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Low-Complexity Design of Variable Bandedge
Linear Phase FIR Filters With Sharp Transition Band

Ya Jun Yu, Member, IEEE, Yong Ching Lim, Fellow, IEEE, and Dong Shi, Student Member, IEEE

Abstract—This paper presents a very low-complexity design of
variable bandedge linear phase finite-impulse-response (FIR) fil-
ters with fixed sharp transition width. The idea is to first decom-
pose the input signal into several channels in the frequency domain.
The channel(s) involved with the transition band of the variable
filter due to the variation of the bandedge is (are) shaped to pro-
duce the required transition band, and then summed up with the
channels involved with the passband of the variable filter to pro-
duce the required frequency response. The proposed variable filter
has extremely low complexity when the transition band is sharp, if
compared with other techniques such as the Farrow structure. It is
possible that the computational complexity of the variable filter is
even lower than that of a corresponding fixed filter with the same
transition width and ripple specifications implemented in its direct
form.

Index Terms—Fast filter bank, finite-impulse-response filter, fre-
quency-response masking, variable digital filters.

I. INTRODUCTION

V ARIABLE digital filters have wide applications in
telecommunication, medical instrument, and digital

radios. The variable characteristics of digital filters mainly
present on the variable frequency response, such as variable
cutoff/bandedge frequency [1]–[10], and controllable fractional
delay [11]–[15].

Many researches have studied digital filters with variable
cutoff/bandedge frequency, where the transition width is fixed,
but the cutoff frequency, or the bandedges are variable over a
range of frequencies. The techniques of interest are generally
those constructing the filter in such a way that the cutoff/band-
edge frequency is controlled by only a single parameter.
Existing techniques include: First, a transform approach was
proposed by Schuessler and Winkelnkemper [1] in 1970. In this
approach, each delay element of a prototype filter is replaced
by a first-order all pass network to transform the frequency.
The resulting filter then has an identical frequency response as
that of the prototype filter, but on a distorted frequency scale.
Oppenheim et al. [2] proposed a new class of transformation
based on the above technique, so that the resulting impulse
response of the filter is finite and the phase of the filter is linear.
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Further studies and extension of this technique were presented
in [3]–[5]. Transformation approach generally increases the
filter length, and special filter structure is employed.

In the second class of technique proposed by Jarske et al. [6],
the variable filter coefficients are approximated by simple sine
functions of the cutoff frequency. Due to the direct control of
the filter coefficients, the length of the filter remains unchanged
when it is made variable. However, the direct approximation of
coefficient affects the coefficient precision resulting in the dete-
rioration of the magnitude response; the best stopband attenua-
tion achievable by this method is not more than 40 dB.

Recently, the Farrow structure [11] has received great atten-
tion in realizing variable bandedge filters [7]–[10]. In this tech-
nique, the overall filter transfer function is a weighted linear
combination of a few fixed linear phase FIR filters; the weights
are polynomial of the bandedge frequency, and thus are easy to
update. However, the computational complexity of the Farrow
structure is very high.

A straightforward but practical method to implement variable
bandedge FIR filter is to use a set of over-designed fixed filters,
each having several times sharper transition band than that re-
quired by the variable filter. Thus, each filter is taking care of
only part of the variable frequency regions [16]. At any mo-
ment of the operation, only one of the filters is used. Due to
the over-design of the filters, however, the computational com-
plexity of the filters are high, especially when the variable filter
requires sharp transition band.

It is well known that the computational complexity in terms
of the number of multiplications is inversely proportional to the
transition width. When the filters are made variable, the com-
plexity is at least as high as that of their corresponding directly
implemented fixed filters with the same transition widths. Vari-
able filters employing the Farrow structure and over-designed
set of filters have even higher computational complexity.

In contrast to the traditional variable filters that vary the band-
edge of the frequency response of the filters, this paper proposes
a method to efficiently shift the input signal frequency spectrum.
The frequency-shifted signal is shaped by a filter with a fixed
bandedge, and then shifted back to its original frequency region.
The proposed technique achieves the same effect of varying the
bandedge by shifting the signal along the frequency axis. By
making use of the low-complexity techniques in fixed filter de-
sign, the overall computational complexity of the variable filter
may even be lower than that of a fixed filter with the same tran-
sition width and ripple requirements implemented in its direct
form.

The remaining of the paper is organized as follows. Sec-
tion II reviews the low-complexity techniques on the design of
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Fig. 1. Structure of the frequency response masking filter.

fixed FIR filters, more specifically, i.e., the frequency response
masking technique and its extension—the fast filter bank.
Section III defines the variable bandedge filter specifications.
The principle and structure of the proposed variable filter are
presented in Section IV. Section V gives a detailed analysis
on the determination of the parameters of each building block
in constructing the variable filter. An implementation issue
regarding the realization of the modulation is discussed in Sec-
tion VI. In Section VII, the computational and implementation
complexities, as well as the passband-edge variation range,
of the variable filter are analyzed and compared. A design
example is given in Section VIII to show the efficiency of the
proposed technique.

II. FREQUENCY RESPONSE MASKING TECHNIQUE AND FAST

FILTER BANK

A very efficient technique to design fixed sharp FIR filters
with low complexity is frequency response masking (FRM)
[17]–[20]. The variable filter design proposed in this paper is
making use of the FRM and its extension—the fast filter bank
(FFB) [21]. This section reviews these two techniques.

Just as the name implies, FRM uses masking filters to obtain
the desired frequency responses. The structure of the FRM is
shown in Fig. 1. Every delay of a bandedge shaping prototype
filter, , is replaced by delays. The frequency response
of the resulting filter, , is a frequency compressed (by
a factor of ) version of that of , where the transition
band of is mapped to transition bands with transition
width shrunk by a factor of , as shown in Fig. 2(a) and (b).
The complementary filter of is obtained by subtracting

from a pure delay term, , where is the
group delay of . Thus, the entire frequency region from
dc to Nyquist frequency is decomposed into bands;
and its complement hold alternate band respectively. Using two
masking filters and , as shown in Fig. 2(c), to
filter the outputs of and its complement, the desired
frequency bands are kept and then combined to obtain the final
frequency response, shown in Fig. 2(d). The resulting filter has
very sharp transition width but very low complexity. Further
details on FRM may be found in [17].

An extension of the above technique produces the FFB. The
FFB has good frequency selectivity with very low computa-
tional complexity. An -channel analysis FFB decomposes the
input signal into channels in the frequency range from dc to
sampling frequency, where is an integer power of two. Let

, where is an integer. The -channel FFB con-
sists of levels of filters. The structure of an example of an
eight-channel analysis FFB is shown in Fig. 3.

In Fig. 3, the th level filter , for
, is a frequency compressed and shifted version of a prototype

Fig. 2. Frequency responses of FRM sub-filters.

Fig. 3. Structure of an eight-channel analysis FFB. � is a delay term of

� .

lowpass half band filter , of which the passband gain is
2. can be expressed as

(1)

where, is the bit reversed version of in bits. In
other words, is obtained by replacing each delay of

by delays, and then shifting the frequency by
.

The complimentary filter is related to
by

(2)

where, is a delay term of ; is the group
delay of .

and have complementary frequency re-
sponses as shown in Fig. 4(b), whereas the frequency response
of the prototype filter is shown in Fig. 4(a). The fre-
quency responses of the subsequent levels of prototype filters
are compressed by respective factors and then shifted by an ap-
propriate amount if necessary, to mask out the unwanted chan-
nels. For example, the cascade of , and

leads to the output of channel 5. The frequency re-
sponses of , and their complements are
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Fig. 4. Frequency responses of filters for deriving channel 5 in an eight-channel
FFB.

shown in Fig. 4(c) and (e). The intermediate and final masking
results are shown in Fig. 4(d) and (f).

The -channel FFB generates uniform filter
banks with transition bands centered at , for

. To have the filter banks with transition
width of , the passband edge of the prototype half band
filter is set to be . The passband edges
of the subsequent levels of the prototype filters are chosen as

(3)

for level .
The FRM and FFB provide efficient ways to design sharp

transition band filters and filter banks with very low computa-
tional complexity. However, they cannot be directly extended to
design variable filters. In the remainder of this paper, a novel ap-
proach is proposed to design variable filters by using FRM and
FFB.

III. VARIABLE BANDEDGE FILTER

This section defines the specifications of filters considered in
this paper. Traditionally, a design technique for lowpass filters
can be transformed to design highpass and bandpass/bandstop
filters. The technique proposed in this paper can similarly be ex-
tended to the design of highpass and bandpass/bandstop filters.
In this paper, only lowpass filters are considered.

Consider a lowpass filter with a passband edge of and
transition width of . The maximum passband and stopband
ripple magnitudes are and , respectively. is variable in a
range of , whereas , , , , and are fixed for a
given design. Thus, the frequency response of the variable filter,

, satisfies the following constraints:

(4)

for , , and .
The variation range of the passband edge, simply referred to
as variation range in the following of the paper, is defined as

. The set of specifications is illustrated in Fig. 5.

Fig. 5. Specifications for a lowpass filter with variable bandedge frequency.

Fig. 6. Symbol of an FFB.

Fig. 7. (a) Eight-channel FFB with transition width� . (b) Frequency response
of a discretely tunable filter with bandedge at discrete frequency ����������
� ��, for � � � and � � �.

IV. PRINCIPLE AND STRUCTURE OF THE PROPOSED

VARIABLE FILTER

Fig. 6 shows the symbol of an -channel FFB, where the
input signal is decomposed into channels. For expository
convenience, from this section onwards, the channels in the
frequency range to are considered, where, is the
Nyquist frequency. The channels are re-labeled as 0, ,

, and . The frequency response of the
th channel, represented as for

, is shown in Fig. 7(a). [The term is omitted
in Figs. 7, 8(b) and 10(a).] For an input signal with spectrum

as shown in Fig. 6, the output for channel is denoted
as , for and . For
real input, the output and are real, whereas

for is complex. Further-
more, is the complex conjugate of , for

. Therefore, summing and
results in a real output. The same effect can be achieved by
taking the real part of and then scaling it by a factor of
2.

A. Discretely Tunable Filter

From Fig. 7(a), it can been seen that FFB can serve as a vari-
able bandedge filter by combining the proper channels; the re-
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Fig. 8. Frequency responses and signal frequency spectrums in the course of
generating the continuously tunable filters.

sulting variable filter, however, has bandedges only at a set of
discrete frequency values. For example, an -channel FFB with
transition width may generate lowpass filter with passband
edge at for by
combining channels from channel 0 to channel . Fig. 7(b)
shows one of the variation of a lowpass filter with transition
width synthesized from an eight-channel FFB. By combining
channels 0 and , the resulting lowpass filter has passband
edge at . The bandedge of a filter synthesized by
combining the outputs of an FFB can be adjusted only in dis-
crete step; such a filter is called a discretely tunable filter.

B. Continuously Tunable Filter

An example is used to illustrate the principle of the design of
continuously tunable filter.

Suppose that it is desired to design a lowpass filter with fre-
quency response , as shown in Fig. 8(a), where
is the passband edge; the transition width of the lowpass filter

is . Suppose also that an eight-channel FFB
is adopted, and is not located at any of the discrete values

for , and 0, 1, 2, 3. The filter
synthesis process goes as follows.

First, a discrete tunable filter is synthesized by combining
channels 0, and to have the discrete stopband edge

Fig. 9. Bandpass filter � �� �, where ���� � real part of �.

smaller than . The frequency response of the discrete
bandedge filter, denoted as , is shown in Fig. 8(c). Let
the output of be .

Second, we attempt to synthesize a bandpass filter having fre-
quency response as shown in Fig. 8(d) in such a way
that the combination of and produces the de-
sired lowpass response.

Last, the output of the discretely tunable filter is then
added to the output of the bandpass filter to form the
desired output of the continuously tunable lowpass filter.

The bandpass filter proposed in the second step may
be obtained as follows.

1) A bandpass channel is selected from the FFB. In this
example, channel 3 with frequency response
as shown in Fig. 8(e) is selected. In case the transition
band of the variable filter in a given variation is located
in the transition bands of the FFB channels, the two ad-
jacent bandpass channels are selected and combined. The
detailed approach to selecting the bandpass channel(s)
is given in Section IV-C. Let the output of the selected
bandpass channel(s), i.e., in this example, be

, as shown in Fig. 8(f).
2) is shifted in the frequency domain by an appro-

priate amount to become , as shown in
Fig. 8(g).

3) is then filtered by a lowpass filter whose
frequency response, , is shown in Fig. 8(h), to pro-
duce the output signal
shown in Fig. 8(i). This lowpass filter is a fixed
filter with the same transition width, , as that of

. is referred to as bandpass shaping
filter. The purpose of shifting in the frequency
domain and using the bandpass shaping filter is to remove
the frequency component in corresponding to the
stopband of . The frequency component in

to be removed is shown as the shaded region in
Fig. 8(f).

4) is then shifted back to its original frequency loca-
tion to form as shown in Fig. 8(j).

5) is complex. The desired output of the band-
pass filter is obtained as twice the real part of

. The spectrum of the desired output of the
bandpass filter denoted as is shown in Fig. 8(k).

The block diagram of the bandpass filter is shown
in Fig. 9.
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Fig. 10. Illustration of the transition band location of the variable filter with re-
spect to the FFB channels. (a) Frequency response of an eight-channel FFB. (b)
Transition band of the variable filter is located within the passband of a single
FFB channel, and (c) Transition band of the variable filter is located at the junc-
tion of two FFB channels.

Fig. 11. Block diagram of channel selector for the construction of the discrete
tunable filter and bandpass filter, where � � ��� � ����� � � ��, and
� � ��������� �� ��. The switch is on when the condition on the side
of the switch is satisfied.

C. Channel Selection for the Construction of Continuously
Tunable Filter

For any given , the channels used to construct the discretely
tunable filter and the bandpass filter must be
determined.

To construct the continuously tunable filter using the tech-
nique described in Section IV-B, the stopband edge of the dis-
cretely tunable filter must not be larger than , but closest
to . is the stopband edge of the desired variable
lowpass filter, . The discretely tunable filter consists
of channel of the FFB where satisfies the constraint

(5)

Note that channel 0 is always selected for the construction of the
discretely tunable filter. As a consequence, the minimum band
of the variable filter that can be synthesized is that of channel 0.

In generating the output of the discretely tunable filter, be-
sides the output of channel 0, conjugate output of channel pairs
of for satisfying (5) are summed together. As the same ef-
fect of such summation can be achieved by taking the real part
of the output of channel , and scaling it by a factor of 2, in ac-
tual implementation, channel is used, while channel is
ignored, as shown in Fig. 11.

In the selection of bandpass channels for the construction of
the bandpass filter, there are two cases. In the first case, the tran-
sition band of is located entirely in the passband of
a single channel of FFB, for example, the variation of shown
in Fig. 10(b). The transition band of the variable filter is located
inside channel 1. Channel 1 is thus selected for the construction
of the bandpass filter. In the second case, the transition band of

is located at the junction of two channels, as shown
in Fig. 10(c); in this case, both channels, (channels 2 and 3 in
the example of Fig. 10(c)), are selected and their outputs are
summed to construct the bandpass filter. Considering the above
two cases, channel is selected for the construction of the band-
pass filter if

(6)

is satisfied. Note that channel is not selected to construct
the bandpass filter in any case. As a consequence, the maximum
band of the variable filter that can be synthesized is not larger
than the combination of channels from 0 to .

Based on (5) and (6), the diagram of the channel selector for
the construction of the discrete tunable filter and bandpass filter
is illustrated in Fig. 11.

The overall structure of the variable filter, consisting of
an FFB, a channel selector and a bandpass filter, is shown in
Fig. 12, where the channel selector block is shown in Fig. 11,
and the bandpass filter block is shown in Fig. 9.

V. SPECIFICATIONS FOR THE FFB AND THE BANDPASS

SHAPING FILTER

The determination of the various parameters of the FFB and
the bandpass shaping filter are discussed in this section.

A. Bandpass Shaping Filter

The function of the bandpass shaping filter is to remove the
frequency component of , the output of the selected
bandpass channels, that corresponds to the stopband of the
variable filter. is thus required to have a transition
band width of . Furthermore, depending on the location of
the variable bandedge , it is equally possible for to
retain or to remove the majority of the frequency component
of . This implies that both the passband and stopband
width of must be as wide as the spectrum width of

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 26,2010 at 00:46:42 EST from IEEE Xplore.  Restrictions apply. 



YU et al.: LOW-COMPLEXITY DESIGN OF VARIABLE BANDEDGE LINEAR PHASE FIR FILTERS 1333

Fig. 12. Overall structure of the variable filter.

. Therefore, it is reasonable to design the bandpass
shaping filter to have the same passband and stopband width.

Due to the above consideration, a half band filter with transi-
tion width is adopted as the passband shaping filter to reduce
the computational complexity.

Thus, the passband edge of the bandpass shaping filter is at
. The variable bandedge is aligned with

after it is shifted by along with the shifting of the
output of the selected bandpass channels . Therefore,

is to be shifted by in the
frequency domain.

B. Number of Channels of the FFB

Before a detailed computational complexity analysis of an
-channel FFB is presented in Section VII, it is obvious from

the structure of the FFB that the computational complexity of
the FFB increases with increasing . To keep the overall com-
putational complexity low, the number of channels of the FFB
should be as few as possible, subject to the condition that the
performance of the variable filter is not affected.

In the construction of the bandpass filter , either a
single channel or two adjacent channels are selected, as shown
in Section IV-C, depending on the location of the variable band-
edge. When , the frequency range occupied by the com-
bination of two channels is wider than the passband of the band-
pass shaping filter in the positive frequency range, as the band-
pass shaping filter is a half band filter. In such a case, aliasing
may be produced in the cause of bandpass shaping. Therefore,
a good choice of is 16, which corresponds to .

C. Ripples of the Prototype Filters of the FFB and of the
Bandpass Shaping Filter

The prototype filters used to construct the FFB are half band
filters, as described in Section II. Half band filters have the same
maximum ripple in the passband and stopband. Therefore, every
prototype filter of the FFB, as well as the bandpass shaping filter,
has equal maximum passband and stopband ripples. To simplify
the analysis, we assume that all the prototype filters of FFB and
the bandpass shaping filter have the same maximum ripple, .
Since the channels are generated using complementary filters,
and the combination of all channels is an idea all-pass filter, for
a level ( channel) FFB, the worst case ripple mag-
nitude is in both the passband and stopband, irrespective of
the number of channels being combined. The bandpass shaping
filter may introduce additional ripple for the final output, i.e.,

the overall ripple magnitude of the variable filter in the worst
case is .

Thus, to design the variable filter having passband and stop-
band ripple of and , the worst case ripple allowed for each
prototype filter and the bandpass shaping filter is

(7)

However, the ripples of the cascaded filters may cancel each
other. From our experience, the ripple magnitude of the proto-
type filters and the bandpass shaping filter may be relaxed to

(8)

The resulting variable filter, in general, still meets the given
specification. When is selected to be 4 as suggested in
Section V-B, according to (7), (8) is simplified to

(9)

D. Bandedge of the Prototype Filter

Since the transition band of the variable filter is determined by
the bandpass shaping filter , the bandedge of the proto-
type filter can have arbitrary value between 0 and .
It has been shown in Section II that the bandedge of ,

, determines the bandedges of all other level prototype filters.
Thus, is chosen in such a manner that the overall compu-
tational complexity of the FFB is minimized. The number of
nontrivial coefficients of a half band filter, with ripple and
normalized transition width of , is approximately given by

, (thus, the order of the half band
filter is approximately ), where is given by
[22]

(10)

Based on the prototype filter , filters are generated
for level . Among these filters, there are three types of filters
in view of the computational complexity: type A filter has real
filter coefficients and real input signal, type B has complex filter
coefficients and real input signal, whereas both filter coefficients
and input signal are complex for type C filter. To generate one
sample output, the number of multiplications for filters of type
A, B, and C are once, twice and four times of the number of
the nontrivial coefficients, respectively. Except that level 0 has
only 1 type A filter, all other levels have 1 type A filter, 1 type
B filter, and type C filters, for level . Thus, the overall
number of multiplications to compute one output sample for all
channels from channel 0 to channel is given by

(11)
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TABLE I
BEST CHOICES OF � AND THE CORRESPONDING COMPUTATIONAL

COMPLEXITY, � , FOR A � -CHANNEL FFB

Substituting , the normalized transition width of the th
level prototype filter, by , where for

is given by (3), we have

(12)

where .
The best choices of and the corresponding for 4, 5,

and 6, which corresponds to 16-, 64-, and 128-channel FFB, are
listed in Table I. The values for and 6 are listed to verify
that the computational complexity increases with increasing .

With the channel number and , the variation range of
the variable filter is determined. It is noticed from the variable
filter structure proposed in Section IV, that channel 0 is always
combined into the discretely tunable filter, such that the variable
passband edge is always not smaller than ,
i.e., . Meanwhile, channel
does not contribute to the passband of the variable filter in any
case. Thus, the upper bound of the variable passband edge

. For , this covers a very large range
of variation in the range from to .

It is possible to increase the variation range even further by in-
creasing the number of channels. However, doubling the number
of FFB channels results in more than doubling in the computa-
tional complexity of FFB as shown in Table I.

E. Design of the Bandpass Shaping Filter

The transition band of the variable filter is shaped by the band-
pass shaping filter, which is designed to be a half band filter.
Therefore, the passband edge of the bandpass shaping filter is

. According to the analysis in Section V-C, the al-
lowed maximum ripple, , is set . Thus, the specification
of the bandpass shaping filter is fixed.

To implement the bandpass shaping filter with low com-
plexity, the FRM technique for the design of half band filter
[23]–[25] is used when the transition band is sharp.

The compression factor in the half band FRM design is
chosen to be

(13)

where is the normalized transition width , is
given in (10), and

(14)

Detailed analysis and the optimum order of each subfilter
are provided in [25]. The overall complexity of the bandpass
shaping filter in terms of the number of multiplications is
approximately [25]

(15)

where a factor of 2 has been embedded in (15), since the band-
pass shaping filter is a type B filter. Equation (15) can be ap-
proximated by [25]

(16)

when is smaller than 0.108.

VI. IMPLEMENTATION OF FUNCTION

In the proposed variable filter technique, , the output
of the selected bandpass channel(s) is shifted by a frequency
of . The implementation of the frequency shifting in time
domain is to modulate the output signal, denoted as in
time domain, by . So, the
problem basically is to implement the functions of and

.
Standard method for obtaining the sine function and cosine

function values are table lookup and series expansion. To
achieve high frequency resolution with low computational
complexity and storage requirement, an efficient implemen-
tation makes use of angular decomposition, where the phase
angle is expressed as a sum of coarse and fine angles.

Eight multiplications are required to compute and
if the angle is computed by the sum of three terms. The

corresponding storage required is three words of memory
blocks, when the angle is represented with a precision of bits.
A good review for alternative techniques may be found in [26].

Once the sine and cosine values of are obtained, ,
a complex signal, is modulated by using four multiplica-
tions. The modulated signal is filtered by the bandpass shaping
filter, and the resulting output is demodulated by using 4
multiplications again. The value of may be derived in a
straightforward manner from that of , since is the
complex conjugate of .

Thus, in total, 16 multiplications are required for the modu-
lation and demodulation processes, if the sine and cosine values
of any angle are computed by the sum of 3 terms.

VII. COMPLEXITY ANALYSIS

In this section, the complexity of the proposed technique, in
terms of computational complexity and implementation com-
plexity is analyzed and compared with other variable digital
filters.

A. Computational Complexity

In the operation of the proposed variable filters, multiplica-
tions dominate the computational complexity. In this analysis,
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Fig. 13. Comparison of computational complexity of variable filter �� � to
that of the corresponding fixed filters �� � with the same normalized transition
width � and passband and stopband ripple � .

the computational complexity is measured in the number of
multiplications required to generate one output sample.

From the analysis in Sections V and VI, it is obvious that the
overall computational complexity , for a variable filter with
normalized transition width and ripple magnitudes and ,
is given by

(17)

for , where . is the computational
complexity of FFB to separate the signals into 16 channels, is
that of bandpass shaping filter, and is that of modulation and
demodulation of . For a given ripple specification, is
independent of the transition width of the variable filter. There-
fore, when the transition width of the variable filter is small, the
computational complexity for the FFB remains unchanged.

Consider a fixed filter with the normalized transition width ,
and ripple in both passband and stopband. The
passband and stopband ripple magnitudes are assumed to be the
same to simplify the discussion. The computational complexity
of the fixed filter, denoted as , is given by

(18)

From (10), (17), and (18), it can be seen that the increase of
due to the decrease of is slower than that of , since is
proportional to , whereas is proportional to .

The plots of the curves of and versus for typical
values of 0.1, 0.01 and 0.001 are shown in Fig. 13.

It can be seen from Fig. 13 that when is smaller than 0.0057,
0.0083, and 0.0093, for 0.1, 0.01 and 0.001, respectively,
the computational complexity of the variable filter is even lower
than its corresponding fixed filters with the same and .

B. Implementation Complexity

The implementation complexity of the computational ele-
ments is consistent with the computational complexity, i.e.,
the number of multipliers to be implemented is the same as
the number of multiplications to generate one output sample.

Besides the computational elements, the non-computational
components used in the proposed technique includes digital
comparators, delay elements and memory block. The required
memory block size in the proposed algorithm has been ana-
lyzed in Section VI. In this subsection, the implementation
complexity in terms of the number of digital comparators and
delay elements is discussed.

1) Digital Comparator: Digital comparators are used to con-
trol the switches in the channel selector, as shown in Fig. 11. In
an -channel FFB synthesis, the required numbers of switches
and comparators are both . While switches could be
synthesized using transmission gates, the implementation com-
plexity of a comparator is comparable to (and generally is less
than) that of an adder with the same bit width. An adder could
directly serve as a digital comparator, since the sign of the sum
of one operand and the negative value of the other operand
is the result of the comparison. When the difference of the
two operands are not required, as in the current case, simpler
components could be used. Compared with the implementation
complexity of the computational elements, the implementation
overhead due to the digital comparators is negligible.

2) Delay Element: To synthesize the FFB, each delay ele-
ment in the prototype filter in level is replaced by
elements. Meanwhile, in the bandpass shaping filter, the half
band filter is realized in FRM technique, where each delay in the
bandedge shaping filter is replaced by delays. is given in
(13). Following the same analysis as in Section V, it is obtained
that the total number of delay elements in the proposed tech-
nique is approximately

(19)

when . This value generally is higher than the number of
delay elements required in a fixed filter with the same transition
width and ripples.

C. Variation Range

The variation range, , of the proposed technique is
determined by the number of FFB channels used in the realiza-
tion, as discussed in Section V-D. The variation range may be
increased at the cost of increasing complexity. The plots of vari-
ation range versus estimated computational and implementation
complexities for variable filters with , and

synthesized in the proposed technique are shown
in Figs. 14 and 15, respectively. The estimated complexities for
the technique reported in [16] are also plotted for comparison.

Fig. 14 shows that the computational complexity of the pro-
posed technique is much lower than that reported in [16] when
the variation range is not greater than . Beyond that, the
computational complexity of the proposed technique increases
in a piecewise constant mode, but still lower than that of [16]
until . The computational complexity of the proposed
technique exceeds that of [16] in extreme cases where the vari-
ation range is larger than .

In the synthesis of the variable filters, the proposed technique
uses more delay elements, whereas the technique reported in
[16] requires a large memory size to store the coefficient values,
as shown in Fig. 15. The number of words of memory plotted in
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TABLE II
COMPUTATIONAL AND IMPLEMENTATION COMPLEXITY COMPARISON FOR THE FILTER WITH �� � �����, � � ����, � � �����.

� IS IN THE RANGE OF �������� ����	�
 FOR THE VARIABLE FILTERS

Fig. 14. Computational complexity �� � versus variation range for variable
filters with � � ����, � � ����� and �� � �����.

Fig. 15. Implementation complexity versus variation range for variable filters
with � � ����, � � ����� and �� � �����.

Fig. 15 for the proposed technique is obtained assuming that the
word length of the phase angle in the sine and cosine value
lookup table is 18. The same assumption is used in Table II.

Another popular technique that is commonly used is the
Farrow structure [10], which is notorious for its high computa-
tional, implementation and optimization complexity, especially
for very sharp transition band filter design. Since the technique
proposed in [10] uses a trial and error method to determine
the number of filters and filter orders, it is not able to get an
estimation of the filter complexities over a wide variation range.
To have a sense of the complexity of the technique reported in
[10], a small variation range of (more specifically,
varying within the range from to ) is designed,
while the other specifications remain at ,
and . A linear programming with more than 1,000
unknown variables and about 20,000 constraints is solved.
The optimization algorithm runs over 3 hours on a PC with a

3-GHz CPU. The resulting design requires 2160 multipliers and
2156 delay elements. This example shows the extremely high
computational, implementation and optimization complexity
of the Farrow structure even for such a small variation range.
Increasing the variation range requires more and higher order
filters in the Farrow structure, if they could ever be optimized.

VIII. NUMERICAL EXAMPLE

A variable filter with the specifications of ,
and is designed.

According to the analysis in Section V, a 16-channel FFB
is adopted. Thus, the passband edge of the variable filter may
vary in the range from to . The passband edge

of the prototype filter is chosen to be , and
the passband edges of the subsequent level prototype filters

, for 1,2,3 are , and ,
obtained using (3). The passband and stopband ripples of these
filters are set to according to (9). The
estimated filter orders and actual filter orders satisfying these
bandedge and ripple requirements are 30, 16, 7, 4 and 34, 18,
10, 6, respectively, for for 0,1,2,3. All these filters
are half band filters.

The passband edge of the bandpass shaping filter is
and its ripple magnitude is 0.0005. The compression factor
is chosen as 9 according to (13). The filter lengths for the three
subfilters , and in the FRM structure [23]
are 83, 49, and 51, respectively, where filters and
are half band filters, and filter consists of terms with
only odd power of .

The total computational complexity is

(20)

For comparison, a fixed filter with the same , , and re-
quires 510 multiplications to implement. This verifies the anal-
ysis that the variable filter may have lower computational com-
plexity than its corresponding fixed filter with the same transi-
tion width and ripple requirements. The proposed variable filter
structure is the first technique that achieves such low computa-
tional complexity.

The computational and implementation complexity com-
pared with the fixed filter, as well as the techniques reported in
[16] and [10] for this particular example is listed in Table II.
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Fig. 16. Magnitude responses of the variable filters for �� � �����, � �

����, � � ����� and � � ������� �������������� � � � � ���	
�.

In Table II, “ ” refers to “much larger than.” The values for
the technique reported in [10] are estimated based on the design
with variation range of .

The complexity reduction of the proposed technique in both
computation and implementation is attributed to the FRM tech-
nique, although directly application of FRM may not achieve
the same effect. The price paid for all these savings is the in-
crease in group delay.

In the above, as well as in Section VII, when counting the
number of multiplications, the symmetry of the coefficients of
all design techniques is not considered. If the symmetry of the
coefficients is considered, the numbers of required multiplica-
tions are reduced by a factor of two. Note that the symmetry of
the coefficients has been considered in calculating the memory
size of the technique reported in [16]

The magnitude responses of the variable filter for
, obtained using

the proposed technique, are shown in Fig. 16.

IX. CONCLUSION

This paper proposed an efficient approach to designing vari-
able bandedge FIR filters with sharp transition band. The vari-
able filter is constructed from a fixed FFB and a fixed half band
filter, whereas the variation of the filter is realized by shifting
the signals in the frequency domain. Since fixed filters plus
FRM technique are used, the proposed technique achieves ex-
tremely low computational complexity when the transition band
is sharp.
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