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Abstract— We consider the problem of designing distributed
scheduling algorithms for wireless networks. We present tw
algorithms both of which achieve throughput arbitrarily cl ose
to that of maximal schedules, but whose complexity is low
due to the fact that they do not necessarily attempt to find
maximal schedules. The first algorithm requires each link to
collect local queue-length information in its neighborhoal, and
its complexity is otherwise independent of the size and topagy
of the network. The second algorithm, presented for the node
exclusive interference model, does not require nodes to dett
gueue-length information even in their local neighborhood, and
its complexity depends only on the maximum node degree in the
network.

Index Terms—Wireless Scheduling Algorithms, Low-
Complexity and Distributed Algorithms, Provable Efficiency
Ratios, Maximal Scheduling.

|. INTRODUCTION

node-exclusive interference model, is a special case dfrgte
model where the interference set of a link consists of akdin
that share a common node with the first link. The first model
covers a wide range of collision models that arise in prattic
wireless networks while the second model is applicable to
Bluetooth or FH-CDMA type networks [13], [14].

The study of low-complexity scheduling algorithms has its
roots in the high-speed switching literature where maximal
matching has been studied as an alternative to the max-
weight algorithm. Upper bounds on the throughput loss due
to the use of maximal matching have been derived in [15],
[16]. Recently, these ideas have been successfully apfdied
wireless networks in [6], [17]-[19]. These papers show that
low-complexity maximal-matching-type algorithms acléex
provably lower-bounded fraction of the maximum possible
throughput, where the lower bound is a function of the local
topology of the network. In particular, it was shown in [6] 7]

In this paper, we present distributed algorithms for linkhat the lower bound i$/2 for the node-exclusive interference
scheduling in wireless networks. Since interfering links imodel while [18], [19] show that the lower bound is the ineers

a wireless network cannot transmit at the same time,

scheduling policy is required to resolve the contentiomvieen

oftthe maximum number of links that can be simultaneously
scheduled in an interference set.

various links attempting transmission. The well-known max The main drawback of the algorithms in [6], [L7]-[19] is

weight and back-pressure scheduling algorithms introducgat they focus primarily on computational complexity bat d

in [2], [3] are throughput-optimal, i.e., they can stalBlithe not consider distributed implementation. For example hia t
system under the largest set of offered load vectors. Howevgode-exclusive interference model, each valid scheduke is
they are centralized algorithms and have high computatiomaatching. (A matching in a graph is a set of edges such that
complexity. Using the max-weight or back-pressure algamé no two edges share a common node). A maximal matching
for scheduling, a number of recent papers have studied #¥h be found as follows: each node requests a connection to
problem of joint congestion control, routing, and scheatylli one of its neighbors. A connection is accepted if the node
in multihop wireless networks [4]-[11]; see [12] for a swve receiving the request is not already part of the matching;
The focus of this paper is on designing distributed schedigtherwise, the node requests again. However, such a prafcess
ing algorithms with low complexity and low implementatiomot implemented in a structured fashion, would require many
overhead. We consider two simple collision models in thigunds of requests and incur a huge overhead, negating the

paper: one where each link is associated with an interferengenefits of the simplicity of maximal matching. We note that
set such that the link cannot be scheduled if any other link {is problem is unique to wireless networks. In contrast, in
its interference set is scheduled. The other model, caled fmany high-speed switches, a matching can be implemented by
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a central controller. Even if a central controller is notikalae,
input and output ports are just one hop from each other and
thus message passing is relatively easy in high-speedmsitc

In view of the discussion above, the goal of this paper
is to devise low-complexity, low-overhead distributed alg
rithms for multi-hop wireless networks. We will present two
distributed algorithms which we summarize below:
(a) The first algorithm, which we call Q-SCHED, uses queue-
length information in a local neighborhood of each link to
perform scheduling. Q-SCHED is a randomized algorithm
which works in two phases: in the first phase, each link tosses
a coin to determine if it will participate in the schedule the



2 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. XX, XXXXXXX 200X

second phase, the links that decide to participate use atepe-much easier to satisfy than (1). Both Q-SCHED and BP-
collision resolution protocol to determine if they will bappof SIM exploit this insight to achieve throughput guarantees
the schedule or not. Such a two-phase algorithm was orlginatomparable to maximal scheduling, but with complexity that
proposed in [20] and later generalized in [21], but the kejoes not increase with the size of the network.
contribution in this paper is to modify the algorithm to amfe The assumption that we make in designing the above algo-
dramatically larger throughput and to extend the algorithnthms is that time is slotted and synchronized in the newor
to the case with multi-path routing. We will show that th&Synchronizing time slots in a large network used to be a
computational complexity of Q-SCHED is independent of theifficult problem, but recent advances in clock synchrotida
network size and throughput, although in order to obtain ttegorithms have made it possible to synchronize clocksriela
gueue-length information in a local neighborhood, Q-SCHEBetworks with very low complexity, see [24], [25]. In additi
requires communication overhead that is a function of the scheduling, another important issue is power controttvhi
maximum node-degree of the network. we do not address in this paper. We refer the readers to [11]
(b) The second algorithm, which we call BP-SIM (short fofor distributed implementation of power control in mult{n
bipartite simulation), is also a randomized algorithm boesl wireless networks. In addition, the work in [26] also cors&l
not require queue-length information. BP-SIM is preseffieed a low-complexity randomized algorithm (the Random Trans-
the node-exclusive interference model, and is an adaptafio mitter Selection algorithm) under a more general settini wi
the algorithm in [22], [23] for the case of wireless networksnulti-receiver diversity. However, the efficiency ratio tife
The algorithm proceeds by emulating a bipartite graph: eaBandom Transmitter Selection algorithm tends to be lower
node randomly decides to beleft or a right node. Then than the algorithms developed in this paper (e.g., its efficy
connection requests are made frdefi to right nodes. The ratio will decrease as the node-degree increases even theder
key distinction between wireline networks considered iR][2 node-exclusive interference model).
[23] and multi-hop wireless networks is that the connection The rest of the paper is organized as follows. In Section Il
requests collide in the wireless networks and a contentiae present the network model that is used in the rest of the
resolution protocol is required. We design such a protocpaper. In Section Il we present the Q-SCHED algorithm,
and show that the overall complexity of BP-SIM is a functiostudy its performance and discuss a simpler variant of the al
only of the maximum node degree and not of the size of tlygrithm specifically for the node-exclusive interferencedel.
networks. In Section IV we present BP-SIM scheduling algortihm,
One of the main reasons that Q-SCHED and BP-SlIktudy its performance and discuss simulation results. Tinen
require lower complexity than maximal scheduling is thaection V, we extend the results to multihop networks and to
they do not attempt to compute a maximal schedule. Undbe case when each source-destination pair can have raultipl
maximal scheduling, at each time slot, every backloggdd lipaths through the network. We then conclude in Section VI.
has the following property: either the link is scheduled or
some other link in its local neighborhood is scheduled. Agt 1. MODEL
denote the event that such a property holds for a given link ) )
[. Consider a randomized algorithm that requires a constantVe co_n3|der a erele_ss_ network 8f nodes. LetG(V, E_)
number of iterations to achieve this property with prokiapil be the directed connecpwty graph Of_ the network wheres
P[A)] > 1 — ¢ for a given linkl. A straightforward way of e set of noqes and’ is the set of links. For each € V,
approximating a maximal schedule is to make sure that, wigjother node’ € V' is a neighbor ob if they are end points

probability 1 — e, this property holds foall links, i.e., of a link. Let N(v) be the set of neighbors of. The degree
of nodew, d(v), is defined as the number of neighborswpf

PMA]>1-e (1) i.e., d(v) =|N(v)|, where|K] refers to the cardinality of the

set K.
It turns out that, in order to satisfy such a requirement, we £ aach linki e E, letb(l) ande(l)
would need2(log L) number of iterations wherg is the total y,qe and receiver node, respectively. Two links are neighbo

number of links in the network [22], [23]. As a result, thé¢ ey share a common node. Every liike E interferes
complexity of computing a maximal schedule increases Wifiih a set of other links. LeE; be the interference set f
the size of the network. In contrast, in this paper we shoy adopt the convention thag &, i.e

that, in order to achieve a throughput guarantee similanab t
of maximal scheduling, we do not need to achieve (1). In E={yu{l':1I" € E andl’ interferes withl}.
particular, for BP-SIM, we only ensure that

denote the transmitter

We assume that the interference relationship is symmetric,
P[A]] > 1 —¢, for all links [. (2) e, if ke & thenl € &. This interference set varies with
different communication models [6], [18], [19], [27]. In&h
In Q-SCHED, we ensure that node-exclusive interference model, also known as the @pe-h
PlA]>1—¢ 3) interference model&; is the set of one-hop neighbors bf
- including /. A valid schedule in this model is a matching.
for any link [ such that the sum of the queue-length in it$his model has been studied in [6].
neighborhood is (roughly speaking) the largest among allWe assume that time is divided into slots of equal length.
neighborhoods. Clearly, the requirements in (2) and (3) afssociated with each link is a stochastic arrival process
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{A;(n)}, where A;(n) is the number of packet arrivals toWhen the backoff timer for a link expires, it begins transmis
link [ in the slot n. We assume that each packet is afion unless it has already heard a transmission from one of
unit length. Let\; = E[A;(n)]. For simplicity we assume its interfering links. If two or more links that interfere dia
that the arrival process isi.d. across time, i.e.A(n) := transmissions simultaneously, there is a collision andenain
{Ai(n), Az(n),....A|g|(n)} is ii.d. acrossn, although the the transmissions is successful. Further, any link thatshea
results of this paper can also be extended to more gendha collision will not attempt transmission in the rest oéith
arrival processes. It is further assumed that the arrivetgss time-slot. (Note that here we have assumed that each link
has bounded second moments, i.e., Govyn), Ax(n)) < oo can always overhear its interfering links. In practice, vem c
for any two links! and k. Let D;(n) denote the number of precede each link’s transmission by an RTS/CTS exchange im-
packets that link can serve in the time slot. The capacity mediately before the transmission (for more details, sdieyPo
of each link is the number of packets that the link can serve dp in Section IV of [20]). Then, it is sufficient if either end-
one time slot and is denoted fay. Let d;(n) be the indicator points of the link can overhear the RTS or CTS transmissions
function that indicates whether liriks scheduled or not. Then, from interfering links. Note that such an RTS/CTS procedure
Di(n) = ¢di(n). Also we defineaq;(n) := A;(n)/c;. The also addresses the potential hidden-terminal issues.)
system state is defined as The Q-SCHED algorithm can be thought of as a two-phase

Q(n) = ( (n), ga(n) ( )) algqrithm. In thgfirstphase, each Iihﬁrstdecide_s whether or

Qi) 4240, -~ 4| B| not it would participate in the schedule for that time slatolr

whereq;(n) is the number of packets queued at linat time algorithm, this phase corresponds to choodihg, ..., M} or

n, and the dynamics are given by (M +1) respectively. In the next phase, each participating link
o B + chooses a number betwegérand M and attempts to transmit
a(n+1)= [ W) + Ai(n) Dl(n)} starting from that mini-slot. This backoff procedure serte
where[-]* denotes the projection {0, o). reduce collision, and thus should lead to a higher capacity

Let X = [A1, ..., \jg|]. We define the capacity region undecompared with a policy without backoff, e.g., [28]. While
a given scheduling policy as the set of offered load vectdata transmission may start at any mini-slot, the length of
X under which the system can remain stable. hetlenote each packet (plus the corresponding acknowledgment packet
the largest capacity region under all scheduling policis [ if required) is assumed to be smaller than the data trangmiss
A scheduling policy is said to guarantee an efficiency rafio glot so that a transmission ends within the time-slot. Therab

~ if it can stablize the system at any offered loadyih. idea of using two phases was first introduced in [20], [21 an
is essential to achieve high efficiency ratios with a cortstan
IIl. ALGORITHM 1: Q-SCHED number of backoff mini-slots. Here the probabilities in (5)

For Q-SCHED, we assume that at the beginning of eablave been modified to achieve a higher guaranteed throughput
time-slot, every linkl knows the queue-lengths of all links Further, we complete the proof in [20], [21] by establishing
in its interference sef; and also the queue-lengths of all linksstochastic stability.
in the interference sets df € &;. A slight variation of this
algorithm for the node-exclusive model will also be dis@dss B. Analysis

where the queue-length information of only the immediate ) ) ) )
interferers is required. We now present the algorithm. We now proceed to analyze this scheduling policy. Define
the Lyapunov function

A. Scheduling Policy

_ A _ Z a(n (6)
Each time slot is divided into two parts: a scheduling slot el
and a data transmission slot. The links that are to be schédul
are chosen in the scheduling slot and the chosen links tiagnsm Lemma 1: The Q-SCHED schedullng policy guarantees
their packets in the data transmission slot. The schedslotg that for anye > 0 and constants’;,C; > 0, there exists
is further divided intoM mini-slots. For ease of exposition,@ constant? such that ifV'(n) > R, then for anyn € [0, 1]
in what follows, we will drop the index from the notation and for any linkk such that

¢;(n) when there is no confusion. The algorithm proceeds q >
as follows: at the beginning of time-slat, each link! first 125: a — G~ Gae), )
computes con
. L @ the following holds,
1=« qr]
max; e 1 ]\/[ 1
cer2pee, o] >~ Pr{Link I is scheduleyi > n (1 _logM)+1 e) .
wherea = log (M). Each link then picks a backoff time from /= M
{1,2,...., M + 1} where pickingM + 1 implies that the link ‘Proof: See Appendix . [ ]
will not attempt to transmit in this time slot. The backofihi We present the following proof for the special case of
(Y) is chosen as follows: bounded arrivals, i.e., we assume that there exists a curista

Pr{Y = M+1} = P ) such that4;(n) < 6 for all l andn. The proof can be exten(_jed
s o to cover more general arrival processes by upper-bountang t
Pr{Y =m}=e v —e P m=12 ., M. number of arrivals in a time-slot with high probability.
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Lemma 2: Q-SCHED scheduling policy guarantees that fofDistributed Coordination Function) operates, the irdezfice
any 6 > 0, there exists a positive integer constditand a degree is bounded by [27].

positive constan3, such that ifi’(n) > B and Consider a network whose interference degreeCis It
A\ log(M) + 1 implies that in the interference range of any given linkat
Z - gT —4e, for all links k € E, most IC links can be scheduled at the same time. Therefore,
g, the offered load that the network can possibly support must
then in the time-slot, + H, the following holds, satisfy \
(n+ H) 3" 2L <K for all links k.
Pr{y ‘”07 <V(n)—He}>1-6 ieg, ©
1
1€k According to Theorem 1, Q-SCHED can stabilize the network
for all links k € E. for any offered load such that, for some> 0,
Proof: See Appendix II. | b\ log(M) + 1
We now prove the stability of Q-SCHED. Z C—l <1- % — 4e for all links k.
Theorem 1: Consider the Markov chaifQ(n)}. Under e,

Q-SCHED scheduling algorithm this Markov chain is positiv&ince the parameter can be arbitrarily small, this implies
recurrent if for some: > 0 that the guaranteed efficiency ratio of Q-SCHED can be
A 1 M 1 ) ; ; 1 _ log(M)+1 g
Z Ay og(M)+1 Ae for all links & € E. arbitrarily close tog (1 — =257~ ), whereM again is the

= a M number of backoff mini-slots. AW/ — oo ande — 0,

Proof: Note that from Lemma 2 we can infer that forthis guaranteed gfficiency ratio approach_e!f{. Recal_l that
any § > 0 there exists a constar® and a positive integer maximal scheduling can guarantee an efficiency ratio /@€

constantd such that ifV(n) > B, then [18], [19]. Hence, the guaranteed efficiency ratio of Q-SCHE
can be arbitrarily close to that of maximal scheduling.
Pr{V(n+ H) - V(n) < —HelQ(n)} = 1 - L3, We next comment on the complexity and overhead of Q-

whereL is the total number of links in the network. SCHED. Once each link obtains the queue-length information
Since the arrivals and departures are both upper-bound@M its neighboring links, Q-SCHED only take® mini-
there exists a constant such that slots to. qompute a schedule..Not.e that in practice the length
of a mini-slot cannot be arbitrarily small. As a result, the
Z a(n+1) Z q(n) <C @) value M corresponds to the amount of time required for
a a - computing a schedule. Thus, the computation time of Q-
SCHED is independent of the size and the topology of the
for all time-slotn and link k. This implies thatl’(n + H) —  network. However, it does incur additional communication
V(n) < HC. DenotingEx ] = E[|X], we have overhead for Q-SCHED to exchange the queue-length infor-
_ _ _ mation. This communication overhead increases quadigtica
Eqm) [V(n+H) V(n)] S —He(l - Lo) + HCLS with the the number of links in the two-hop neighborhood,
= H((C+6)L5_ 6)- which is bounded when the maximum node-degree of the
we get network is bounded. Hence, given a small positive number
e and a maximum node-degree, Q-SCHED can guarantee an
He efficiency ratio ofl /I — ¢ with both complexity and overhead
Eqwm [V(n+H) B V(nﬂ = 2 <0 independent of th/e size of the network. In contrast, while

wheneverV/ (n) > B. Since the seB = {Q(n) : V(n) < B} maximal-scheduling guarantees an efficiency ratiol gk,
is bounded, by Foster’s theorem [29] we have proved that ti{& complexity increases logarithmically with the size bet
Markov chain{Q(n)} is positive recurrent. m nhetwork [23].

le&y €&

Thus, if§ < m

C. The Efficiency Ratio and Overhead of Q-SCHED D. A Special Case

Here we adopt the definition of thimterference degree The scheduling algorithm discussed above is valid for any
in [18], [19], [27]. The interference degree of a lirkis interference model including the node-exclusive intenee
the maximum number of links within its interference rang@0del, as long as the interference relationship is symmetri
that can be activated simultaneously without interferirighw However, in the special case of node-exclusive interfezenc
each other. The interference degreof a network is the model, an even simpler variant of this algorithm can be used.
maximum interference degree over all links. A nice property€ only difference is in the calculation of the tei: each
of this notion is that for a number of common interferencik  computes
models, the value of interference degree can be bounded g_i
independently from the network topology. For example, for b= O‘max[z S )
the node-exclusive interference model, the interferenee d keFo) en? k€ Fe) ek
gree is bounded bg. For the so-called bi-directional equal-where F; denotes the set of links incident of and b(!)
power model, which resembles the way IEEE 802.11 DC&hd ¢(l) denote the transmitter node and the receiver node,
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respectively, of link. In this case we choose= log (2M)/2. with both analytical and numerical results that the comipfex
Thus, each link requires the knowledge of the queue-lengitfsBP-SIM is low for networks with even a few hundred nodes.
of only those links that interfere with it. We can prove thati BP-SIM is presented for the node-exclusive interference

this case if model. To be more specific, we refer to the following FH-
CDMA system that adheres to the node-exclusive interferenc
A1 log(2M) _ . . : )
E — < 57— —5-——forallnodesi €V,  (9) model. Each node is assigned a unique orthogonal fast-hgppi
Cl 2 2M . h . .
leF; sequence. At each time, a node can be either serding

thenQ(n) is positive recurrent and the system is queue-lengficd®, or in areceivingmode. If it is in a receiving mode,
frequency hops according to its own hopping sequence.

stable. We do not provide the proof since it is very similar tBS_ L - _ '
If it is in a sending mode, it uses the hopping sequence

the proof in Section III-B. ) _ ) | )
of the intended receiver in order to send information to the

Remark: Q-SCHED policy is considerably similar to the = ] k
Policy V (for the node-exclusive interference model) anffCeiving node. Clearly, if two or more sending nodes want to

Policy W (for the two-hop interference model) obtained isend information to the same receiver at the same time, their
[30]. Here we comment briefly on the main differences in th@€ssages will collide. Hence, such a system can be modeled
results. First, under the two-hop interference model dised Well using the node-exclusive interference model. Finatlis

in [30], the performance guarantee of Q-SCHED proved in Oa§sumed that the maiqr_num degree *of any node in the network
paper is often higher than that of Poliéy in [30]. Specifi- 'S UPPer-bounded by*, i.e., d(v) < d* for all nodesu.

cally, in this paper we prove that Q-SCHED can guarantee an . .

efficiency ratio close td /K, where the interference degrie A Sc_hedullng Policy _ o _

is defined as the maximum number of links in an interferenceAS in Q-SCHED, each time slot is divided into two parts:
range that can be activated simultaneously. In [30, Préipasi & scheduling slot and a data trapsm|SS|on sIot._ The linkis tha
3]’ itis proved that PO“CW can guarantee an eﬂ:iciency rati(ﬁ.re to be scheduled are C.hosen n the SCheduhng slot a.nd the
close to1/7, wheren is the maximum number of links in chosen links transmit their packets in the data transnmissio

a one-hop neighborhood. Althougti can be equal ta: in slot. The scheduling slot is further divided int® rounds,
the worst case, it is often much smaller tharin practical whereK is a constant to be chosen later. Each round contains
topologies. For example, under the bi-directional equalgr 2M mini-slots. Initially none of the links are in the schedule.
model in [27],K is bounded by8 while 7 can be unbounded. In €ach roundi a matchingM; is formed by adding links
Hence, Q-SCHED is able to provide a higher performané®@m the graphG to the matchingM;_, (obtained from the
guarantee than Policl”. Second, in this paper, our proof ofPrevious round). The matchinytx is the final schedule.
stochastic stability is different from the fluid-limit apch ~_ We define a few terms used in describing the algorithm.
in [30]. Additionally, in the next section, we also providéeach nodev maintains and updates a list gfotentially
an alternative algorithm which does not require nodes @yailableneighboring nodes as follows. At the beginning, this
collect any queue-length information from its neighbonscts it is set to contain all neighboring nodes of nodeThen,

an algorithm allows further trade-off between the scheyuli in €ach round if node discovers that a neighboring node

efficiency and the signaling overhead required to colleegu has been matched (using a procedure to be described below),
length information. then nodeu will be removed from the list. (Note that even

if a neighboring node: is matched, it may still be in node
] v's list of potentially availableneighbors ifv does not know
IV. ALGORITHM 2: BP-SIM whetheru is matched or not.)

While Q-SCHED can compute a schedule in a constantWe said that a link is backlogged if its queue backlog is
number of mini-slots, it requires knowledge of queue-langgreater than or equal to the capacity of the link. A neightpri
information. This may or may not be difficult to obtain. Atnode of nodev is said to be @acklogged neighboof v if
moderate loads, queue-lengths will not be very large; thule link fromwv to this neighboring node is backlogged.
gueue-lengths can be transmitted using a small number ofMe now describe the BP-SIM algorithm. Th&/ mini-
bits along with the data packets. Even if the queue-lengthi®ts in each round are further divided into two subgroups:
are large, changes in queue-lengths can be transmitted uginini-slots 1 to M form the requesting group, and mini-slots
a small number of bits if the arrival process is boundeds + 1 to 20/ form the responding group. In each round, BP-
However, in practice such queue-length information exgeanSIM emulates a bipartite graph by first dividing the nodes
has to be performed asynchronously and thus may redueedomly intoleft nodes andright nodes. Specifically, the
the performance of the algorithm. In this section, we presemund proceeds as follows. For each nedé# it is not matched
an alternative algorithm, named BP-SIM (short for bipartityet, and it has at least one backlogged and potentiallyablail
simulation), that requires no queue-length informatiors. Aneighbor, such a node becomes either Eft node or aright
in the case of Q-SCHED, BP-SIM does not attempt to findode with probabilityl /2 each, independently of other nodes.
a maximal schedule. Instead, BP-SIM ensures that, for aB®yherwise, (i.e., if the nodeis already matched, or if it has no
backlogged linkl, the probability that a link irf; is scheduled backlogged neighbors, or if none of the backlogged neighbor
is high. This stems from the key observation that the proof are potentially available), such a nodébecomesight.

[18] for the stability of maximal schedules can be adapted For any node, sayy;, that becomedeft, it chooses a
easily even when the schedule is not maximal. We will shopartner, sayv;., uniformly and randomly from the set of
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backlogged and potentially available neighborepofNodev; matched. We note that it is important to keep track of such
then randomly and independently chooses a mini-slot betwdaformation, because otherwise a left node may repeatedly
1 and M uniformly, and sends a scheduling requesitoin request a matched node. The discovery procedure described
that mini-slot. This scheduling request contains the IDad@ above carefully resolves this issue. Finally, we also nbg t

v, the algorithms in [22] and [23] are designed to compute

For any node, say,, that becomesight, it switches to maximal matchings. Thus, even if we ignore the collisions
a receiving mode in mini-slotd¢ to M and listens to the due to simultaneous requests to a node, they takeg n)
scheduling requests from its neighbors. Note that someeof ttime to compute a schedule. In contrast, in BP-SIM algorithm
scheduling requests that nodg receives may be transmittedthe scheduling time depends only dnh and not onn as we
at the same mini-slot, in which case they will collide andvill see later.
nodew, will not be able to decode the IDs contained in the
requests. Otherwise, node will be able to decode the IDs B. Analysis
from non-colliding requests.

After M mini-slots of the requesting group end, thedt
nodes switch to a receiving mode. Thght nodes then send
responding messages to thedt nodes as follows. There are
three cases.

Case 1:if node v, has already been matched, then f
any mini-slot when it receives a non-colliding request, il w
choose a mini-slot in the responding group to reply to the
requester with a message that nagés a matched node. The ) .
requester will then remove nodeg from its list of potentially Theorem 2 C_on5|der the Markov chaifQ(n)}. For the .
available neighbors. Note that since each left node requestgaqe'excmswe mFerference m0(_1ell and gnder the schgjulln
at most one right node, such a reply message will alwa%’“Cy BP-SIM, this Markov Chain is positive recurrent if

succeed without collision. Further, since a right node sded Z Ak < k. for all links
reply to at mostM senders, the right node can reply to one Ck ’ ’
request at a time, and complete withih mini-slots. (Such a
free-of-collision property also holds for the acknowledgm Wherer € (0,1) and K are appropriately chosen according
packets in the next two cases.) to Lemma 3.

Case 2:If node v, has not been matched yet, and if the = Proof: Define the Lyapunov function
first request that it received does not collide, it will theseu
the first mini-slot of the responding group to acknowledge th V(n) = Z a(n) (Z qk(n)) . (10)
request from the node that first requested it. Nodend the . a keg, Ok
node that first _re_quested it are _then matched with each dther. This is the same Lyapunov function as the one used in [18].
supsequent m|n|-sI0t§, node will behave as a matched no_ngSing the results in [18] we get
using the procedure in case 1 to reply to other non-collldmgv(nJr 1) — V(n)
requests with a message that nagehas been matched.

Case 3:if nodewv, has not been matched yet, and if at the q(n

_y ; ¥ (Z

We now analyze this scheduling policy.

Lemma 3: For anyx € (0,1) there exists a constarit’
that depends on*, x, and M but is independent of network
size, such that for each backlogged lihthe probability that
ot least one backlogged link & is scheduled aftek rounds

is greater than or equal te.
Proof: See Appendix IlI. [ |

We next prove the stability of BP-SIM.

ke&;

first mini-slot whernw,. received a request, there was a collision

due to simultaneous requests from more than one neighbors,

thenwv,. does not acknowledge or reply to any requests in that

round. + Xl:(al(n) — di(n)) kzg: (ax(n) —dir(n)) |,
We note that onlyright nodes acknowledge requests. It is _ e

possible that 4eft node sends a request téedt node, in which from which we get

case the request will never be acknowledged in any manner.E[V(n 1) = V(n)|Qn)]
If v,. acknowledges the requestqfthenv,. andv; are both

matched. At the end of the round, the matching contains all _ 23" a(n) 3 Me(n) o

ordered-pairs of nodes that have been matched so far. T 5 Ck

(ax(n) — dk(”)))

> di(n)

)

. X keE kcE
The above process is repeated in every round. Afterithe l l
rounds, the links that correspond to matched pairs of nodes. o Z @(n) Z Ak (n) _E Z dy(n)| | + B1
begin transmission in the data transmission slot. C eSe @\ o fyrd

This algorithm is an extension of the maximal matching (11)
algorithms discussed in [22] and [23]. There are two novel
features of the proposed BP-SIM algorithm. Firstly, BP-SIM < 2 Z M <Z )‘k_(”) _ K) + B
uses a contention resolution protocol that is necessary in a G ¢
wireless network to reduce the chance of collisions between a(n)
the connection requests. Secondly, BP-SIM uses a discovery< —2¢ Z o + B,
procedure to keep track of neighboring nodes that are ajread Laze

liqr>cy
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where B,B; > (0 are some constants and = k — ! e s B IE T
max; ) uce, 2—: Thus using [18, Th. 1], the system is queue- 0.0k A
length stable if
0.81 5
A : g ‘
Z Ak(n) < K, for all links [ € E. £
Ck 2 o7
ke&g [=}
o
] 9 0.6
C. Numerical Examples and Simulations ;,g 0.5
Recall that under the node-exclusive interference model 6 £ | e
[17]-[19], maximal matching can be shown to achieve queue- ' x =120, d*=8
length stability for any offered load such that 0.3 —<— n=225, d*=17
Z 2k < 1, for all links 1. 0% 2 4 6 8 10 12 14 16 18 20
CL Number of Rounds ®

ke&

According to Theorem 2, by choosing close enough td, o 1 Scheduling Effic ¢ BP-SIM: Each howstrEsnumb
- ig. 1. Scheduling Efficiency of BP-SIM: Each curve showsthresnumber

the t_hrOUthm of BP-SIM can be arbltrarlly C_Iose to that OJf rounds increases, the minimum value (over all links) & firobability

maximal schedule. Further, note that any feasible offevad | that either a given link or one of its interfering links is sduled. Note that

under the node-exclusive interference model must satisfy the curves for all four cases are close in the figure, thus sfpthe nice
scalability property of the algorithm.

> X 2, for all links 1.
ke&

Hence, by choosing close enough td, the efficiency ratio V. JOINT MULTIPATH ROUTING AND SCHEDULING
of BP-SIM can be made arbitrarily close 1g2. For any fixed . . )
% < 1, the complexity of BP-SIM depends on the valuedf The resu!ts in Section Il and Section IV have focuse.dlon
and K, and is independent of the size of the network. the case with single-hop flows. In other words, the arriving

Although in the above results we are unable to derive &fckets are directly offered to each link, and once they are
analytic expression for the minimum number of rouidss a Served, they immediately leave the system. In this sectien,
function of x, we next present some numerical results on hofxteénd the results to the case of multi-hop flows and with
large K needs to be for practical choice af We first run mult|path routing. Wg will show hovx_/ to deS|gn joint routing
numerical evaluations based on the analytical bounds etiri@!gorithms to work with the scheduling algorithms develbpe
in Appendix Ill. Whend* = M = 5, in order to guarantee in the previous sections.
k = 0.9, we requireK > 29. Therefore inK x 2M = 290
mini-slots, BP-SIM guarantees that for any backlogged link
[ at least one link in its interference set is scheduled withA The Extended System Model with Multipath Routing
probability greater than or equal ®9. If d* = M = 10 we . . .
require X > 53 to guarantees — 0.9. In addition to the system model in Section II, we now

The above analytical bounds are found to be quite conser@SSume that there a® users in the sy?tem. Each user is
tive. We have also simulated the BP-SIM policy to analyze igSSociated with/(s) alternate paths. Let; = 1 if the path
actual performance. Simulations were performed on netsvork Of Users uses link/, and H(; = 0, otherwise. LetX,(n)
of four different sizes. The number of nodes) (n the four P€ the number of (unit-length) packets generated by wser
cases werd0, 60, 120 and 225. The maximum node degreest the beginning of time-slot. For simplicity, we assume
(d*) in the four cases werg, 8, 8 and 17, respectively. The adain that[ X1 (n), ..., Xg(n)] is i.i.d. across t|me-slo_ts. Let
nodes were placed randomly on a rectangular area, i.e. their= E[Xs(n)], andZ = [z,, ..., zs]. We can then define the
coordinates were chosdri.d. and uniformly. The radius of ca@pacity regionA” in terms of 7 as the set of offered-load
transmission of the nodes was chosen so as to make the grég#ors such that there exists;; > 0, forall s = 1,..., S,

connected. j=1,..,J(s) such thatZ'j]fl) py; = 1 for all s and
In Figure 1 we plot the minimum success probability of a

link versus number of rounds. Success probability of a link S J(s)

here refers to the probability that either the link or onetsf i Z Z Héj:vsp:j €A,

interfering links is scheduled. Minimum success probgbi$ s=1 j=1

the lowest success probability for all links in the networida
among all random graphs simulated. The maximum backevhere A is the capacity region defined in Section Il in terms
time in each case wasl = 4. of the per-link ratex, andp;; can be viewed as the long-term
In each case shown in Figure 1 we only needéd= 11 average fraction of traffic from user that is routed to path
rounds (i.e.,K x 2M = 88 mini-slots) for the minimum suc- j. In this section, we are interested in joint routing aldoris
cess probability to be greater than 0.9. Hence, the sinomlatithat can work with the scheduling algorithms in the previous
results show that in practice BP-SIM works even better thaections to stabilize the system for a large fraction of the
the minimum performance guarantees we have proved. capacity region\’.
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B. Joint Routing Algorithms Working with Q-SCHED We now state the main result of the section.

We first present a joint routing algorithm that can work with Theorem 3: For anye > 0, there exists a positive number

Q-SCHED to achieve a large fraction of the capacity regm@v such that for allg > f, the above joint routing and Q-
A’. Let 3 be a positive constant. SCHED algorithm can stabilize all queues under all offered

Joint Routing and Q-SCHED Algorithm : Ioad vectorz that satisfies the following condition: there exist

[\ * R
. At each time slotn, each users computes the routing » = A1 andp™ = [p;;] such that

probability ps(n) = [ps;(n)] as the solution to the s J(s)
following problem: A=Y Hx.p;,, for alllinks 1,
B. J(s) , i:1 Jj=1
min ;(st) lzg /\c_i < L_FE (1 — logJXf[Jr L e) , for all links 1.
J(s) L i (t) p Rerenérk:When the interference degree A3 it is each to
+ Dsj Z ng [Z ] verify that any feasible offered load € A’ must satisfy the
j=1 =1 e lkee following: there must exisf* andp* with
. J(s) s J(s)
subject to Z;st =1 (12) =Y Hljapy, for alllinks 1,
J= s=1 j=1

where B, is a positive constant chosen for each user
Each user then routes every arriving packet at time-slot
n to pathj with probability ps;(n). Let Ps;(n) denote
the actual fraction of packets routed to patht time-slot Therefore, Theorem 3 implies that the above algorithm can
n. Note thatE[X(n)Ps;(n)] = zsps;(n). guarantee close td/K of the capacity region\’.

o At each time slotn, use Q-SCHED to compute the In order to prove Theorem 3, we will need the following
schedule to be used at this time slot. LBf(n) = ¢; lemma.
if link [ is scheduled by Q-SCHED at time slot Lemma 4: For anye > 0, there existgj, > 0 such that for

Remark:The main idea of (12) is to assign higher routin@ll 3 > 5o andQ(n) # 0, the following holds,

probabilities to those paths that are less congested, i.e., to

*
E ZL < K, for all links i.
C
leE; !

I a(m)) P
those pathg with smaller cost >t (Zle& o ) qi(n
L _ a2 ( Z >
Héj Qk 13 maXiep Zle&, o i=1 \leé&;
Z ; k; (13) whereL = |E| is the total number of links in the system.
Proof: Let
The quadratic term&: Z %) (ps;)? is to alleviate an other- ()
wise “oscillation” problem for this type of multipath roatj o — Qe c
e (n) "

algorithms [31]. Note that ifB, = 0, then it is easy to see maxpep Zlesk a
that the solution of (12) will have,; > 0 only for those ) . )
pathsj whose costs (given by (13)) are the smallest among fﬁ’en_o < a; < 1foralllinks € E. Further, there exists a
alternate paths of user Thus, even if the queue-length varie Ink i such thata; = 1. Without loss of g_enera_llty, we can
slightly, the routing probabilities could switch compligtéom assume that; = 1. To prove the lemma, it suffices to show
one path to the other. On the other hand, wiign> 0, we that for larges,

can show that the solution to (12) is a continuous function of

(&)

the queue-length. Hence, the oscillation problem is elited. 1+ a D > 1-o |1+ > dl ],
For convenience, we use a quadratic function here, while in i#1 i#1
Lauitpir;)e/ strictly-convex function of; should serve the samec il o <ai<1,i=23 ..L
According to this algorithm, the evolution of the queue- Fix e € (0,1). Note that for any3 > 0, we have,
length is given by ag”ﬁ) > af(l —e€), ifa; >1—F¢,
S J(s) T and
qn+1)= +ZZH Pyj(n) = Dy(n)| . az(-H_B)zO, if a; <1-—ce.
s=1 j=1

(14) In both cases, we have
(1+3) B 1+

INote that here we have adopted the simplifying assumptiai the a; 2 a; (1 - E) - (1 - 5)( ﬁ)-

packets routed to path are offered to all links on the path instantaneously,

This assumption simplifies the analysis. There are stanatthiques in the Hence,

literature [18], [32]-[35] that can extend our result to tbase when the 1+

hop-by-hop packet-forwarding dynamics are taken into astoWe refer the 1+ Z (Il(- f) > 1+ Z af(l —¢e)—L(1 - 6)(1+ﬁ).

readers to these references for details. i#1 i£1
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Now, givene > 0, we can picki, such that
L(1—e)1FF0) < ¢,

Then, for anys > 5y, we have,

1+ZJWW>G+Za>1%

i£1 i#1

The result of the lemma then follows. [ |
We can now prove Theorem 3.
Proof: (of Theorem 3) We will use the following Lya-
punov function;

(1+8)
U(n) = Z (Z a(n ) .
le&

=1

The motivation for considerind/(n) is that U(n)/(1+5

approximatesV/(n) = maxier Y _ce, ‘”Lfl”) (see (6)) when
(8 is large. SinceV(n) is a Lyapunov function for the
Q-SCHED algorithm, we expect thdf(n) will also be-

come a Lyapunov function whepi is large. Let\;(n) =

ZS 1 Z S) H!;x.ps;(n), wherep,;(n) is the routing prob-
ability chosen for time-slot. To compute the drift of/(n),

recall thatE[X,(n)Ps;(n)] = zspsj(n). Hence,

EUn+1) - ()IQ(H)]

L

re) [ e
i=1 \Ile& leE; leE;
+9(Q(n)),

where S; is the event that link is scheduled at time slot
(see Lemma 1 in Section Ill), and

-0l (g )]

(We have use the notatioh(z) =

lim, 1o h(x)/f(x) = 0.) According to Lemma 1, there
exists a constank such that ifV(n) > R, then
qz
3 pafsy) > e el
i<z, Vin) M

for all links i, whereV'(n) = max;ep D ¢ ‘“C(l"). Hence, if

we choosedy as in Lemma 4, then for alt > 35, we have,

B
2 (2) (g
i—1 \ice =
—6) & (Z M)wﬂ)

le&;

(1 _ log M+1
M

- V(n)

\%
—~
[a—

|
~—
—~
—_

|

By the assumption,

Al 1—c¢
IEEEEL (N
le&;cl 1+e M

— e) , for all links 7.

Hence,
EUn+1) - ( )|Q(")]
< a(n Ar(n) A
< (2 [S et
i—1 \lce, Lice, © leg, @
+9(Q(n)) (15)
L S ) Hejwapey (n)
-y (pe) [y B
i—1 \lce Lice;
Zs 1 ZJ(S) Hl Sp:
“1+0Y) )
leg;
S J(s) L ! n B
= X [Zpsm)Z - ( i )
s=1 j=1 =1 €€ \ke&;
J(s) L gl o\’
I Z( o )> ]
= = 9 oies \kes; ©F
+9(Q(n))

According to the multi-path routing algorithm (12), we have
for each uses,

s a H!; Qk
S]]
Yy (3w
j=1 =1 €& ke&;
J(s) L 1 B
Hs qk
D ( )
€& ke&;
J( J(s)
B, B N
< _72p5j 2 Z(psj)Q
Jj=1 j=1
< BsJ(s).

o(f(r)) to mean Hence,

This then provides the negative drift for stability. [ |

C. Joint Routing Algorithms Working with BP-SIM

A similar multipath routing algorithm can be design for

working with BP-SIM. In fact, since the Lyapunov function
for BP-SIM (see Equation (10) in the proof of Theorem 2) is
of a quadratic form, we do not need largeas in Theorem 3.

Joint Routing and BP-SIM Algorithm :

« At each time slotn, each user computes the routing
fractionsps(n) = [ps;(n)] as the solution to the following
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problem: can be made to only depend on the maximum node-degree
7(s) and an approximation factor (as to how close one wants to
min By Z(pS’)Q approach the performance guarantee of maximal schedules),

7.>0 2 P ’ but are otherwise independent of the size of the network.

7(s) L oo Recently, there have been a number of papers addressing
n Zpsj Z ﬁ Z Z ‘Jk_(t) complexity and decentralization questions in multi-hopewi
= I a Ck less networks. We now briefly comment on the contribution of
this paper in the overall context of this line of researchmco
plexity issues in max-weight scheduling have been adddesse
through longest-queue-first and maximal scheduling in [6],
[171-[19], [30], [36], [37], through the use of randomizdd@:
where B, is a positive constant chosen for each user rithms in [38]-[40], or through partitioning approacheg4a],
Each uses then routes every arriving packet at time-slof42]. The issues of decentralization and signaling ovethea
n to path;j with probability ps;(n). Let Py;(n) denote haye peen addressed in [40], [43]. The Q-SCHED algorithm
the actual fraction of packets routed to patht time-slot i this paper addresses both complexity and overhead fiy fai
n. Note again that/[ X (n) Py;(n)] = zsps;(n). general models of wireless networks, while BP-SIM addresse
« Ateach time slot, use BP-SIM to compute the schedulghese issues in the context of node-exclusive interference
to be used at this time slot. Le?;(n) = ¢ if link 1 is  model only. However, as with prior papers, it is clear thateh
scheduled by BP-SIM at time slot is a tradeoff between complexity, decentralization ovache
The evolution of the queue-length is again given by (14). Wand performance. Further, our philosophy here is that am-alg
can show the following result, which is similar to Theorem Fithm that has low complexity and overhead under a bounded
Theorem 4: The above joint routing and BP-SIM algorithmnode-degree assumption would be quite reasonable in ggacti
can stabilize all queues under all offered load vectahat since most ad hoc networks are expected to be of relatively
satisfies the following condition: there exidt = [A;] and small node-degrees in the near future. However, a detailed
p* = [p3;] such that comparison of the algorithms in the growing literature of
low-complexity, decentralized algorithms is currentlgkang.

€& LkeE;

J(s)
subject to Zpsj =1,
j=1

S J(s) . . . .
. . N . Thus, a comprehensive simulation or theoretical study efeh
Al = Zl z; Hyjspyy, for alllinks 1, algorithms would be a good avenue for future investigation.
s—1 j=
Af . .
> =L <k, for all links i.
ice @ APPENDIX I

where x € (0,1) and the number of round& (that BP- PROOF OFLEMMA 1

SIM executes within each time-slot) are appropriately €10S  proof: Fix any link k such that Inequality (7) holds.

according to Lemma 3. Consider a linkj € &,. We will first find a lower bound on
To prove Theorem 4, we can use the same Lyapungye probability thatj is scheduled.

function (10) as in the proof of Theorem 2, and proceed 10| jnk ; gets scheduled when it attempts transmission and

Equation (11), which is comparable to Equation (15) in thg,cp of the other attempting links in its interference sebse

proof of Theorem 3. We can then establish the negative driftyiqqer hackoff time. LeS; be the event thaf is scheduled
by comparing with\; (similar to the steps after Equation (15), 14 letY; be the backoff time chosen by a liik Then we
in the proof of Theorem 3), and by using Lemma 3.

e
Since the interference degree under the node-exclus%/e

interference model i, Theorem 4 implies that, by choosing M

k close enough td, the above algorithm can guarantee close Pr{S;} > Z Pr{Y; = m} H Pr (Y > m)

to 1/2 of the capacity region\’. m=1 lﬁf‘j
J
M
VI. CONCLUSION _ Z (e_pj% _e—Pj%) H e~Prit (16)
We have presented two low-complexity, distributed algo- m—1 hee,
rithms for scheduling in multi-hop wireless networks. The a h#j
gorithms approximate the performance of maximal matching- P M . .
type scheduling arbitrarily closely. However, a key featur = (e —1) Y e Pl [] e
that allows the two algorithms to have low complexity is m=1 ’;;5;
that neither algorithm attempts to find a maximal matching. o !
With high probability, Q-SCHED schedules links in those - (6% - 1) Z oA Yee; Pr) (17)
interference sets where the total queue-length is large. On =

the other hand, BP-SIM ensures that the probability that at
least one link is scheduled in the interference set of eawalinere (16) is obtained by using the probability distribatio
backlogged link is high. The complexity of both algorithmslescribed in Section 1lI-A. We now find an upper bound on
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the termzhegj Py, that appears in (17). For any given linkk, we consider two cases.
o Case 1: if
P, =« - (18)
hez; ,LEZ; maxjee, Zzeez o (”i”) <V(n)— H(C +e),
an I
<o) =t =o (19 then

e,
heg; ~H1€E; ¢ H
pr{E M < V(n)— He} = 1.

where in Equation (19) we have used the assumption that if P ¢
k

heé&;, thenj € &,. This implies that the denominator in (18)
is never less thaEzeg L . Using (17) and (19), we get This can be seen from the fact thal, ., g—i cannot increase
o by more thanC' in a single time-slot. Thus, in this case the
Pr{s,} > (e% —1) Y el > B S e Lemma holds trivially.
' | Case 2: i) ¢, a) - V(n) — H(C + ¢), then for all

C

te [n+1,n+H] we have

S

=

m=

m
Hence, summing over ajl € &, we have

qt
o —H(C+e¢)—C(t—
Zpr{5}> Z (= ]\I)Z (20) lezgk ( €) (t—n)
JEEK J€£k
>V(t)—20(t — H(C
Now from the probability distribution given in Section IN; 2 V() (t=n)—H(C+e)
we get >V(t) - H(3C +e).
765k Z; V(n) — Cy — Cae Thus using Lemma 1 withy = 1, there exists a positive
Z Py > (n) 2> an V(n) (21) constantB (as a function ofH) such that ifV(n) > B then
JEEK
log(M) + 1
=an (1 _ Gt Che 026) , (22) Z Pr{S} >1- % —€ (23)
Vi(n) le€y

where (21) follows from the assumption thaf,c., & = for all ¢ € [0+ 1,7 + H], whereS; is the event that linK is
n(V(n) — C1 — Cq¢). Using (22) in (20) we get

scheduled. Note that we did not need to impose a condition on

eachV (t) separately becaudé(t) > V(n) — C(t — n) for all

M (—am) C1 + Cse t. Thus a sufficiently larges would guarantee the condition

e (1 - W) of Lemma 1 for allV/(t).

We define the evenk; such thatX; = 1 if at least one

_an l—e® e (1 _ G+ 026) ) service occurs among the linksdh in time-slott, and X; = 0
Vi(n) otherwise. Note that from Lemma 1 and (23), we have in fact

an
> Pr{s;}> NV

JjEeE)K m=1

M1—e
Sincea = log (M) and M > 1, we can see that: /(1 — obtained that, for alt =n +1,...,n + H,

e /MYy > 1, em/M > 1 —log(M)/M and1 — e =1 —
> 1, 2 log(M) +1
1/M. Hence, Pr{X: = 1|X¢—1, X2, ..., Xpp1} > 1 = og( ]\4) -
log (M) +1 Ch + Cae
Z Pr{S;} >n|1- log (M) +1 1-———=). LetY = 72 X, For anyd > 0, using the Chernoff
_ M V(n) t=n-+1
JEEK bound we must have
Now if V > R then StCce < GtCe Thys, for
(n) g(Jr)CE RO Prly <H 1_M_26
sufficiently largeR, we have=t %@ o <€ and this gives M
log(M) +1
ZPY{Sj}2n<1_log(1\]\44)+l)(1_6) = Pr{H—Y2H<T+26>}
= o _ Elexp(0(H - V)]
log (M) + 1 = 1
> L — . og(M)-',—l
>n (1 i e) exp [GH ( + 2¢ ]
This ends the proof of Lemma 1. | < exp (H {1Og [1 + (e 1)(log( )+1 T E)}
- M
APPENDIXII p log(M) +1 5
PROOF OFLEMMA 2 - M + 2 :

Proof: For any givenH, since the arrivals and departure
are both upper-bounded, there exists a congtastich that

Zan-i‘l qu

€& I€EER

%y appropriately choosing sonte> 0, it is then easy to show
that there exists a constant > 0 such that

< C for all n andk. Pr{YSH(l—%—%)} <e Hm (24)
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Similarly we can show that the aggregate arrivdls = the nodev receives two or more requests and acknowledges
D iee, ?;il Alc—ft) must satisfy none of them (due to collision). Note thatif= 1, nodev will

always acknowledge the request fram For x > 2, to derive
Pr {Z >H (1 _log(M)+1 _ 35)} < e Hm™  (25) this upper bound, we have assumed that each neighbor of
M (other thanu;) becomes left with probability /2 and theleft

for somer, > 0. Thus from (24) and (25) we have neighbors ofv always request. This assumption maximizes
the amount of contention and hence maximizes the probgabilit

Pr{z q(n+ H) <V(n) - He} >Pr{Z<Y - He} that the first two_ requests collid.e in a mini-slot. Similar to
al Fi(x), the event is broken down into cases when exagtiyf

the remaining:—1 neighbors oy becomdeft. The factorj+1

is because any one of the- 1 contending nodes (including

Thus, by choosing a large enoughand a correspondingly itself) can potentially win. We can check th&t(z) < Fy(d*)

LEE
>1—e Hn _ g~ Hr2,

large enoughB, we get for any x < d*.
Further, defineF;(x) such thatF;(1) = 0 and forz > 2,
Pr{ZMSV(n)—HE}ZI—& 1 \*!
l€E “l Fy(z) =1- (1 - W) .

This ends the proof of Lemma 2. ®  Using similar techniques, we can show that the tefpfz)

is the upper bound on the probability that, when a gilefh

APPENDIXIII node (sayv;) chooses to request anothéght node (sayv)
PROOF OFLEMMA 3 that is matchedand whose degree i#(v) = x, the nodey,
Before we proceed it is helpful to define three termgz), does not receive a reply fromthatv is matched.
Fy(z) and F3(z). First, F1(1) = 0 and for anyz > 2, Consider any directed linkAB that is backlogged. We

ol . o i need to find a lower bound on the probability of the event
A =Y (:c - 1) (1) L 3 (1 B i) Mg that eitherA or B is matched at the end df rounds.
J 2 M — M Towards this end, defing(a,k) as a lower bound on the
probability that eitherA or B will be matched after the
The termF (z) is an upper bound on the probability thatnext & rounds, conditioned on the event that neitbemor
when a giverleft node (say;) chooses to request anothight B has been matched yet, antl currently hasa number of
node (say) that is not matchednd whose degreei&v) =z, potentially available neighbors. We further require tHat,
the nodev; is not acknowledged by. Note thatifx = 1, node eachk, p(a, k) is a non-increasing function of. Note that
v will always acknowledge the request fram Foraz > 2,t0 4 (q, k) is well defined fora > 1. For ease of exposition, we
derive this upper bound, we have assumed that each neigh@fine p(0, k) = 1 for all k. The intuition behind the last

of v (other thanv;) becomes left with probabilityl /2 and  definition is that if A has no potentially available neighbors,
the left neighbors ofv always requeswv. This assumption then B must be matched.
maximizes the amount of contention and hence maximizesror anyk, assume thai(a, k) is given for alla > 0 and it is
the probability that the request from is not acknowledged. non-increasing in.. We next derive an expression that relates
The event is broken down into cases when exagtlyf the ,(a, k& + 1) to p(a, k) for all « > 1. Considerp(a,k + 1)
remainingz —1 neighbors o becoméeft, which occurs with for a givena > 1, and consider the round that immediately
probability (“ ') (3)* . The term; >, (1 — ;)" is the follows. Since by definition neithet nor B has been matched
probability that, among + 1 contending nodes, a particularyet, according to the BP-SIM algorithm nodewill become
node (sayv;) wins (i.e., chooses the unique lowest backoféft or right with probability 1/2. If A becomes right, the
time). Here! represents the backoff time selected by th@orst case is that neithed nor B will be matched in this
nodev; (which happens with probability;) and (1 — ;)" is  round. Further, sincel is a right node,A will not learn of
the probability that the remaining contenders choose atargny additional matched neighbors. Hence, conditioneddon
backoff time. It is easy to check that (x) < F;(d*) for any becomes a right node in the first round, a lower bound on the
x < d*. probability that neitherd nor B is matched ink + 1 rounds
Define Fy(x) such thatFy(1) = 0 and forx > 2, is p(a, k).
On the other hand, if nodd becomes left, with probability

= (z-1) (1) Jtle A% 1/a it will request the nodeB. Node B becomes a right node
Fy(x) =Y (" . - 1——=3 (11— —

j=1

Jj 2 pt M “with probability at leasti /2. Conditioned on the event thait
. -~ requestsB and nodeB becomes rightB will acknowledge
The term Fy(x) is the upper bound on the probability thatone request with probability at least— Fy(d*), in which
when a giverieft node (say;) chooses to request anothight  casep will be matched. If the nodé does not acknowledge
node (say) that is not matchednd whose degreed&v) = z, any requests (which occurs with probability at mégtd*)),
g _ o then nodeA’s number of potentially available neighbors does
This is the place where we use the assumption that the arrareli.i.d. .
across time. However, the property (25) also holds for maneegal arrival not chang_e._ Combining the above arguments, V\_’e can QonCIUde
processes, e.g., Markov-modulated Poisson arrivals. that, conditioned on the event thdt requestsB in the first

J=1
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round, a lower bound on the probability that neitienor B where in the first term we have incorporated the requirement

is matched ink + 1 rounds is thatp(a, k + 1) must be non-decreasing in
1 . 1 . We can then use iteration (26) to compute all values of
5(1 — Fa(d) + (1 - 5(1 — Fy(d"))p(a, k) pla,k),a > 1,k = 1,2,.... The initial condition fork = 0
1—Fy(d*) 14 Fy(d*) is given byp(a,0) = 0 if « > 1 andp(0,k) = 1 for all k.
= 2 + 5 pla, k). The probability of interest in Lemma 3 is thér(Map) >

Next, consider that case whe# becomes left, and with (", K). It remains to show the following claim.
probability 1 — 1/a it requests a neighbor other th#h There ~ Leémma5: Givend* and M, for anya > 0, p(a, k) — 1
are two sub-cases. ask — oo. _ _ o

Sub-case 1: if this neighbor is a matched node, then with Proof: We prove by '”dUC_t'O” on. B_y_our definition
probability at least — F;(d*) nodeA will be able to receive a thatp(0, k) = 1 for all k, the claim holds trivially fora = 0.
reply, and hence its number of potentially available neggb ASSume that the claim holds fa;, we next show that it must
can decrease by. If A does not receive a reply, then itsalso hold_ fora + 1. To see this, note that by the induction
number of potentially available neighbors does not chand®/Pothesis, for any > 0, we can findK, such thap(a, k) >
Recall thatp(a — 1,k) > p(a, k) by our definition. Hence, (1 —¢€) for k> K. Let

conditioned on the event that requests a neighbor that is 1+ Fy(d¥) o 1+ Fy(d)

matched, a lower bound on the probability that neitdenor F= max{f’ F(d"), f}-

B is matched ink + 1 rounds is Note thatF < 1. Then, using (26), we have, for all > K,
(1— Fa(d*)p(a — 1,k) + F3(d*)p(a, k). plat 1 h+1) > min{l —c.

Sub-case 2: if this neighbor is an unmatched node, then it 1 1

) X . ’ = Lk)+=[(1—-F)(1- F 1,k)]}.
becomes a right node with probability at leage. Hence, the 2p(a LR+ 2 I YA =€)+ Fpla+1,k)]}
request fromA will be acknowledged with probability at leastsince1 — F > 0, this implies thaflim infj,_. pla+1,k) >
3(1—Fi(d")), in which caseA will be matched. If the request | — ¢. Sincee can be arbitrarily small, the results of Lemma 5
from A is not acknowledged (which occurs with probabilityhen follows. m
at mostl — 3[1 — Fy(d*))), the worst case will be that does  Hence, the result of Lemma 3 must hold.
not receive any reply from the neighbor being requested, and
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