H and (iii) the check node update which
is the bottleneck of the decoder complexity, since the BP operation at the check node is a

convolution of the input messages, which makes the computational complexity grow in O(¢?)

with a straightforward implementation.

.....

.....

output messages for this variable node. The index ‘pv‘ indicates that the message comes from

a permutation node to a variable node, and ‘vp‘ is for the other direction. We define similarly

..........

d. check node.

In [7], the EMS algorithm reduces the complexity of the check node update by considering
only the n,, largest values of the messages at the input of the check node. However, the
output messages of the check node are still composed of ¢ values. As a consequence, the EMS
complexity of a single parity check node varies in O(n,,.q) and all messages in the graph are

stored with their full representation of ¢ real values, which implies a high memory requirements.

August 8, 2007 DRAFT

In this paper, we present a new implementation of the EMS algorithm, whose main originality
is to store exactly n,, < ¢ values in all vector messages U,,, V,. As a result not only the memory
requirements are reduced but also the computational complexity. In the following section we
present our procedure to truncate the messages from ¢ to n,, values and discuss the impact on

the error correction performance of the decoder.

III. STRUCTURE AND COMPENSATION OF THE TRUNCATED MESSAGES

The vector messages V., and U,, are now limited to only n,, entries which are assumed to
be the largest reliability values of the corresponding random variable. Moreover, the values in a
message are sorted in decreasing order. That way, V,[0] is the maximum value and V,,[n,, — 1]
is the minimum value in V.. We need to associate to the vectors V,, U,, of size n,, the
additional vectors (v, and Py,, (of size n,,) which store the field elements a;, € GF(q),
associated to the largest LDR values of vectors V., and U,,. For example, U,,[k] is the LDR
value that corresponds to the symbol value 3y, [k] € GF(q).

Although interesting in terms of memory and computation reduction, the truncation of mes-
sages obviously looses potentially valuable information which leads to performance degradation
on the error rate curves. This loss of performance could be mitigated by using a proper compen-
sation of the information that has been truncated. Because our main concern is the development
of low complexity decoders, we have chosen to compensate the ¢ — n,, truncated values with a
single scalar value ~y, which is the simplest model one can use. The following definition is used

for a compensated message:
Definition

Let A be any message in the graph which represents an LDR vector of size q. A truncated
version B of A is composed of the n,, largest values of A sorted in decreasing order, plus an
additional (n,, + 1)-th value 4 € R, whose goal is to compensate for the information loss due

to the truncation of q — n,, values. "

The compensated-truncated message B has then (n,, + 1) components, and the value 7,4 is
seen as a constant real value that replaces the ¢ — n,, missing reliabilities. A full representation

of the truncated message B would then be:

B =[B[0]...B[nm — 1] ya...74]"

August 8, 2007 DRAFT

This means in particular that v4 < B[n,, — 1].

Let us first analyze a possible solution to compute the value of v, using normalization of
probability messages. We consider P4 the probability domain representation of the LDR vector
A

Pulk] = P(z = ay) = Pa[0]e*™ ke{o,....,q—1}

and let Py be the vector of size n,, with the values
Pplk] = P(z = Bp[k]) = Pa[0]e”™ ke {0,...,n, — 1}

Remember that A is unsorted while B is sorted, which explains the difference in these two
definitions.

Because P4 is a probability weight vector, we have:

Nom—1

q—1
> Pulk] =1 > Pylk] <1 (3)
k=0 k=0

A clever way to fix a good value on the scalar compensation v, is to assume that the trun-
cated message should represent a probability weight vector with a sum equal to one, so that
oy ! Pglk] + (¢ —ny,)P,, =1 is satisfied. The probability weight associated with LDR value

Y4 18 P7 . = P4[0]e™. The normalization of vector Py is then

Nom—1

(4=)Py =1= Paf0] 3

N —1
P _ PA[O =2l P
P qg—1 Ny —1
log —2- = log Al — ePH | —log(q — nm)
P e\ &
and finally
qg—1
74 = log Z A —log(q — nm) 4)
k=0,A[k]¢B

As a first remark, we note that the computation of the additional term requires the ¢ — n,,
ignored values of vector A, and the computation of a non linear function. The non linear function
can be expressed in terms of the max *(z1, x9) operator, used in many papers (e.g. [9]), and in

order to simplify (4), we approximate this operator by:

max *(z1, zy) = log (! + %) ~ max(zy, z2) 5)

August 8, 2007 DRAFT

Equation (4) becomes:

Ya = mmax {A[k]} — log(q — nim)
N ax o AR} — Tog(g = 1)
~ Bln,|—log(q —nnm) (6)

where B[n,,] is the largest value among the (¢ — n,,) ignored values of vector A.

By using the approximation (6) we obtain a simple computational formula for the supplemen-
tary term 74, since we just need to truncate the LDR vector A with its (n,, + 1) largest values
instead of its n,, largest values. On the other hand, this approximation introduces a degradation
of the error performance of the decoder. The approximation (5) is well known to over-estimate
the values of the LDR messages [13], and needs compensation.

In principle, the compensation of the over-estimation should be different for each message
since the accuracy of approximation (5) depends on the values it is applied to. An adaptive
compensation would be obviously too complicated with regards to our goal of proposing a low
complexity algorithm. We have then chosen to compensate globally the over-estimation of the
additional term ~y4 with a single scalar offset, constant for all messages in the graph and also

constant for all decoding iterations:
va = Blnm,] —log(q — ny) — of fset = Blny,| — Of fset (7)

There are several ways of optimizing the value of a global offset correction in message passing
decoders. We have chosen to follow the technique proposed in [7], which consists of minimizing
the decoding threshold of the LDPC code, computed with simulated density evolution. Because
of the lack of space, we do not discuss in this paper the optimization of the global offset, and
we recall that estimated density evolution is just used as a criterion to choose the correction

factor and not to compute accurate thresholds.

I'V. DESCRIPTION OF THE ALGORITHM
A. Decoding steps with messages of size n,, < q

We now present the steps of the EMS decoder that uses compensated-truncated messages of
size n,,. We assume that the LLR vectors of the received symbols are known at the variable nodes,
either stored in an external memory or computed on the fly from the channel measurements.

Using the notations of Fig. 1, the basic steps of the algorithm are:

August 8, 2007 DRAFT

1) Initialization: the n,, largest values of the LLR vectors are copied in the graph on the
{vai}ie{o,...,drl} messages.

2) Variable-node update: the output vector messages {vai}ie{O,...,drl} (of size n,,) associated
to a variable node v passed to a check node ¢ are computed given all the information
propagated from all adjacent check nodes and the channel, except this check node itself.

3) Permutation step: this step permutes the messages according to the nonzero values of [

(see (1)). In our algorithm, it just modifies the indices vectors and not the message values:

6(]”6[]{3] = hi'ﬁUwi []{3] ke {0, ey Ny — 1} (8)

where the multiplication is performed in GF(q).

4) Check-node update: for each check node, the values {V,,,[k]}icqo,...d.—1} ke{0,....nm—1} SENE
from check a node to a permutation node are defined as the probabilities (expressed in
LDR format) that the parity-check equation is satisfied if the variable node v is assumed
to be equal to By, ,[k].

5) Inverse permutation step: this is the permutation step from check nodes to symbol nodes,

so it is identical to step 3), but in the reverse order.

For steps 2) and 4), a recursive implementation combined with a forward/backward strategy is
a well known efficient implementation of node update when the associated degree is larger than
four. This implementation technique has been widely presented in the literature for binary LDPC
codes, and also for non-binary LDPC codes in [9]. It is based on a decomposition of the node
neighborhood using dummy variables and adding corresponding edges that carry intermediate
messages, that are named I in this paper. This decomposition allows to express the check or
variable node equations using several elementary steps. One elementary step is defined by a
node update that assumes only two input messages and one output message. The decomposition
of a degree d. = 5 check node and the associated forward/backward scheduling is depicted
on figure 2. In this figure, the intermediate messages I are assumed to be stored also with
n,, values, like the other messages. Using this strategy, the d. incoming messages are used
to compute 2 * (d. — 3) intermediate messages by a forward/backward recursion, then the d.
outgoing messages are computed using either a combination of one input and one intermediate
message, or two intermediate messages. Note that the intermediate messages are stored only

until the outputs have been updated.

August 8, 2007 DRAFT

Remark

In order to ensure the numerical stability of the EMS algorithm, a post-processing step is
necessary. We simply substrate to all values the smallest one. Without this step, the values of the
LDR messages would converge to the highest achievable numerical value in a few iterations.

The LDR values equation (9) are real numbers in domain [0,400).

Upp, (k] = Upp, (k] = Upp, [0, — 1] 1€ {0,...,d, — 1} k€ {0,...,n, —1}
©)
‘/Cpi[k]zvcpi[k]_‘/cpi[nm_l] iE{O,...,dc—l} ke{oa"'anm_l}

Since the EMS algorithm only involves linear operations, the terms Uy, k], V.,.[k| have the

same LDR structure as defined in (2). n

B. Variable node elementary step

Let assume that an elementary step describing the variable node update has V and I as input
messages and U as output message. The vectors V, I and U of size n,, are sorted in decreasing
order. We note also by v, A1 and [y their associated index vectors. Using the BP equations in
the log-domain for the variable node update [9], the goal of an elementary step is to compute
the output vector containing the n,, largest values among the 2n,, candidates (10) (stored in an
internal vector message T). The processing of the elementary step in the case of a variable node

update is described by:
Tkl =VIk+Y T[n + k] = vy + I[K] ke{0,.. nm—1} (10)

with
I[l] if ﬂ[[l] :ﬂv[k]]{,ZE {O,,nm—l}
vroif Bill] ¢ By

The compensation value ~ is used when the required symbol index is not present in an input

Y —

message.
Whenever the V input corresponds to the LLR channel vector of the received symbol, the

equation (10) becomes:
Tkl =VIk|+Y Tl + k] =LalBik]] +I[k] ke{0,...,n,—1}

since we do not assume that LLR vectors are truncated/compensated messages.

August 8, 2007 DRAFT

1V

C. Low complexity implementation of a check node elementary step

This section describes in details the algorithm that we propose for an elementary component
of the check node. This step is the bottleneck of the algorithm complexity and we discuss its
implementation in details in the rest of the paper. The check node elementary step has U and I as
input messages and V as output message. All these vectors are of size n,,, are sorted in decreasing
order. Similar to the variable node update, we note also by Gy, 01 and By their associated index
vectors. Following the EMS algorithm presented in [7], we define S((y[i]) as the set of all the
possible symbol combinations which satisfy the parity equation Gy [i] & Gy [j] @ G;[p] = 0. With
these notations, the output message values are obtained with:

Vil = max (U[j]+I[p]) i€{0,...,n,—1} (11)
S(Bv i)
Just as in the variable node update, when a required index is not present in the truncated vector
U or I, its compensated value « is used in equation (11). Without a particular strategy, the
computation complexity of an elementary step is dominated by O(n?).

We propose a low computational strategy to skim the two sorted vectors U and I, that provide
a minimum number of operations to process the n,, sorted values of the output vector V. The
main component of our algorithm is a sorter of size n,,, which is used to fill the output message.
For the clarity of presentation, we use a virtual matrix A/ built from the vectors U and I (cf.
Fig.3), each element of M being of the form M{[i, p| = U[j] + I[p]. This matrix contains the n?,
candidates to update the output vector V. The goal of our algorithm is to explore in a efficient
way M in order to compute iteratively its n,, largest values, using the fact that M is build from
sorted messages. For instance, we remark that the n,, largest values of M are located in the
upper part of the anti diagonal of the matrix. The basic operations of the elementary step are:

1) Initialization: the values of the first column of M are introduced in the sorter.

2) Output: the largest value is computed.

3) Test: does the associated GF(q) index of the output value already exist in the output vector.

« Yes: no action
o No: the value is moved in the vector V

4) Evolution: The right neighbor - with regard to the M matrix - of the filled value is

introduced in the sorter.

5) Go to (2)

August 8, 2007 DRAFT

11

In order to ensure that all values of the output vector V correspond to different symbols
ay € GF(q), we can not stop the algorithm after only n, steps, because it is possible that
among the computed values after n,, steps, two or more values correspond to the same index
ay. Let us define n. as the number of necessary steps so that all the n,, values of the output
vector are computed. The parameter 7. is used to indicate the computational complexity of our

2
im

2

new EMS implementation. We note that n. € [n,,, “2]. Of course, the value of n. depends on
the LDR vectors U and I, and a strictly valid implementation of the elementary step should take
into account the possibility of the worst case. However, we have found that n. is most of the time
quite small. As a matter of fact, the distribution of n. has an exponential shape and decreases
very rapidly, e.g. prob(n. < n,, +4) = 0.9816, for a regular GF(256)-LDPC code, n,, = 32 and
a signal to noise ratio in the waterfall region of the code. Based on this observation, it seems
natural to consider that the bad situations with large n. are sufficiently rare so that they do not
really impact on the decoder performance. We have verified this claim by simulations of density
evolution and found that using n., . = 2n,, does not change the value of the decoding threshold
for various LDPC code parameters. Note that with n. . = 2n,,, sometimes the output vector
V could be filled with less than n,, values and in those cases, we fill the rest of the vector
with a constant value equal to the additional term 7y. The worst case for the complexity of an
elementary step is then O(n.,, . log, n,) = O(2n,,log, n,,), which corresponds to the number
of max operations needed to insert n., . elements into a sorted list of size n,,. In the next

section, we study in details the complexity of our new implementation of the EMS algorithm.

V. COMPLEXITY AND MEMORY EVALUATION OF THE ALGORITHM

The computational complexity per bit of a single parity node and a single variable node are
indicated in table I in terms of their connexion degree d. (resp. d,). This complexity applies
both for regular and irregular non binary LDPC codes, the local value of the connexion degree
following the connectivity profile of the code. This complexity assumes the use of truncated
messages of size n,,, and the implementation of the check node update presented in this
paper. Note that we indicated the worst case complexity for the check node with n. = n._,
and that the average complexity is often less than that. The complexity associated with the
update of vectors U at the variable node output is obtained with a recursive implementation
of the variable node, which is used only for connexion degrees d, > 3. As a result, the

complexity of our decoding algorithm is dominated by O(n,, log,(n,,)) for both parity and

August 8, 2007 DRAFT

14

variable nodes computation. Interestingly, the complexity Compcy of a check node and Compy
of a variable node are somewhat balanced, which is a nice property that should help an efficient
hardware implementation based on a generic processor model. Moreover, one can remark that
the complexity of the decoder does not depend on ¢, the order of the field in which the code is
considered. Let us again stress the fact that the complexity of our decoder varies in the order
of O(ny,logy(ny,)) and with n,, < ¢, which is a great computational reduction compared to
existing solutions [7], [8], [9].

Finally, for a complete characterization of the computational complexity of our non-binary
LDPC decoding algorithm, we also reported in table I the associated complexity of the permu-
tation step (C'omppe,,) and the complexity of the post-processing (Compp,s:).

The memory space requirement of the decoder is composed of two independent memory
components, the memory corresponding to the channel messages L., and the edge memory
corresponding to the extrinsic messages U, V with their associated index vectors (3. Storing
each LDR value on Nbits bits in finite precision would therefore require a total number of
Ny * N % d,, % (Nbits + log, q) bits for the edge memory. Thus, the memory storage depends
linearly on n,,, which was the initial constraint that we put on the messages.

Since n,, is the key parameter of our algorithm that tunes the complexity and the memory
of the decoder, we now need to study for which values of n,, the performance loss is small
or negligible. In order to give a first answer to this question, we have made an asymptotic
threshold analysis of the impact of n,, on the threshold value. For a rate R = 0.5 LDPC code
with parameters (d, = 2,d. = 4), Fig.4 plots the estimated threshold in (E,/Ng)ysp of our
algorithm for different values of n,, and two different field orders GF(64) and GF(256). In this
paper, we do not claim that the EMS algorithm verifies the necessary symmetry conditions that
ensures the convergence of density evolution. Therefore, the validity of the threshold values is
not proved. However, the estimated thresholds are a good indicator of the decoder behavior when
the codeword length is large and the nonzeros values in the matrix are chosen uniformly.

The BP thresholds are equal to 6 = 0.58dB for the GF(64) code and 6 = 0.5dB for the
GF(256) code [7]. As expected, the thresholds become better as n,, increases, and can approach
the threshold of BP with much less complexity. We can use the plots on Fig.4 as first indication for
choosing the field order of the LDPC code that corresponds to a given complexity/performance
trade-off. Note, however, that this asymptotic study has to be balanced with the girth properties
of finite length codes, since it has been identified in [3], [4] that ultra-sparse LDPC codes in

August 8, 2007 DRAFT

15

high order fields and with high girth have excellent performance.

VI. SPECIAL CASE: FURTHER MEMORY REDUCTION FOR CYCLE CODES

It has been shown that for high order fields ¢ > 64, the best GF(q)-LDPC codes decoded
with BP should be ultra sparse (cycle codes, d, = 2) [2], [3]. In the EMS implementation,
an improved trade-off memory space/performance can be achieved for the decoding of cycle
codes, by considering a modified scheduling of the decoding steps described in Section IV. We
have adapted the shuffled scheduling proposed in [14] to the non-binary case, with the objective
of greater storage memory reduction. Note that the adaptation of the shuffled scheduling for
NB-LDPC codes has been proposed independently in [15], but the authors did not study the
memory reduction that this scheduling implies.

Using a shuffled scheduling allows to store only the messages U in the edge memory, and
the intermediate messages I and the messages V can be stored locally in a processing unit. It
is therefore possible to consider more than n,, values for the I and V without increasing the
storage capacity of the decoder. Let us denote by n,,, (respectively n,,,) the number of LDR
values that form the truncated versions of messages I (respectively V) inside the processing unit.
By construction, the different sizes verify 1, < Ny, < Ny,

The shuffled scheduling is defined as follows. For each and every check node, let {vy, ..., vg,}
be the set of variable nodes connected to this check node. The shuffled processing unit takes
all incoming messages U, that are on the edges of the check node, computes locally the V,,
messages on the same edges with the EMS algorithm, and then updates the U,, messages that
are on the edges of {vy,...,v4,} which are not connected to the current check node. In the
case of d, = 2 LDPC codes, this last step is performed only with the knowledge of the channel

LLRs {L,, }x=1,. 4. We can consider that the shuffled processing unit works with two types

of messages: the external U vectors which determine the dimension of the edge memory and
the internal V and I vectors which determine the computational complexity of decoder. Using
different values for (7, , m,, "m,) has then an impact on the trade-off between the overall
complexity of the decoder and its performance. We now discuss this advantage of the shuffled
scheduling with a comparison with the classical flooding scheduling.

Let us consider a code (d, = 2,d. = 4) code in GF(256) of size N, = 848 (see section VIII-A

for more details), and let us use truncated messages of size n,, = 18 in a flooding implementation

of the EMS decoder. We consider the two following cases for a shuffled scheduling, and the

August 8, 2007 DRAFT

14

corresponding frame error rate simulations are plotted on figure Fig.5:

e (a) The same computational complexity for the two schedules.
In this case, the size of the vectors V and I is set to n,,,,, = n,,, = 18. The size of the vectors
U is set to n,,, = 9. This choice corresponds to a memory space reduction of roughly ZWLZZ,
with a small error performance degradation compared to the flooding implementation (Fig.5,
B and C curves).

e (b) The same edge memory space for the two schedules.
In this case, the size of the vectors U is kept at n,,, = 18, but the size of vectors V and I
is increased to n,,, = n,,, = 36. The shuffled scheduling provides an improvement of the
error performance (Fig.5, A and B curves), without increasing the memory requirement of

the decoder. Of course, this also induces an increase of the algorithm complexity .

As a conclusion, implementing the shuffled scheduling for non binary LDPC codes has the same
advantage of reducing the average number of decoding iterations, as for the binary shuffled
scheduling (see [15] for more details), but also provides additional degrees of freedom for the

storage/complexity/performance trade-off of an EMS decoder.

VII. QUANTIZATION OF THE EMS ALGORITHM

Toward practical hardware implementation, quantization is an indispensable issue that needs to
be resolved. The goal of this section is to find the best trade-off between the hardware complexity,
messages storage space and the error performance of the EMS algorithm. We investigate only
the impact of uniform quantization schemes. The choice of the uniform quantization scheme is
motivated by the fact that the hardware implementation of the EMS algorithm does not require
nonlinear operations and the uniform quantifier has the advantage that it is simple and fast.

Let (b;, by) represent a fixed-point number with b; bits for the integer part (dynamic range)
and by bits for the fractional part. So by fixed-point representation, a real number z is mapped
to a binary sequence x = [XO oo Xbytb f—1]- A direct consequence of the post-processing defined
by equation (9), is that we can use an unsigned fixed-point representation (12) to quantify the

LDR messages of the EMS algorithm.
bi-l—bf—l

T — Z Xj2bi_1_j (12)
j=0

This representation corresponds to a limit range of the LDR values of [O, 2bitl 9=ty } with

a precision of 27%. Various schemes (b;,b;) are examined, in order to find the best trade-off

August 8, 2007 DRAFT

10

between the number of quantization bits (b; + by) and the error performance degradation of the
decoder. The most representative results are summarized in Fig.6, which presents the simulation
results of the EMS algorithm for an LDPC code over GF(64) of rate R = 1/2, for two sets of
parameters (7, N,) = (8,16) and (14, , nm,) = (16, 32).

We remark that a fixed point quantization scheme with b; = 5 bits provides error performance
close to the floating implementation of the EMS algorithm, while all the quantizations having
b; = 4 bits caused an error floor region. It turns out that the apparition of this phenomenon is
due to the insufficient dynamic range of the LDR messages [16].

With the goal of speed and low storage in mind, we advice a quantization of all messages
with 5 bits, with (b; = 5,b; = 0). This representation of messages provides a balanced trade-
off between low storage and good performance. We have conducted the same finite precision
study for various rates and code lengths and have observed that (b; = 5,b; = 0) is good in all
cases. The EMS algorithm requires then only a few quantization bits, close to the fixed-point

representation of the extrinsic messages in binary LDPC decoders [18].

VIII. EXPERIMENTAL RESULTS OF THE EMS DECODER
A. Performance loss compared to the non-binary BP algorithm

In this section, we present the simulation results of our low complexity EMS algorithm,
compared with the BP algorithm considered as reference. We have made the comparison with
regular GF(q)-LDPC codes over high order fields, of rate R = 1/2 (d, = 2,d. = 4), applied
on a BPSK-AWGN channel. The BP has been implemented in floating point precision, and a
quantization of (b = 5,q = 0) is used for the EMS algorithm, as pointed out in the preceding
section. In figure Fig.7, we have reported the frame error rate (FER) of a short code with length
N, = 848 equivalent bits, corresponding to a length N = N,/ log,(¢) non-binary LDPC code.
The maximum number of iteration has been fixed to 1000, and a stopping criterion based on the
syndrome check is used. Note that the average number of decoding iterations is rather low for
all the simulation points below FFER = 1072 (as an example, the average number of iterations
for the (2,4) GF(64) code at FER = 6 % 10~* is equal to 3).

We denote by EMSSZ(S),an the EMS decoder over the field GF(g) with parameters n,,,,, , 7y,
and n,,, = n,,,. Let us first discuss the performance of the EMS decoder with respect to the

BP decoder. For the code over GF(64), the EMSgFl(ﬁm) is the less complex algorithm presented. It
performs within 0.25dB of the BP decoder in the waterfall region. The EMS?; @V algorithm has

August 8, 2007 DRAFT

10

0.06d B performance loss in the waterfall region and performs even better than the BP decoder
in the error floor region. The fact that the EMS can beat the BP decoder in the error floor
is not surprising and is now well known in the literature. This behavior comes from the fact
that for small code lengths, an EMS algorithm corrected by an offset could be less sensitive to
pseudo-codewords than the BP.

Note that with this example, the only advantage of using a GF(256) code in terms of perfor-
mance/complexity trade off is that it provides an error floor region lower than the GF(64) code.
Finally, it is interesting to compare the error performance of EMS?(E (362‘” and EMS?; (3225 % because
they offer the same decoding complexity. In the waterfall region of the codes EMS?; (3624) performs
better that EMS?; 29 with a gain of 0.19dB. The good performance of the GF(64) code in the
waterfall region is determined by the value of n,,, = 32 parameter, which is sufficiently close
to the field order to provide a good threshold. At low FER, the performance gap between the
two codes becomes smaller, which seems to indicate that the GF'(256) LDPC code will perform
better that the GF(64) LDPC code at very low FER (FER<10~"), without increasing the decoder
complexity. Note that this observation balances the conclusions of Section V, and stresses another
advantage of considering very high order field non-binary LDPC codes. Moreover, the EMS is
quite robust since the complexity reduction from ¢ = 256 to n,,,, = 32 is a lot higher than from
q = 64 to n,,, = 32, and the performance loss stays acceptable. Note that the other approaches
proposed in the literature [8], [9] were not illustrated on high order fields and that - to our
knowledge - the EMS decoder is the first decoder that proposes a good performance complexity
trade-off for field orders g > 64.

In order to quantify the influence of the offset parameter () on the decoder’s performances,
we have also reported in Fig.7 the simulations results of the EMS decoder in the particular
case when the offset is zero (EMS without offset). We remark that the error performances of
the EMS?; 53225 2 algorithm are greatly improved by using a proper offset, and its influence is
less significant in the case EMS?E(ﬁM). Generally, the influence of the offset parameter on the
error performances of the EMS decoder depends on the loss of information induced by the
truncation procedure (¢ — n,,). If the difference ¢ — n,, is non-negligible the use of a proper
offset is recommended.

For lack of space reasons, we present only the results for the code/decoder parameters of figure

Fig.7, but we have conducted extensive simulations for various other code/decoder parameters

and the same kind of behavior has been observed. As seen on the results presented in this

August 8, 2007 DRAFT

17

section, the error performance of a hardware implementable version of the EMS is quite close
to the performance of floating BP algorithm. Its good performance and its reduced complexity
and memory space requirement make the EMS algorithm a good candidate for the hardware
implementation of non binary LDPC decoders.

In order to improve the performance of the decoder without sacrificing much the complexity,
it would be interesting to study more precisely if the performance degradation compared to BP
comes from the truncation of the messages or from the use of a max operator at the check node
update. A correction strategy more elaborate than a single offset correction (dynamical offset

along the iterations, nonlinear correction, etc) could be more effective on either approximations.

B. Comparison with binary decoders

The main idea of this section is to compare in terms of computational complexity and error
performance the proposed EMS algorithm to its binary equivalent, the corrected Min-Sum (MS)
algorithm [10]. The complexity of the corrected MS algorithm for a single check node of degree
d. is equal to: 3(d. — 2)/d. min operations per bit, (2d. — 1)/d. XOR operations per bit to
compute the sign of the output and 2 real additions that correspond to the correction operation.
Also, for a bit node of degree d, the complexity is equal to (2d, — 1)/d, real additions per
bit. For a fair computational complexity comparison of algorithms, we have decided to compare
only the operations that are common to both algorithms. We thus compare the number of max
operations of the EMS algorithm (see table I) with the min operations of the MS algorithm and
the number of real additions necessary to two algorithms (per iteration). The specific operations
of the algorithms are not taken into account in the complexity comparison (the additions over
GF(q) for EMS algorithm and the sign computation for the MS).

The comparison has been made for short and moderate code lengths over BI-AWGN and
QAM-AWGN channels. The choice of the code length is motivated by the fact that the non-
binary LDPC codes can achieve performance very close to the Shannon limit for these lengths.
The binary codes that we used are from [17], irregular codes of size N, = 504 (short length) and
N, = 1008 bits (moderate length) and of coderate R = 0.5. The corresponding non-binary codes
are of equivalent length N = 84 symbols over GF(64) (short length) and N = 126 symbols over
GF(256) (moderate length). The non-binary codes are regular (d, = 2,d. = 4) and of coderate
R =10.5.

In Fig.8, we have reported the frame error rate (FER) of binary and non-binary short length

August 8, 2007 DRAFT

16

codes. We denote by EMSSTFn @ the EMS decoder over the field GF(q) with parameters n,, =

Ny = Mm; = N, - Let us first discuss the performance of the EMS algorithm with respect

v
to the corrected MS algorithm. The EMS(fgF 4 algorithm performs better than the corrected MS
with a gain of 0.375dB in the waterfall region. Furthermore for a smaller value of n,, (n,, = 12
approximately 20% of q) the EMS algorithm still outperforms the MS. Concerning the complexity
of these two version of the EMS, the EMS(fgF © is 9 times more complex than the MS, and the
EMS?QF 9 is 5 times more complex than the MS. We have also plotted the error performance of
the EMSSF(M) algorithm, which has a complexity equivalent to the binary decoder. The loss of
performance in the waterfall region is explained by the small value of n,, = 6 (approximately
10% of q), which is not sufficiently close to the field order to provide a good threshold.

For short code lengths, the EMS%F 9 and EMS$, Y have better error performance than the
MS decoder on a very good binary LDPC code (for this rate and length) and in the same time
the complexity of our non binary decoder remains reasonably close to the complexity of the
binary decoder.

Over QAM-AWGN channels, the non-binary LDPC codes with a field order greater or equal to
the size of constellation has the advantage that the encoder/decoder works directly with symbols.
All mapping choices of the codeword symbols to the constellation points are equivalent and lead
to the same performance. This means that there is no loss of performance due to the demapping
process at the receiver. This is a clear advantage comparing to the binary codes. In Fig.9, we
have plotted the simulation results of the EMS algorithm and the binary MS algorithm for the
moderate length codes, over a 256-QAM-AWGN channel. We have used a Bit-Interleaved Coded
Modulation scheme to transmit the binary code over the 256-QAM-AWGN channel and a field
order equal to ¢ = 256 for the non-binary LDPC codes. Note that the non-binary LDPC codes
have been optimized with the technique described in [4].

Over the QAM256-AWGN channel the EMS?g (2% algorithm performs 0.5dB better than the
corrected MS algorithm which is a quite important improvement. Concerning the complexity
comparison, the EMS algorithm has approximately 25 times the complexity of the binary al-
gorithm. The EMS?F 2% and EMS%F (%) algorithms have a performance loss in the waterfall
region due to the small value of n,,. The EMS?FQS(’) has roughly the same complexity than
the MS decoder. As in the BI-AWGN channel case, the EMS decoder on non-binary LDPC
codes performs better than the MS algorithm on binary LDPC codes, with a reasonable increase

in complexity. Our efficient decoder shows that non-binary LDPC codes could be a reliable

August 8, 2007 DRAFT

17

alternative for coding schemes with short to moderate codeword lengths.

Note that the EMS decoder has a quite fast convergence since the average number of decoding
iterations when a syndrome stopping criterion is used is typically half the one of the binary case.
For example, with (¢ = 64,n,, = 18) at FER = le — 5, the average number of iterations for
the EMS algorithm is equal to 3.3 and for its binary equivalent (Min-Sum) the average number
of iterations is 6.8. This remark remains valid in the case of an 256-QAM-AWGN transmission,
where for the EMSg; > algorithm (Fig.9) the average number of iterations is equal to 5 at
FER = 1le—5 and for the Min-Sum algoritm the average number of iterations is approximatively

9.5.

IX. CONCLUSION

We have presented in this paper a general low complexity decoding algorithm for non binary
LDPC codes, using log-density-ratio as messages. The main originality of the proposed algorithm
is to truncate the vector messages to a fixed number of values n,, < ¢, in order to solve the
complexity problem and to reduce the memory requirements of the non binary LDPC decoders.
We have also shown that by using a correction method for the messages, our EMS decoding
algorithm can approach the performance of the BP decoder and even in some cases beat the BP
decoder. The complexity of the proposed algorithm is dominated by O(n,,, log,(n,,)). For values
of n,, providing near-BP error performance, this complexity is smaller than the complexity of
the BP-FFT decoder, and by far lower than the solutions proposed in the literature. Note that the
single parameter n,, tunes both the computational complexity and memory space requirements.
It also defines efficiently the trade-off performance/complexity. We have also proposed a non-
binary adaptation of the shuffled scheduling in order to induce a new degree of freedom in the
algorithm, which allows a reduction of the memory space requirements for the cycle codes.

We have compared the error performance of our algorithm with non-binary BP and binary
corrected MS algorithms, in order to demonstrate that the proposed low complexity, low memory
EMS decoding algorithm becomes a good candidate for a hardware implementation. Since its
complexity and its memory space requirements has been greatly reduced and the performance
degradation is small or negligible, the EMS algorithm applied on non-binary LDPC codes build
in very high order fields could be an alternative to existing solutions.

Although the EMS algorithm could be applied to irregular LDPC codes as described in this

paper, an interesting issue would be to study if the number n,, of values kept in messages

August 8, 2007 DRAFT

needs to be optimized with respect to the degree of the variable nodes. This issue is of particular
importance since good irregular LDPC codes are usually more dense than regular ones, increasing
thereby the memory requirements for message storage.

The authors are grateful to the reviewers for insightful comments and suggestions, which have

improved this paper.

REFERENCES

[1] TJ. Richardson, M.A. Shokrollahi and R.L. Urbanke, “Design of Capacity-Approaching Low-Density Parity Check Codes”
IEEE Trans. Inform. Theory, vol.47, pp.619-637, Feb. 2001

[2] M. Davey and D.J.C. MacKay, “Low Density Parity Check Codes over GF(q),” IEEE Commun. Lett., vol. 2, pp. 165-167,
June 1998.

[3] X.-Y. Hu and E. Eleftheriou, “Binary Representation of Cycle Tanner-Graph GF(2?) Codes,” The Proc. IEEE Intern. Conf.
on Commun., Paris, France, pp. 528-532, June 2004.

[4] C. Poulliat,M. Fossorier and D. Declercq, “Design of non binary LDPC codes using their binary image: algebraic properties,”
ISIT 06, Seattle, USA, July 2006.

[5] A. Bennatan and David Burshtein, "Design and Analysis of Nonbinary LDPC Codes for Arbitrary Discrete-Memoryless
Channels,” IEEE Trans. on Inform. Theory, vol. 52, no. 2, pp. 549-583, Feb. 2006.

[6] L. Barnault and D. Declercq, “Fast Decoding algorithm for LDPC codes over GF(27),” The Proc. 2003 Inform. Theory
Workshop, Paris, France, pp. 70-73, March 2003

[7] D. Declercq and M. Fossorier, “Decoding Algorithms for Nonbinary LDPC Codes over GF(q)”, IEEE Trans. on Commun.,
vol. 55(4), pp. 633-643, April 2007.

[8] H. Song and J.R. Cruz, “Reduced-Complexity Decoding of Q-ary LDPC Codes for Magnetic Recording,” IEEE Trans.
Magn., vol. 39, pp. 1081-1087, Mar. 2003.

[9] H. Wymeersch, H. Steendam and M. Moeneclaey, “Log-Domain Decoding of LDPC Codes over GF(q),” The Proc. IEEE
Intern. Conf. on Commun., Paris, France, June 2004, pp. 772-776.

[10] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier and X.-Y. Hu “Reduced Complexity Decoding of LDPC codes” IEEE
Trans. Commun., vol. 53, pp. 1288-1299, July 2005

[11] R.M. Tanner, “A Recursive Approach to Low Complexity Codes”, IEEE Trans. Inform. Theory, vol. 27, pp. 533-547, 1981.

[12] L. Ping and W.K. Leung, “Decoding low density parity check codes with finite quantization bits”, IEEE Commun. Lett.,
4(2):pp.62-64, February 2000.

[13] J. Chen and M. Fossorier, “Density Evolution for Two Improved BP-Based Decoding Algorithms of LDPC Codes,” IEEE
Commun. Lett., vol. 6, pp. 208-210, May 2002.

[14] J. Zhang and M. Fossorier “Shuffled Iterative Decoding” IEEE Trans. Lett., vol. 53, pp. 209-213, February 2005

[15] N. Yacov, H. Efraim, H. Kfir, I. Kanter and O. Shental, “Parallel vs. Sequential Belief Propagation Decoding of LDPC
Codes over GF(q) and Markov Sources,” ArXiv Computer Science e-prints, cs/0605069, May 2006

[16] H. Wymeersch, H. Steendam and M. Moeneclaey, “Computational complexity and quantization effects of decoding
algorithms of LDPC codes over GF(q),” In Proc. ICASSP, Montreal, Canada, May 2004

[17] D.J.C. MacKay, “Online database of low-density parity check codes”, http://www.inference.phy.cam.ac.uk/mackay/codes/data.html.

[18] T. Zhang, Z. Wang and K.K. Pahri “On finite precision implementation of low parity check codes” In Proc. ISCAS, Sydney,
Australia, May 2001

August 8, 2007 DRAFT

Per bit per iteration No. max No. real add No. add over GF(q)
Compon (3(de — 2)ncpqq 1082 mm)/(de logs q) | 3(de — 2)(Nemar +mm)/(deloga q) | 3(de — 2)(Nepaq + mm)/(de logs q)
Compy N (Bdy — 4)nm logy(2n4m)/ (dv logs q) (8dy — 4)2nm /(dy logy q) 0

Comppost 0 nm/(loga q) 0

Comppermp 0 0 nm /(logs q)

TABLE I

COMPUTATIONAL COMPLEXITY OF THE MESSAGE UPDATES WITH THE EMS ALGORITHM AND MESSAGES OF SIZE N,

Fig. 1.

Variable Node

VP oVoT

Permutation Node

Check Node

Forward

V sizeny
(b)

Fig. 2. The recursive structure of a degree d. = 5 check-node (a); The elementary step (b)

August 8, 2007

Factor graph structure of a parity check node of degree d. = 3 for a non-binary LDPC code

DRAFT

Ll

|P
IEEE— .
B | T
v 012 n
: Olelesc! ' T 1 | |
J ——————————————————
= | 1l]e=0
SORTER
210 o[o[e[e]0]0
°
° L A ——
o M

Fig. 3. Diagram of the low complexity algorithm of the elementary step

1200 T T T T
n =64 —%— GF(64)
m —8— GF(256)
1000} i
o
2 800f i
[}
>
g
=
€
[0}
o 600} i
>
8
Q.
§4oo— 4
=16
200} 4
n._ =
I
o L L L L L L L L L
055 06 065 07 075 08 08 09 095 1 1.05

Threshold Value (dB)

Fig. 4. Estimated decoding threshold vs. Complexity

August 8, 2007 DRAFT

—Q— EMS GF(256) n,,
—k— EMS GF(256) nyy,
—O— EMS GF(256) np,

BP GF(256)

=9 ny, = 18 shuffled impl.
=18 1y, = 18 flooding impl)

= 18 1y, = 36 shuffled impl.

1.2 1.4 1.6 1.8

2 22

E,/No (in dB)

24 2.6 2.8

pon)

Fig. 5. EMS decoding algorithm, Shuffled vs. Flooding implementation, for an GF(256)-LDPC code (R=0.5, N;,=848 bits)

over BI-AWGN channel

—P— Ny = 16,1, =320 =4,0 =0
—— np, = 16,1, =32,b=5,4 =0
—— Ty = 8,7y, = 16,b=5,9 =0
—O— iy =8,y = 16,b = 4,0 =0
—O— Ny =8y, = 16,0 =4,q =1

—@— 1y, = 16,1, = 32 floating point]

BP floating point

I I I I

i i i

i i

12 14 16 18
Ey/No

2 22 24
(in dB)

2.6 2.8 3

Fig. 6. EMS decoding algorithms, different fixed-point implementations,for an GF(64)-LDPC code (R=0.5, N;,=852 bits) over

BI-AWGN channel

August 8, 2007

DRAFT

—— EMS{’{;?”, fixed point

10°F
—0— EMSEY, fixed point
—¥— BP GF(64) floating point
)
10°F g BP GF(256) floating point !
EELI'S&I;E;M)‘ fixed point
_7 e
10 & —— Eﬂ]S%’:é;‘)G) without offset fixed point 3
—— EIWngéM) without offset fixed point
107 I I I I I | L I |
1 1.2 1.4 1.6 1.8 2 22 2.4 2.6 2.8 3

E/Np (in dB)

Fig. 7. Comparison between BP and EMS decoding algorithms,for an LDPC code (R=0.5, N,=848 bits) over BILAWGN
channel

August 8, 2007 DRAFT

9

10 T T T
: —B— EMS GF(64) nm=6
—@— MS binary corrected
107" —O—EMS GF(64) nm=12| |
—%— EMS GF(64) nm=18
107
10°
=Rt
=
o 10
10°
107°F
107
10*3 i i i i i
1 1.5 2 25 3 3.5 4

Eb/N() (in dB)

Fig. 8. Comparison between EMS decoder and binary MS decoder, for an LDPC code (R=0.5, N,=504 bits) over BI-AWGN

channel

10
107 3
107 g
10° g
et
=
=
107 g
—%— EMS GF(256) n,=6
0 —&8— EMS GF(256) n,,=12
—B— EMS GF(256) n,,=18
10| —©— EMS GF(256) n,=36
—=e— MS binary corrected
10*7 i i i i i i

8 8.5 9 9.5 10 10.5 11 11.5 12 12.5
Eb/N(] (in dB)

Fig. 9. Comparison between EMS decoding algorithm and binary MS algorithm, for an LDPC code (R=0.5, N,=1008 bits)
over 256-QAM-AWGN channel

August 8, 2007 DRAFT

