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Abstract— We consider the problem of designing distributed
scheduling algorithms for wireless networks. We present two
algorithms both of which achieve throughput arbitrarily cl ose
to that of maximal schedules, but whose complexity is low
due to the fact that they do not necessarily attempt to find
maximal schedules. The first algorithm requires each link to
collect local queue-length information in its neighborhood, and
its complexity is otherwise independent of the size and topology
of the network. The second algorithm, presented for the node-
exclusive interference model, does not require nodes to collect
queue-length information even in their local neighborhoods, and
its complexity depends only on the maximum node degree in the
network.

Index Terms— Wireless Scheduling Algorithms, Low-
Complexity and Distributed Algorithms, Provable Efficiency
Ratios, Maximal Scheduling.

I. I NTRODUCTION

In this paper, we present distributed algorithms for link
scheduling in wireless networks. Since interfering links in
a wireless network cannot transmit at the same time, a
scheduling policy is required to resolve the contention between
various links attempting transmission. The well-known max-
weight and back-pressure scheduling algorithms introduced
in [2], [3] are throughput-optimal, i.e., they can stabilize the
system under the largest set of offered load vectors. However,
they are centralized algorithms and have high computational
complexity. Using the max-weight or back-pressure algorithms
for scheduling, a number of recent papers have studied the
problem of joint congestion control, routing, and scheduling
in multihop wireless networks [4]–[11]; see [12] for a survey.
The focus of this paper is on designing distributed schedul-
ing algorithms with low complexity and low implementation
overhead. We consider two simple collision models in this
paper: one where each link is associated with an interference
set such that the link cannot be scheduled if any other link in
its interference set is scheduled. The other model, called the
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node-exclusive interference model, is a special case of thefirst
model where the interference set of a link consists of all links
that share a common node with the first link. The first model
covers a wide range of collision models that arise in practical
wireless networks while the second model is applicable to
Bluetooth or FH-CDMA type networks [13], [14].

The study of low-complexity scheduling algorithms has its
roots in the high-speed switching literature where maximal
matching has been studied as an alternative to the max-
weight algorithm. Upper bounds on the throughput loss due
to the use of maximal matching have been derived in [15],
[16]. Recently, these ideas have been successfully appliedto
wireless networks in [6], [17]–[19]. These papers show that
low-complexity maximal-matching-type algorithms achieve a
provably lower-bounded fraction of the maximum possible
throughput, where the lower bound is a function of the local
topology of the network. In particular, it was shown in [6], [17]
that the lower bound is1/2 for the node-exclusive interference
model while [18], [19] show that the lower bound is the inverse
of the maximum number of links that can be simultaneously
scheduled in an interference set.

The main drawback of the algorithms in [6], [17]–[19] is
that they focus primarily on computational complexity but do
not consider distributed implementation. For example, in the
node-exclusive interference model, each valid schedule isa
matching. (A matching in a graph is a set of edges such that
no two edges share a common node). A maximal matching
can be found as follows: each node requests a connection to
one of its neighbors. A connection is accepted if the node
receiving the request is not already part of the matching;
otherwise, the node requests again. However, such a process, if
not implemented in a structured fashion, would require many
rounds of requests and incur a huge overhead, negating the
benefits of the simplicity of maximal matching. We note that
this problem is unique to wireless networks. In contrast, in
many high-speed switches, a matching can be implemented by
a central controller. Even if a central controller is not available,
input and output ports are just one hop from each other and
thus message passing is relatively easy in high-speed switches.

In view of the discussion above, the goal of this paper
is to devise low-complexity, low-overhead distributed algo-
rithms for multi-hop wireless networks. We will present two
distributed algorithms which we summarize below:
(a) The first algorithm, which we call Q-SCHED, uses queue-
length information in a local neighborhood of each link to
perform scheduling. Q-SCHED is a randomized algorithm
which works in two phases: in the first phase, each link tosses
a coin to determine if it will participate in the schedule. Inthe
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second phase, the links that decide to participate use a one-step
collision resolution protocol to determine if they will be part of
the schedule or not. Such a two-phase algorithm was originally
proposed in [20] and later generalized in [21], but the key
contribution in this paper is to modify the algorithm to achieve
dramatically larger throughput and to extend the algorithm
to the case with multi-path routing. We will show that the
computational complexity of Q-SCHED is independent of the
network size and throughput, although in order to obtain the
queue-length information in a local neighborhood, Q-SCHED
requires communication overhead that is a function of the
maximum node-degree of the network.
(b) The second algorithm, which we call BP-SIM (short for
bipartite simulation), is also a randomized algorithm but does
not require queue-length information. BP-SIM is presentedfor
the node-exclusive interference model, and is an adaptation of
the algorithm in [22], [23] for the case of wireless networks.
The algorithm proceeds by emulating a bipartite graph: each
node randomly decides to be aleft or a right node. Then
connection requests are made fromleft to right nodes. The
key distinction between wireline networks considered in [22],
[23] and multi-hop wireless networks is that the connection
requests collide in the wireless networks and a contention
resolution protocol is required. We design such a protocol
and show that the overall complexity of BP-SIM is a function
only of the maximum node degree and not of the size of the
networks.

One of the main reasons that Q-SCHED and BP-SIM
require lower complexity than maximal scheduling is that
they do not attempt to compute a maximal schedule. Under
maximal scheduling, at each time slot, every backlogged link
has the following property: either the link is scheduled or
some other link in its local neighborhood is scheduled. LetAl

denote the event that such a property holds for a given link
l. Consider a randomized algorithm that requires a constant
number of iterations to achieve this property with probability
P[Al] ≥ 1 − ε for a given link l. A straightforward way of
approximating a maximal schedule is to make sure that, with
probability1 − ε, this property holds forall links, i.e.,

P[∩lAl] ≥ 1 − ε. (1)

It turns out that, in order to satisfy such a requirement, we
would needΩ(log L) number of iterations whereL is the total
number of links in the network [22], [23]. As a result, the
complexity of computing a maximal schedule increases with
the size of the network. In contrast, in this paper we show
that, in order to achieve a throughput guarantee similar to that
of maximal scheduling, we do not need to achieve (1). In
particular, for BP-SIM, we only ensure that

P[Al] ≥ 1 − ε, for all links l. (2)

In Q-SCHED, we ensure that

P[Al] ≥ 1 − ε (3)

for any link l such that the sum of the queue-length in its
neighborhood is (roughly speaking) the largest among all
neighborhoods. Clearly, the requirements in (2) and (3) are

much easier to satisfy than (1). Both Q-SCHED and BP-
SIM exploit this insight to achieve throughput guarantees
comparable to maximal scheduling, but with complexity that
does not increase with the size of the network.

The assumption that we make in designing the above algo-
rithms is that time is slotted and synchronized in the network.
Synchronizing time slots in a large network used to be a
difficult problem, but recent advances in clock synchronization
algorithms have made it possible to synchronize clocks in large
networks with very low complexity, see [24], [25]. In addition
to scheduling, another important issue is power control which
we do not address in this paper. We refer the readers to [11]
for distributed implementation of power control in multi-hop
wireless networks. In addition, the work in [26] also considers
a low-complexity randomized algorithm (the Random Trans-
mitter Selection algorithm) under a more general setting with
multi-receiver diversity. However, the efficiency ratio ofthe
Random Transmitter Selection algorithm tends to be lower
than the algorithms developed in this paper (e.g., its efficiency
ratio will decrease as the node-degree increases even underthe
node-exclusive interference model).

The rest of the paper is organized as follows. In Section II
we present the network model that is used in the rest of the
paper. In Section III we present the Q-SCHED algorithm,
study its performance and discuss a simpler variant of the al-
gorithm specifically for the node-exclusive interference model.
In Section IV we present BP-SIM scheduling algortihm,
study its performance and discuss simulation results. Then, in
Section V, we extend the results to multihop networks and to
the case when each source-destination pair can have multiple
paths through the network. We then conclude in Section VI.

II. M ODEL

We consider a wireless network ofN nodes. LetG(V, E)
be the directed connectivity graph of the network whereV is
the set of nodes andE is the set of links. For eachv ∈ V ,
another nodev′ ∈ V is a neighbor ofv if they are end points
of a link. Let N(v) be the set of neighbors ofv. The degree
of nodev, d(v), is defined as the number of neighbors ofv,
i.e., d(v) = |N(v)|, where|K| refers to the cardinality of the
setK.

For each linkl ∈ E, let b(l) ande(l) denote the transmitter
node and receiver node, respectively. Two links are neighbors
if they share a common node. Every linkl ∈ E interferes
with a set of other links. LetEl be the interference set ofl.
We adopt the convention thatl ∈ El, i.e.,

El = {l} ∪ {l′ : l′ ∈ E and l′ interferes withl}.

We assume that the interference relationship is symmetric,
i.e., if k ∈ El then l ∈ Ek. This interference set varies with
different communication models [6], [18], [19], [27]. In the
node-exclusive interference model, also known as the one-hop
interference model,El is the set of one-hop neighbors ofl,
including l. A valid schedule in this model is a matching.
This model has been studied in [6].

We assume that time is divided into slots of equal length.
Associated with each linkl is a stochastic arrival process
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{Al(n)}, where Al(n) is the number of packet arrivals to
link l in the slot n. We assume that each packet is of
unit length. Letλl = E[Al(n)]. For simplicity we assume
that the arrival process isi.i.d. across time, i.e.,A(n) :=
{A1(n), A2(n), ....A|E|(n)} is i.i.d. acrossn, although the
results of this paper can also be extended to more general
arrival processes. It is further assumed that the arrival process
has bounded second moments, i.e., Cov

(

Al(n), Ak(n)
)

< ∞
for any two links l and k. Let Dl(n) denote the number of
packets that linkl can serve in the time slotn. The capacity
of each link is the number of packets that the link can serve in
one time slot and is denoted bycl. Let dl(n) be the indicator
function that indicates whether linkl is scheduled or not. Then,
Dl(n) = cldl(n). Also we defineal(n) := Al(n)/cl. The
system state is defined as

Q(n) :=
(

q1(n), q2(n), ..., q|E|(n)
)

whereql(n) is the number of packets queued at linkl at time
n, and the dynamics are given by

ql(n + 1) =
[

ql(n) + Al(n) − Dl(n)
]+

where[·]+ denotes the projection to[0,∞).
Let ~λ = [λ1, ..., λ|E|]. We define the capacity region under

a given scheduling policy as the set of offered load vector
~λ under which the system can remain stable. LetΛ denote
the largest capacity region under all scheduling policies [3].
A scheduling policy is said to guarantee an efficiency ratio of
γ if it can stablize the system at any offered load inγΛ.

III. A LGORITHM 1: Q-SCHED

For Q-SCHED, we assume that at the beginning of each
time-slot, every linkl knows the queue-lengths of all linksk
in its interference setEl and also the queue-lengths of all links
in the interference sets ofk ∈ El. A slight variation of this
algorithm for the node-exclusive model will also be discussed
where the queue-length information of only the immediate
interferers is required. We now present the algorithm.

A. Scheduling Policy

Each time slot is divided into two parts: a scheduling slot
and a data transmission slot. The links that are to be scheduled
are chosen in the scheduling slot and the chosen links transmit
their packets in the data transmission slot. The schedulingslot
is further divided intoM mini-slots. For ease of exposition,
in what follows, we will drop the indexn from the notation
qj(n) when there is no confusion. The algorithm proceeds
as follows: at the beginning of time-slotn, each link l first
computes

Pl = α

ql

cl

maxi∈El
[
∑

k∈Ei

qk

ck
]

, (4)

whereα = log (M). Each link then picks a backoff time from
{1, 2, ...., M + 1} where pickingM + 1 implies that the link
will not attempt to transmit in this time slot. The backoff time
(Y ) is chosen as follows:

Pr{Y = M + 1} = e−Pl , (5)

Pr{Y = m } = e−Pl
m−1

M − e−Pl
m
M , m = 1, 2, ..., M.

When the backoff timer for a link expires, it begins transmis-
sion unless it has already heard a transmission from one of
its interfering links. If two or more links that interfere begin
transmissions simultaneously, there is a collision and none of
the transmissions is successful. Further, any link that hears
the collision will not attempt transmission in the rest of their
time-slot. (Note that here we have assumed that each link
can always overhear its interfering links. In practice, we can
precede each link’s transmission by an RTS/CTS exchange im-
mediately before the transmission (for more details, see Policy
Q in Section IV of [20]). Then, it is sufficient if either end-
points of the link can overhear the RTS or CTS transmissions
from interfering links. Note that such an RTS/CTS procedure
also addresses the potential hidden-terminal issues.)

The Q-SCHED algorithm can be thought of as a two-phase
algorithm. In the first phase, each linkl first decides whether or
not it would participate in the schedule for that time slot. In our
algorithm, this phase corresponds to choosing{1, 2, ..., M} or
(M +1) respectively. In the next phase, each participating link
chooses a number between1 andM and attempts to transmit
starting from that mini-slot. This backoff procedure serves to
reduce collision, and thus should lead to a higher capacity
compared with a policy without backoff, e.g., [28]. While
data transmission may start at any mini-slot, the length of
each packet (plus the corresponding acknowledgment packet
if required) is assumed to be smaller than the data transmission
slot so that a transmission ends within the time-slot. The above
idea of using two phases was first introduced in [20], [21], and
is essential to achieve high efficiency ratios with a constant
number of backoff mini-slots. Here the probabilities in (5)
have been modified to achieve a higher guaranteed throughput.
Further, we complete the proof in [20], [21] by establishing
stochastic stability.

B. Analysis

We now proceed to analyze this scheduling policy. Define
the Lyapunov function

V (n) = max
i∈E

∑

l∈Ei

ql(n)

cl
. (6)

Lemma 1: The Q-SCHED scheduling policy guarantees
that for any ε > 0 and constantsC1, C2 > 0, there exists
a constantR such that ifV (n) ≥ R, then for anyη ∈ [0, 1]
and for any linkk such that

∑

l∈Ek

ql

cl
≥ η(V (n) − C1 − C2ε), (7)

the following holds,

∑

l∈Ek

Pr{Link l is scheduled} ≥ η

(

1 −
log(M) + 1

M
− ε

)

.

Proof: See Appendix I.
We present the following proof for the special case of

bounded arrivals, i.e., we assume that there exists a constant θ
such thatAl(n) ≤ θ for all l andn. The proof can be extended
to cover more general arrival processes by upper-bounding the
number of arrivals in a time-slot with high probability.
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Lemma 2: Q-SCHED scheduling policy guarantees that for
any δ > 0, there exists a positive integer constantH and a
positive constantB, such that ifV (n) ≥ B and

∑

l∈Ek

λl

cl
< 1 −

log(M) + 1

M
− 4ε, for all links k ∈ E,

then in the time-slotn + H , the following holds,

Pr{
∑

l∈Ek

ql(n + H)

cl
≤ V (n) − Hε} ≥ 1 − δ

for all links k ∈ E.
Proof: See Appendix II.

We now prove the stability of Q-SCHED.
Theorem 1: Consider the Markov chain{Q(n)}. Under

Q-SCHED scheduling algorithm this Markov chain is positive
recurrent if for someε > 0

∑

l∈Ek

λl

cl
< 1 −

log(M) + 1

M
− 4ε for all links k ∈ E.

Proof: Note that from Lemma 2 we can infer that for
any δ > 0 there exists a constantB and a positive integer
constantH such that ifV (n) ≥ B, then

Pr{V (n + H) − V (n) ≤ −Hε|Q(n)} ≥ 1 − Lδ,

whereL is the total number of links in the network.
Since the arrivals and departures are both upper-bounded,

there exists a constantC such that




















∑

l∈Ek

ql(n + 1)

cl
−
∑

l∈Ek

ql(n)

cl





















≤ C (8)

for all time-slotn and link k. This implies thatV (n + H) −
V (n) ≤ HC. DenotingEX [·] = E[·|X ], we have

EQ(n)

[

V (n + H) − V (n)
]

≤ −Hε(1 − Lδ) + HCLδ

= H
(

(C + ε)Lδ − ε
)

.

Thus, if δ ≤ ε
2(C+ε)L we get

EQ(n)

[

V (n + H) − V (n)
]

≤ −
Hε

2
< 0

wheneverV (n) > B. Since the setB = {Q(n) : V (n) ≤ B}
is bounded, by Foster’s theorem [29] we have proved that the
Markov chain{Q(n)} is positive recurrent.

C. The Efficiency Ratio and Overhead of Q-SCHED

Here we adopt the definition of theinterference degree
in [18], [19], [27]. The interference degree of a linkl is
the maximum number of links within its interference range
that can be activated simultaneously without interfering with
each other. The interference degreeK of a network is the
maximum interference degree over all links. A nice property
of this notion is that for a number of common interference
models, the value of interference degree can be bounded
independently from the network topology. For example, for
the node-exclusive interference model, the interference de-
gree is bounded by2. For the so-called bi-directional equal-
power model, which resembles the way IEEE 802.11 DCF

(Distributed Coordination Function) operates, the interference
degree is bounded by8 [27].

Consider a network whose interference degree isK. It
implies that in the interference range of any given linkk, at
mostK links can be scheduled at the same time. Therefore,
the offered load that the network can possibly support must
satisfy

∑

l∈Ek

λl

cl
< K for all links k.

According to Theorem 1, Q-SCHED can stabilize the network
for any offered load such that, for someε > 0,

∑

l∈Ek

λl

cl
< 1 −

log(M) + 1

M
− 4ε for all links k.

Since the parameterε can be arbitrarily small, this implies
that the guaranteed efficiency ratio of Q-SCHED can be
arbitrarily close to 1

K

(

1 − log(M)+1
M

)

, whereM again is the
number of backoff mini-slots. AsM → ∞ and ε → 0,
this guaranteed efficiency ratio approaches1/K. Recall that
maximal scheduling can guarantee an efficiency ratio of1/K
[18], [19]. Hence, the guaranteed efficiency ratio of Q-SCHED
can be arbitrarily close to that of maximal scheduling.

We next comment on the complexity and overhead of Q-
SCHED. Once each link obtains the queue-length information
from its neighboring links, Q-SCHED only takesM mini-
slots to compute a schedule. Note that in practice the length
of a mini-slot cannot be arbitrarily small. As a result, the
value M corresponds to the amount of time required for
computing a schedule. Thus, the computation time of Q-
SCHED is independent of the size and the topology of the
network. However, it does incur additional communication
overhead for Q-SCHED to exchange the queue-length infor-
mation. This communication overhead increases quadratically
with the the number of links in the two-hop neighborhood,
which is bounded when the maximum node-degree of the
network is bounded. Hence, given a small positive number
ε and a maximum node-degree, Q-SCHED can guarantee an
efficiency ratio of1/K−ε with both complexity and overhead
independent of the size of the network. In contrast, while
maximal-scheduling guarantees an efficiency ratio of1/K,
its complexity increases logarithmically with the size of the
network [23].

D. A Special Case

The scheduling algorithm discussed above is valid for any
interference model including the node-exclusive interference
model, as long as the interference relationship is symmetric.
However, in the special case of node-exclusive interference
model, an even simpler variant of this algorithm can be used.
The only difference is in the calculation of the termPl : each
link l computes

Pl = α

ql

cl

max[
∑

k∈Fb(l)

qk

ck
,
∑

k∈Fe(l)

qk

ck
]

where Fj denotes the set of links incident onj, and b(l)
and e(l) denote the transmitter node and the receiver node,
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respectively, of linkl. In this case we chooseα = log (2M)/2.
Thus, each link requires the knowledge of the queue-lengths
of only those links that interfere with it. We can prove that in
this case if

∑

l∈Fi

λl

cl
<

1

2
−

log(2M)

2M
for all nodesi ∈ V , (9)

thenQ(n) is positive recurrent and the system is queue-length
stable. We do not provide the proof since it is very similar to
the proof in Section III-B.

Remark:Q-SCHED policy is considerably similar to the
Policy V (for the node-exclusive interference model) and
Policy W (for the two-hop interference model) obtained in
[30]. Here we comment briefly on the main differences in the
results. First, under the two-hop interference model discussed
in [30], the performance guarantee of Q-SCHED proved in our
paper is often higher than that of PolicyW in [30]. Specifi-
cally, in this paper we prove that Q-SCHED can guarantee an
efficiency ratio close to1/K, where the interference degreeK
is defined as the maximum number of links in an interference
range that can be activated simultaneously. In [30, Proposition
3], it is proved that PolicyW can guarantee an efficiency ratio
close to1/n̂, where n̂ is the maximum number of links in
a one-hop neighborhood. AlthoughK can be equal tôn in
the worst case, it is often much smaller thann̂ in practical
topologies. For example, under the bi-directional equal-power
model in [27],K is bounded by8 while n̂ can be unbounded.
Hence, Q-SCHED is able to provide a higher performance
guarantee than PolicyW . Second, in this paper, our proof of
stochastic stability is different from the fluid-limit approach
in [30]. Additionally, in the next section, we also provide
an alternative algorithm which does not require nodes to
collect any queue-length information from its neighbors. Such
an algorithm allows further trade-off between the scheduling
efficiency and the signaling overhead required to collect queue
length information.

IV. A LGORITHM 2: BP-SIM

While Q-SCHED can compute a schedule in a constant
number of mini-slots, it requires knowledge of queue-length
information. This may or may not be difficult to obtain. At
moderate loads, queue-lengths will not be very large; thus,
queue-lengths can be transmitted using a small number of
bits along with the data packets. Even if the queue-lengths
are large, changes in queue-lengths can be transmitted using
a small number of bits if the arrival process is bounded.
However, in practice such queue-length information exchange
has to be performed asynchronously and thus may reduce
the performance of the algorithm. In this section, we present
an alternative algorithm, named BP-SIM (short for bipartite
simulation), that requires no queue-length information. As
in the case of Q-SCHED, BP-SIM does not attempt to find
a maximal schedule. Instead, BP-SIM ensures that, for any
backlogged linkl, the probability that a link inEl is scheduled
is high. This stems from the key observation that the proof in
[18] for the stability of maximal schedules can be adapted
easily even when the schedule is not maximal. We will show

with both analytical and numerical results that the complexity
of BP-SIM is low for networks with even a few hundred nodes.

BP-SIM is presented for the node-exclusive interference
model. To be more specific, we refer to the following FH-
CDMA system that adheres to the node-exclusive interference
model. Each node is assigned a unique orthogonal fast-hopping
sequence. At each time, a node can be either in asending
mode, or in areceiving mode. If it is in a receiving mode,
its frequency hops according to its own hopping sequence.
If it is in a sending mode, it uses the hopping sequence
of the intended receiver in order to send information to the
receiving node. Clearly, if two or more sending nodes want to
send information to the same receiver at the same time, their
messages will collide. Hence, such a system can be modeled
well using the node-exclusive interference model. Finally, it is
assumed that the maximum degree of any node in the network
is upper-bounded byd∗, i.e., d(v) ≤ d∗ for all nodesv.

A. Scheduling Policy

As in Q-SCHED, each time slot is divided into two parts:
a scheduling slot and a data transmission slot. The links that
are to be scheduled are chosen in the scheduling slot and the
chosen links transmit their packets in the data transmission
slot. The scheduling slot is further divided intoK rounds,
whereK is a constant to be chosen later. Each round contains
2M mini-slots. Initially none of the links are in the schedule.
In each roundi a matchingMi is formed by adding links
from the graphG to the matchingMi−1 (obtained from the
previous round). The matchingMK is the final schedule.

We define a few terms used in describing the algorithm.
Each nodev maintains and updates a list ofpotentially
availableneighboring nodes as follows. At the beginning, this
list is set to contain all neighboring nodes of nodev. Then,
in each round if nodev discovers that a neighboring nodeu
has been matched (using a procedure to be described below),
then nodeu will be removed from the list. (Note that even
if a neighboring nodeu is matched, it may still be in node
v’s list of potentially availableneighbors ifv does not know
whetheru is matched or not.)

We said that a link is backlogged if its queue backlog is
greater than or equal to the capacity of the link. A neighboring
node of nodev is said to be abacklogged neighborof v if
the link from v to this neighboring node is backlogged.

We now describe the BP-SIM algorithm. The2M mini-
slots in each round are further divided into two subgroups:
mini-slots1 to M form the requesting group, and mini-slots
M +1 to 2M form the responding group. In each round, BP-
SIM emulates a bipartite graph by first dividing the nodes
randomly into left nodes andright nodes. Specifically, the
round proceeds as follows. For each nodev, if it is not matched
yet, and it has at least one backlogged and potentially available
neighbor, such a nodev becomes either aleft node or aright
node with probability1/2 each, independently of other nodes.
Otherwise, (i.e., if the nodev is already matched, or if it has no
backlogged neighbors, or if none of the backlogged neighbors
are potentially available), such a nodev becomesright.

For any node, sayvl, that becomesleft, it chooses a
partner, sayvlr , uniformly and randomly from the set of
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backlogged and potentially available neighbors ofvl. Nodevl

then randomly and independently chooses a mini-slot between
1 andM uniformly, and sends a scheduling request tovlr in
that mini-slot. This scheduling request contains the ID of node
vl.

For any node, sayvr, that becomesright, it switches to
a receiving mode in mini-slots1 to M and listens to the
scheduling requests from its neighbors. Note that some of the
scheduling requests that nodevr receives may be transmitted
at the same mini-slot, in which case they will collide and
nodevr will not be able to decode the IDs contained in the
requests. Otherwise, nodevr will be able to decode the IDs
from non-colliding requests.

After M mini-slots of the requesting group end, theleft
nodes switch to a receiving mode. Theright nodes then send
responding messages to theleft nodes as follows. There are
three cases.

Case 1: if node vr has already been matched, then for
any mini-slot when it receives a non-colliding request, it will
choose a mini-slot in the responding group to reply to the
requester with a message that nodevr is a matched node. The
requester will then remove nodevr from its list of potentially
availableneighbors. Note that since each left node requested
at most one right node, such a reply message will always
succeed without collision. Further, since a right node needs to
reply to at mostM senders, the right node can reply to one
request at a time, and complete withinM mini-slots. (Such a
free-of-collision property also holds for the acknowledgment
packets in the next two cases.)

Case 2: If node vr has not been matched yet, and if the
first request that it received does not collide, it will then use
the first mini-slot of the responding group to acknowledge the
request from the node that first requested it. Nodevr and the
node that first requested it are then matched with each other.In
subsequent mini-slots, nodevr will behave as a matched node,
using the procedure in case 1 to reply to other non-colliding
requests with a message that nodevr has been matched.

Case 3:if node vr has not been matched yet, and if at the
first mini-slot whenvr received a request, there was a collision
due to simultaneous requests from more than one neighbors,
thenvr does not acknowledge or reply to any requests in that
round.

We note that onlyright nodes acknowledge requests. It is
possible that aleft node sends a request to aleft node, in which
case the request will never be acknowledged in any manner.

If vr acknowledges the request ofvl thenvr andvl are both
matched. At the end of the round, the matching contains all
ordered-pairs of nodes that have been matched so far.

The above process is repeated in every round. After theK
rounds, the links that correspond to matched pairs of nodes
begin transmission in the data transmission slot.

This algorithm is an extension of the maximal matching
algorithms discussed in [22] and [23]. There are two novel
features of the proposed BP-SIM algorithm. Firstly, BP-SIM
uses a contention resolution protocol that is necessary in a
wireless network to reduce the chance of collisions between
the connection requests. Secondly, BP-SIM uses a discovery
procedure to keep track of neighboring nodes that are already

matched. We note that it is important to keep track of such
information, because otherwise a left node may repeatedly
request a matched node. The discovery procedure described
above carefully resolves this issue. Finally, we also note that
the algorithms in [22] and [23] are designed to compute
maximal matchings. Thus, even if we ignore the collisions
due to simultaneous requests to a node, they takeO(log n)
time to compute a schedule. In contrast, in BP-SIM algorithm
the scheduling time depends only ond∗ and not onn as we
will see later.

B. Analysis

We now analyze this scheduling policy.
Lemma 3: For any κ ∈ (0, 1) there exists a constantK

that depends ond∗, κ, andM but is independent of network
size, such that for each backlogged linkl the probability that
at least one backlogged link inEl is scheduled afterK rounds
is greater than or equal toκ.

Proof: See Appendix III.
We next prove the stability of BP-SIM.
Theorem 2: Consider the Markov chain{Q(n)}. For the

node-exclusive interference model and under the scheduling
policy BP-SIM, this Markov Chain is positive recurrent if

∑

k∈El

λk

ck
< κ, for all links l,

whereκ ∈ (0, 1) and K are appropriately chosen according
to Lemma 3.

Proof: Define the Lyapunov function

V (n) =
∑

l

ql(n)

cl

(

∑

k∈El

qk(n)

ck

)

. (10)

This is the same Lyapunov function as the one used in [18].
Using the results in [18] we get

V (n + 1) − V (n)

= 2
∑

l

ql(n)

cl

(

∑

k∈El

(ak(n) − dk(n))

)

+
∑

l

(al(n) − dl(n))

(

∑

k∈El

(ak(n) − dk(n))

)

,

from which we get

E[V (n + 1) − V (n)|Q(n)]

≤ 2
∑

l

ql(n)

cl

(

∑

k∈El

λk(n)

ck
− E

[

∑

k∈El

dk(n)

])

+ B

≤ 2
∑

l:ql≥cl

ql(n)

cl

(

∑

k∈El

λk(n)

ck
− E

[

∑

k∈El

dk(n)

])

+ B1

(11)

≤ 2
∑

l:ql≥cl

ql(n)

cl

(

∑

k∈El

λk(n)

ck
− κ

)

+ B1

≤ −2ε
∑

l:ql≥cl

ql(n)

cl
+ B1,



GUPTA ET. AL.: LOW-COMPLEXITY DISTRIBUTED SCHEDULING ALGORITHMS FOR WIRELESS NETWORKS 7

where B, B1 > 0 are some constants andε = κ −
maxl

∑

k∈El

λk

ck
. Thus using [18, Th. 1], the system is queue-

length stable if
∑

k∈El

λk(n)

ck
< κ, for all links l ∈ E.

C. Numerical Examples and Simulations

Recall that under the node-exclusive interference model [6],
[17]–[19], maximal matching can be shown to achieve queue-
length stability for any offered load~λ such that

∑

k∈El

λk

ck
< 1, for all links l.

According to Theorem 2, by choosingκ close enough to1,
the throughput of BP-SIM can be arbitrarily close to that of
maximal schedule. Further, note that any feasible offered load
under the node-exclusive interference model must satisfy

∑

k∈El

λk

ck
< 2, for all links l.

Hence, by choosingκ close enough to1, the efficiency ratio
of BP-SIM can be made arbitrarily close to1/2. For any fixed
κ < 1, the complexity of BP-SIM depends on the value ofM
andK, and is independent of the size of the network.

Although in the above results we are unable to derive an
analytic expression for the minimum number of roundsK as a
function ofκ, we next present some numerical results on how
large K needs to be for practical choice ofκ. We first run
numerical evaluations based on the analytical bounds derived
in Appendix III. Whend∗ = M = 5, in order to guarantee
κ = 0.9, we requireK ≥ 29. Therefore inK × 2M = 290
mini-slots, BP-SIM guarantees that for any backlogged link
l at least one link in its interference set is scheduled with a
probability greater than or equal to0.9. If d∗ = M = 10 we
requireK ≥ 53 to guaranteeκ = 0.9.

The above analytical bounds are found to be quite conserva-
tive. We have also simulated the BP-SIM policy to analyze its
actual performance. Simulations were performed on networks
of four different sizes. The number of nodes (n) in the four
cases were30, 60, 120 and225. The maximum node degrees
(d∗) in the four cases were5, 8, 8 and17, respectively. The
nodes were placed randomly on a rectangular area, i.e. their
coordinates were choseni.i.d. and uniformly. The radius of
transmission of the nodes was chosen so as to make the graph
connected.

In Figure 1 we plot the minimum success probability of a
link versus number of rounds. Success probability of a link
here refers to the probability that either the link or one of its
interfering links is scheduled. Minimum success probability is
the lowest success probability for all links in the network and
among all random graphs simulated. The maximum backoff
time in each case wasM = 4.

In each case shown in Figure 1 we only neededK = 11
rounds (i.e.,K × 2M = 88 mini-slots) for the minimum suc-
cess probability to be greater than 0.9. Hence, the simulation
results show that in practice BP-SIM works even better than
the minimum performance guarantees we have proved.
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Fig. 1. Scheduling Efficiency of BP-SIM: Each curve shows, asthe number
of rounds increases, the minimum value (over all links) of the probability
that either a given link or one of its interfering links is scheduled. Note that
the curves for all four cases are close in the figure, thus showing the nice
scalability property of the algorithm.

V. JOINT MULTIPATH ROUTING AND SCHEDULING

The results in Section III and Section IV have focused on
the case with single-hop flows. In other words, the arriving
packets are directly offered to each link, and once they are
served, they immediately leave the system. In this section,we
extend the results to the case of multi-hop flows and with
multipath routing. We will show how to design joint routing
algorithms to work with the scheduling algorithms developed
in the previous sections.

A. The Extended System Model with Multipath Routing

In addition to the system model in Section II, we now
assume that there areS users in the system. Each user is
associated withJ(s) alternate paths. LetH l

sj = 1 if the path
j of users uses linkl, andH l

sj = 0, otherwise. LetXs(n)
be the number of (unit-length) packets generated by users
at the beginning of time-slotn. For simplicity, we assume
again that[X1(n), ..., XS(n)] is i.i.d. across time-slots. Let
xs = E[Xs(n)], and~x = [x1, ..., xS ]. We can then define the
capacity regionΛ′ in terms of ~x as the set of offered-load
vectors~x such that there existsp∗sj ≥ 0, for all s = 1, ...,S,

j = 1, ..., J(s) such that
∑J(s)

j=1 p∗sj = 1 for all s and





S
∑

s=1

J(s)
∑

j=1

H l
sjxsp

∗
sj



 ∈ Λ,

whereΛ is the capacity region defined in Section II in terms
of the per-link rate~λ, andp∗sj can be viewed as the long-term
average fraction of traffic from users that is routed to path
j. In this section, we are interested in joint routing algorithms
that can work with the scheduling algorithms in the previous
sections to stabilize the system for a large fraction of the
capacity regionΛ′.
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B. Joint Routing Algorithms Working with Q-SCHED

We first present a joint routing algorithm that can work with
Q-SCHED to achieve a large fraction of the capacity region
Λ′. Let β be a positive constant.

Joint Routing and Q-SCHED Algorithm :
• At each time slotn, each users computes the routing

probability ~ps(n) = [psj(n)] as the solution to the
following problem:

min
~ps≥0

Bs

2

J(s)
∑

j=1

(psj)
2

+

J(s)
∑

j=1

psj

L
∑

l=1

H l
sj

cl

∑

i∈El

[

∑

k∈Ei

qk(t)

ck

]β

subject to
J(s)
∑

j=1

psj = 1, (12)

whereBs is a positive constant chosen for each users.
Each users then routes every arriving packet at time-slot
n to pathj with probability psj(n). Let Psj(n) denote
the actual fraction of packets routed to pathj at time-slot
n. Note thatE[Xs(n)Psj(n)] = xspsj(n).

• At each time slotn, use Q-SCHED to compute the
schedule to be used at this time slot. LetDl(n) = cl

if link l is scheduled by Q-SCHED at time slotn.
Remark:The main idea of (12) is to assign higher routing

probabilities to those pathsj that are less congested, i.e., to
those pathsj with smaller cost

L
∑

l=1

H l
sj

cl

∑

i∈El

[

∑

k∈Ei

qk(t)

ck

]β

. (13)

The quadratic termBs

2

∑J(s)
j=1 (psj)

2 is to alleviate an other-
wise “oscillation” problem for this type of multipath routing
algorithms [31]. Note that ifBs = 0, then it is easy to see
that the solution of (12) will havepsj > 0 only for those
pathsj whose costs (given by (13)) are the smallest among all
alternate paths of users. Thus, even if the queue-length varies
slightly, the routing probabilities could switch completely from
one path to the other. On the other hand, whenBs > 0, we
can show that the solution to (12) is a continuous function of
the queue-length. Hence, the oscillation problem is eliminated.
For convenience, we use a quadratic function here, while in
fact any strictly-convex function of~ps should serve the same
purpose.

According to this algorithm, the evolution of the queue-
length is given by1

ql(n + 1) =



ql(n) +

S
∑

s=1

J(s)
∑

j=1

H l
sjXs(n)Psj(n) − Dl(n)





+

.

(14)

1Note that here we have adopted the simplifying assumption that the
packets routed to pathj are offered to all links on the path instantaneously.
This assumption simplifies the analysis. There are standardtechniques in the
literature [18], [32]–[35] that can extend our result to thecase when the
hop-by-hop packet-forwarding dynamics are taken into account. We refer the
readers to these references for details.

We now state the main result of the section.
Theorem 3: For anyε > 0, there exists a positive number

β0 such that for allβ ≥ β0, the above joint routing and Q-
SCHED algorithm can stabilize all queues under all offered
load vector~x that satisfies the following condition: there exist
~λ∗ = [λ∗

l ] and~p∗ = [p∗sj ] such that

λ∗
l =

S
∑

s=1

J(s)
∑

j=1

H l
sjxsp

∗
sj , for all links l,

∑

l∈Ei

λ∗
l

cl
≤

1 − ε

1 + ε

(

1 −
log M + 1

M
− ε

)

, for all links i.

Remark:When the interference degree isK, it is each to
verify that any feasible offered load~x ∈ Λ′ must satisfy the
following: there must exist~λ∗ and~p∗ with

λ∗
l =

S
∑

s=1

J(s)
∑

j=1

H l
sjxsp

∗
sj , for all links l,

∑

l∈Ei

λ∗
l

cl
≤ K, for all links i.

Therefore, Theorem 3 implies that the above algorithm can
guarantee close to1/K of the capacity regionΛ′.

In order to prove Theorem 3, we will need the following
lemma.

Lemma 4: For anyε > 0, there existsβ0 ≥ 0 such that for
all β ≥ β0 andQ(n) 6= 0, the following holds,

∑L
i=1

(

∑

l∈Ei

ql(n)
cl

)(1+β)

maxi∈E

∑

l∈Ei

ql(n)
cl

≥ (1 − ε)

L
∑

i=1

(

∑

l∈Ei

ql(n)

cl

)β

.

whereL = |E| is the total number of links in the system.
Proof: Let

ai =

∑

l∈Ei

ql(n)
cl

maxk∈E

∑

l∈Ek

ql(n)
cl

.

Then 0 ≤ ai ≤ 1 for all links i ∈ E. Further, there exists a
link i such thatai = 1. Without loss of generality, we can
assume thata1 = 1. To prove the lemma, it suffices to show
that for largeβ,

1 +
∑

i6=1

a
(1+β)
i ≥ (1 − ε)



1 +
∑

i6=1

aβ
i



 ,

for all 0 ≤ ai ≤ 1, i = 2, 3, ..., L.
Fix ε ∈ (0, 1). Note that for anyβ > 0, we have,

a
(1+β)
i ≥ aβ

i (1 − ε), if ai ≥ 1 − ε,

and
a
(1+β)
i ≥ 0, if ai ≤ 1 − ε.

In both cases, we have

a
(1+β)
i ≥ aβ

i (1 − ε) − (1 − ε)(1+β).

Hence,

1 +
∑

i6=1

a
(1+β)
i ≥ 1 +

∑

i6=1

aβ
i (1 − ε) − L(1 − ε)(1+β).
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Now, givenε > 0, we can pickβ0 such that

L(1 − ε)(1+β0) ≤ ε,

Then, for anyβ > β0, we have,

1 +
∑

i6=1

a
(1+β)
i ≥



1 +
∑

i6=1

aβ
i



 (1 − ε).

The result of the lemma then follows.
We can now prove Theorem 3.

Proof: (of Theorem 3) We will use the following Lya-
punov function:

U(n) =
1

β + 1

L
∑

i=1

(

∑

l∈Ei

ql(n)

cl

)(1+β)

.

The motivation for consideringU(n) is that U(n)1/(1+β)

approximatesV (n) = maxi∈E

∑

l∈Ei

ql(n)
cl

(see (6)) when
β is large. SinceV (n) is a Lyapunov function for the
Q-SCHED algorithm, we expect thatU(n) will also be-
come a Lyapunov function whenβ is large. Letλl(n) =
∑S

s=1

∑J(s)
j=1 H l

sjxspsj(n), wherepsj(n) is the routing prob-
ability chosen for time-slotn. To compute the drift ofU(n),
recall thatE[Xs(n)Psj(n)] = xspsj(n). Hence,

E[U(n + 1) − U(n)|Q(n)]

≤
L
∑

i=1

(

∑

l∈Ei

ql(n)

cl

)β [
∑

l∈Ei

λl(n)

cl
−
∑

l∈Ei

Pr{Sl}

]

+g(Q(n)),

whereSl is the event that linkl is scheduled at time slotn
(see Lemma 1 in Section III), and

g(Q(n)) =

L
∑

i=1

o





(

∑

l∈Ei

ql(n)

cl

)β


 .

(We have use the notationh(x) = o(f(x)) to mean
limx→+∞ h(x)/f(x) = 0.) According to Lemma 1, there
exists a constantR such that ifV (n) ≥ R, then

∑

l∈Ei

Pr{Sl} ≥

∑

l∈Ei

ql(n)
cl

V (n)
(1 −

log M + 1

M
− ε),

for all links i, whereV (n) = maxi∈E

∑

l∈Ei

ql(n)
cl

. Hence, if
we chooseβ0 as in Lemma 4, then for allβ ≥ β0, we have,

L
∑

i=1

(

∑

l∈Ei

ql(n)

cl

)β [
∑

l∈Ei

Pr{Sl}

]

≥
(1 − log M+1

M − ε)

V (n)

L
∑

i=1

(

∑

l∈Ei

ql(n)

cl

)(β+1)

≥ (1 − ε)(1 −
log M + 1

M
− ε)

L
∑

i=1

(

∑

l∈Ei

ql(n)

cl

)β

.

By the assumption,
∑

l∈Ei

λ∗
l

cl
≤

1 − ε

1 + ε

(

1 −
log M + 1

M
− ε

)

, for all links i.

Hence,

E[U(n + 1) − U(n)|Q(n)]

≤
L
∑

i=1

(

∑

l∈Ei

ql(n)

cl

)β [
∑

l∈Ei

λl(n)

cl
− (1 + ε)

∑

l∈Ei

λ∗
l

cl

]

+g(Q(n)) (15)

=
L
∑

i=1

(

∑

l∈Ei

ql(n)

cl

)β [
∑

l∈Ei

∑S
s=1

∑J(s)
j=1 H l

sjxspsj(n)

cl

−(1 + ε)
∑

l∈Ei

∑S
s=1

∑J(s)
j=1 H l

sjxsp
∗
sj

cl

]

+ g(Q(n))

=

S
∑

s=1

xs





J(s)
∑

j=1

psj(n)

L
∑

l=1

H l
sj

cl

∑

i∈El

(

∑

k∈Ei

qk(n)

ck

)β

−(1 + ε)

J(s)
∑

j=1

p∗sj

L
∑

l=1

H l
sj

cl

∑

i∈El

(

∑

k∈Ei

qk(n)

ck

)β




+g(Q(n)).

According to the multi-path routing algorithm (12), we have
for each users,

J(s)
∑

j=1

psj(n)

L
∑

l=1

H l
sj

cl

∑

i∈El

(

∑

k∈Ei

qk(n)

ck

)β

−

J(s)
∑

j=1

p∗sj

L
∑

l=1

H l
sj

cl

∑

i∈El

(

∑

k∈Ei

qk(n)

ck

)β

≤ −
Bs

2

J(s)
∑

j=1

(psj(n))2 +
Bs

2

J(s)
∑

j=1

(p∗sj)
2

≤ BsJ(s).

Hence,

E[U(n + 1) − U(n)|Q(n)]

≤ −ε

L
∑

i=1

(

∑

l∈Ei

ql(n)

cl

)β [
∑

l∈Ei

λ∗
l

cl

]

+

S
∑

s=1

xsBsJ(s) + g(Q(n)).

This then provides the negative drift for stability.

C. Joint Routing Algorithms Working with BP-SIM

A similar multipath routing algorithm can be design for
working with BP-SIM. In fact, since the Lyapunov function
for BP-SIM (see Equation (10) in the proof of Theorem 2) is
of a quadratic form, we do not need largeβ as in Theorem 3.

Joint Routing and BP-SIM Algorithm :

• At each time slotn, each users computes the routing
fractions~ps(n) = [psj(n)] as the solution to the following
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problem:

min
~ps≥0

Bs

2

J(s)
∑

j=1

(psj)
2

+

J(s)
∑

j=1

psj

L
∑

l=1

H l
sj

cl

∑

i∈El

[

∑

k∈Ei

qk(t)

ck

]

subject to
J(s)
∑

j=1

psj = 1,

whereBs is a positive constant chosen for each users.
Each users then routes every arriving packet at time-slot
n to pathj with probability psj(n). Let Psj(n) denote
the actual fraction of packets routed to pathj at time-slot
n. Note again thatE[Xs(n)Psj(n)] = xspsj(n).

• At each time slotn, use BP-SIM to compute the schedule
to be used at this time slot. LetDl(n) = cl if link l is
scheduled by BP-SIM at time slotn.

The evolution of the queue-length is again given by (14). We
can show the following result, which is similar to Theorem 3.

Theorem 4: The above joint routing and BP-SIM algorithm
can stabilize all queues under all offered load vector~x that
satisfies the following condition: there exist~λ∗ = [λ∗

l ] and
~p∗ = [p∗sj ] such that

λ∗
l =

S
∑

s=1

J(s)
∑

j=1

H l
sjxsp

∗
sj , for all links l,

∑

l∈Ei

λ∗
l

cl
≤ κ, for all links i.

where κ ∈ (0, 1) and the number of roundsK (that BP-
SIM executes within each time-slot) are appropriately chosen
according to Lemma 3.

To prove Theorem 4, we can use the same Lyapunov
function (10) as in the proof of Theorem 2, and proceed to
Equation (11), which is comparable to Equation (15) in the
proof of Theorem 3. We can then establish the negative drift
by comparing withλ∗

l (similar to the steps after Equation (15)
in the proof of Theorem 3), and by using Lemma 3.

Since the interference degree under the node-exclusive
interference model is2, Theorem 4 implies that, by choosing
κ close enough to1, the above algorithm can guarantee close
to 1/2 of the capacity regionΛ′.

VI. CONCLUSION

We have presented two low-complexity, distributed algo-
rithms for scheduling in multi-hop wireless networks. The al-
gorithms approximate the performance of maximal matching-
type scheduling arbitrarily closely. However, a key feature
that allows the two algorithms to have low complexity is
that neither algorithm attempts to find a maximal matching.
With high probability, Q-SCHED schedules links in those
interference sets where the total queue-length is large. On
the other hand, BP-SIM ensures that the probability that at
least one link is scheduled in the interference set of each
backlogged link is high. The complexity of both algorithms

can be made to only depend on the maximum node-degree
and an approximation factor (as to how close one wants to
approach the performance guarantee of maximal schedules),
but are otherwise independent of the size of the network.

Recently, there have been a number of papers addressing
complexity and decentralization questions in multi-hop wire-
less networks. We now briefly comment on the contribution of
this paper in the overall context of this line of research. Com-
plexity issues in max-weight scheduling have been addressed
through longest-queue-first and maximal scheduling in [6],
[17]–[19], [30], [36], [37], through the use of randomized algo-
rithms in [38]–[40], or through partitioning approaches in[41],
[42]. The issues of decentralization and signaling overhead
have been addressed in [40], [43]. The Q-SCHED algorithm
in this paper addresses both complexity and overhead for fairly
general models of wireless networks, while BP-SIM addresses
these issues in the context of node-exclusive interference
model only. However, as with prior papers, it is clear that there
is a tradeoff between complexity, decentralization overhead,
and performance. Further, our philosophy here is that an algo-
rithm that has low complexity and overhead under a bounded
node-degree assumption would be quite reasonable in practice
since most ad hoc networks are expected to be of relatively
small node-degrees in the near future. However, a detailed
comparison of the algorithms in the growing literature of
low-complexity, decentralized algorithms is currently lacking.
Thus, a comprehensive simulation or theoretical study of these
algorithms would be a good avenue for future investigation.

APPENDIX I
PROOF OFLEMMA 1

Proof: Fix any link k such that Inequality (7) holds.
Consider a linkj ∈ Ek. We will first find a lower bound on
the probability thatj is scheduled.

Link j gets scheduled when it attempts transmission and
each of the other attempting links in its interference set choose
a bigger backoff time. LetSj be the event thatj is scheduled
and letYl be the backoff time chosen by a linkl. Then we
get

Pr{Sj} ≥
M
∑

m=1

Pr{Yj = m}
∏

h∈Ej

h 6=j

Pr (Yh > m)

=

M
∑

m=1

(

e−Pj
m−1

M − e−Pj
m
M

)

∏

h∈Ej

h 6=j

e−Ph
m
M (16)

=
(

e
Pj

M − 1
)

M
∑

m=1

e−Pj
m
M

∏

h∈Ej

h 6=j

e−Ph
m
M

=
(

e
Pj

M − 1
)

M
∑

m=1

e
(− m

M

∑

h∈Ej
Ph)

(17)

where (16) is obtained by using the probability distribution
described in Section III-A. We now find an upper bound on
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the term
∑

h∈Ej
Ph that appears in (17).

∑

h∈Ej

Ph = α
∑

h∈Ej

qh

ch

maxl∈Eh

∑

i∈El

qi

ci

(18)

≤ α
∑

h∈Ej

qh

ch
∑

i∈Ej

qi

ci

= α, (19)

where in Equation (19) we have used the assumption that if
h ∈ Ej , thenj ∈ Eh. This implies that the denominator in (18)
is never less than

∑

i∈Ej

qi

ci
. Using (17) and (19), we get

Pr{Sj} ≥
(

e
Pj

M − 1
)

M
∑

m=1

e(−α m
M

) ≥
Pj

M

M
∑

m=1

e(−α m
M

).

Hence, summing over allj ∈ Ek, we have

∑

j∈Ek

Pr {Sj} ≥
M
∑

m=1

e(−α m
M

)
∑

j∈Ek

Pj

M
. (20)

Now from the probability distribution given in Section III-A,
we get

∑

j∈Ek

Pj ≥ α

∑

j∈Ek

qj

cj

V (n)
≥ αη

V (n) − C1 − C2ε

V (n)
(21)

= αη

(

1 −
C1 + C2ε

V (n)

)

, (22)

where (21) follows from the assumption that
∑

l∈Ek

ql

cl
≥

η(V (n) − C1 − C2ε). Using (22) in (20) we get

∑

j∈Ek

Pr {Sj} ≥
αη

M

M
∑

m=1

e(−α m
M

)

(

1 −
C1 + C2ε

V (n)

)

=
αη

M

1 − e−α

1 − e−
α
M

e−
α
M

(

1 −
C1 + C2ε

V (n)

)

.

Since α = log (M) and M > 1, we can see thatαM /(1 −
e−α/M ) ≥ 1, e−α/M ≥ 1 − log(M)/M and 1 − e−α = 1 −
1/M . Hence,
∑

j∈Ek

Pr {Sj} ≥ η

(

1 −
log (M) + 1

M

)(

1 −
C1 + C2ε

V (n)

)

.

Now if V (n) ≥ R then C1+C2ε
V (n) ≤ C1+C2ε

R . Thus, for

sufficiently largeR, we haveC1+C2ε
V (n) ≤ ε and this gives

∑

j∈Ek

Pr{Sj} ≥ η

(

1 −
log (M) + 1

M

)

(1 − ε)

≥ η

(

1 −
log (M) + 1

M
− ε

)

.

This ends the proof of Lemma 1.

APPENDIX II
PROOF OFLEMMA 2

Proof: For any givenH , since the arrivals and departures
are both upper-bounded, there exists a constantC such that




















∑

l∈Ek

ql(n + 1)

cl
−
∑

l∈Ek

ql(n)

cl





















≤ C for all n andk.

For any given linkk, we consider two cases.
Case 1: if

∑

l∈Ek

ql(n)

cl
≤ V (n) − H(C + ε),

then

Pr{
∑

l∈Ek

ql(n + H)

cl
≤ V (n) − Hε} = 1.

This can be seen from the fact that
∑

l∈Ek

ql

cl
cannot increase

by more thanC in a single time-slot. Thus, in this case the
Lemma holds trivially.

Case 2: if
∑

l∈Ek

ql(n)
cl

> V (n) − H(C + ε), then for all
t ∈ [n + 1, n + H ] we have

∑

l∈Ek

ql(t)

cl
≥ V (n) − H(C + ε) − C(t − n)

≥ V (t) − 2C(t − n) − H(C + ε)

≥ V (t) − H(3C + ε).

Thus using Lemma 1 withη = 1, there exists a positive
constantB (as a function ofH) such that ifV (n) ≥ B then

∑

l∈Ek

Pr{Sl} ≥ 1 −
log(M) + 1

M
− ε (23)

for all t ∈ [n + 1, n + H ], whereSl is the event that linkl is
scheduled. Note that we did not need to impose a condition on
eachV (t) separately becauseV (t) ≥ V (n)−C(t−n) for all
t. Thus a sufficiently largeB would guarantee the condition
of Lemma 1 for allV (t).

We define the eventXt such thatXt = 1 if at least one
service occurs among the links inEk in time-slott, andXt = 0
otherwise. Note that from Lemma 1 and (23), we have in fact
obtained that, for allt = n + 1, ..., n + H ,

Pr{Xt = 1|Xt−1, Xt−2, ..., Xn+1} ≥ 1 −
log(M) + 1

M
− ε.

Let Y =
∑n+H

t=n+1 Xt. For any θ ≥ 0, using the Chernoff
bound we must have

Pr

{

Y ≤ H

(

1 −
log(M) + 1

M
− 2ε

)}

= Pr

{

H − Y ≥ H

(

log(M) + 1

M
+ 2ε

)}

≤
E[exp(θ(H − Y )]

exp
[

θH
(

log(M)+1
M + 2ε

)]

≤ exp

(

H

{

log

[

1 + (eθ − 1)(
log(M) + 1

M
+ ε)

]

−θ

[

log(M) + 1

M
+ 2ε

]})

.

By appropriately choosing someθ > 0, it is then easy to show
that there exists a constantτ1 > 0 such that

Pr

{

Y ≤ H

(

1 −
log(M) + 1

M
− 2ε

)}

≤ e−Hτ1 . (24)
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Similarly we can show that the aggregate arrivalsZ =
∑

l∈Ek

∑n+H
t=n+1

Al(t)
cl

must satisfy2

Pr

{

Z ≥ H

(

1 −
log(M) + 1

M
− 3ε

)}

≤ e−Hτ2 (25)

for someτ2 > 0. Thus from (24) and (25) we have

Pr

{

∑

l∈Ek

ql(n + H)

cl
≤ V (n) − Hε

}

≥ Pr{Z ≤ Y − Hε}

≥ 1 − e−Hτ1 − e−Hτ2 .

Thus, by choosing a large enoughH and a correspondingly
large enoughB, we get

Pr

{

∑

l∈Ek

ql(n + H)

cl
≤ V (n) − Hε

}

≥ 1 − δ.

This ends the proof of Lemma 2.

APPENDIX III
PROOF OFLEMMA 3

Before we proceed it is helpful to define three termsF1(x),
F4(x) andF3(x). First, F1(1) = 0 and for anyx ≥ 2,

F1(x) =

x−1
∑

j=1

(

x − 1

j

)(

1

2

)x−1
(

1 −
1

M

M
∑

l=1

(

1 −
l

M

)j
)

.

The termF1(x) is an upper bound on the probability that,
when a givenleft node (sayvl) chooses to request anotherright
node (sayv) that is not matchedand whose degree isd(v) = x,
the nodevl is not acknowledged byv. Note that ifx = 1, node
v will always acknowledge the request fromvl. For x ≥ 2, to
derive this upper bound, we have assumed that each neighbor
of v (other thanvl) becomes left with probability1/2 and
the left neighbors ofv always requestv. This assumption
maximizes the amount of contention and hence maximizes
the probability that the request fromvl is not acknowledged.
The event is broken down into cases when exactlyj of the
remainingx−1 neighbors ofv becomeleft, which occurs with
probability

(

x−1
j

) (

1
2

)x−1
. The term 1

M

∑M
l=1

(

1 − l
M

)j
is the

probability that, amongj + 1 contending nodes, a particular
node (sayvl) wins (i.e., chooses the unique lowest backoff
time). Here l represents the backoff time selected by the
nodevl (which happens with probability1M ) and

(

1 − l
M

)j
is

the probability that the remaining contenders choose a larger
backoff time. It is easy to check thatF1(x) ≤ F1(d

∗) for any
x ≤ d∗.

DefineF4(x) such thatF4(1) = 0 and forx ≥ 2,

F4(x) =

x−1
∑

j=1

(

x − 1

j

)(

1

2

)x−1
(

1 −
j + 1

M

M
∑

l=1

(

1 −
l

M

)j
)

.

The termF4(x) is the upper bound on the probability that,
when a givenleft node (sayvl) chooses to request anotherright
node (sayv) that is not matchedand whose degree isd(v) = x,

2This is the place where we use the assumption that the arrivals arei.i.d.
across time. However, the property (25) also holds for more general arrival
processes, e.g., Markov-modulated Poisson arrivals.

the nodev receives two or more requests and acknowledges
none of them (due to collision). Note that ifx = 1, nodev will
always acknowledge the request fromvl. For x ≥ 2, to derive
this upper bound, we have assumed that each neighbor ofv
(other thanvl) becomes left with probability1/2 and theleft
neighbors ofv always requestv. This assumption maximizes
the amount of contention and hence maximizes the probability
that the first two requests collide in a mini-slot. Similar to
F1(x), the event is broken down into cases when exactlyj of
the remainingx−1 neighbors ofv becomeleft. The factorj+1
is because any one of thej+1 contending nodes (includingvl

itself) can potentially win. We can check thatF4(x) ≤ F4(d
∗)

for any x ≤ d∗.
Further, defineF3(x) such thatF3(1) = 0 and forx ≥ 2,

F3(x) = 1 −

(

1 −
1

2M

)x−1

.

Using similar techniques, we can show that the termF3(x)
is the upper bound on the probability that, when a givenleft
node (sayvl) chooses to request anotherright node (sayv)
that is matchedand whose degree isd(v) = x, the nodevl

does not receive a reply fromv that v is matched.
Consider any directed linkAB that is backlogged. We

need to find a lower bound on the probability of the event
MAB that eitherA or B is matched at the end ofK rounds.
Towards this end, definep(a, k) as a lower bound on the
probability that eitherA or B will be matched after the
next k rounds, conditioned on the event that neitherA nor
B has been matched yet, andA currently hasa number of
potentially available neighbors. We further require that,for
eachk, p(a, k) is a non-increasing function ofa. Note that
p(a, k) is well defined fora ≥ 1. For ease of exposition, we
define p(0, k) = 1 for all k. The intuition behind the last
definition is that ifA has no potentially available neighbors,
thenB must be matched.

For anyk, assume thatp(a, k) is given for alla ≥ 0 and it is
non-increasing ina. We next derive an expression that relates
p(a, k + 1) to p(a, k) for all a ≥ 1. Considerp(a, k + 1)
for a givena ≥ 1, and consider the round that immediately
follows. Since by definition neitherA norB has been matched
yet, according to the BP-SIM algorithm nodeA will become
left or right with probability 1/2. If A becomes right, the
worst case is that neitherA nor B will be matched in this
round. Further, sinceA is a right node,A will not learn of
any additional matched neighbors. Hence, conditioned onA
becomes a right node in the first round, a lower bound on the
probability that neitherA nor B is matched ink + 1 rounds
is p(a, k).

On the other hand, if nodeA becomes left, with probability
1/a it will request the nodeB. NodeB becomes a right node
with probability at least1/2. Conditioned on the event thatA
requestsB and nodeB becomes right,B will acknowledge
one request with probability at least1 − F4(d

∗), in which
caseB will be matched. If the nodeB does not acknowledge
any requests (which occurs with probability at mostF4(d

∗)),
then nodeA’s number of potentially available neighbors does
not change. Combining the above arguments, we can conclude
that, conditioned on the event thatA requestsB in the first
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round, a lower bound on the probability that neitherA nor B
is matched ink + 1 rounds is

1

2
(1 − F4(d

∗)) + (1 −
1

2
(1 − F4(d

∗))p(a, k)

=
1 − F4(d

∗)

2
+

1 + F4(d
∗)

2
p(a, k).

Next, consider that case whenA becomes left, and with
probability1−1/a it requests a neighbor other thanB. There
are two sub-cases.

Sub-case 1: if this neighbor is a matched node, then with
probability at least1−F3(d

∗) nodeA will be able to receive a
reply, and hence its number of potentially available neighbors
can decrease by1. If A does not receive a reply, then its
number of potentially available neighbors does not change.
Recall thatp(a − 1, k) ≥ p(a, k) by our definition. Hence,
conditioned on the event thatA requests a neighbor that is
matched, a lower bound on the probability that neitherA nor
B is matched ink + 1 rounds is

(1 − F3(d
∗))p(a − 1, k) + F3(d

∗)p(a, k).

Sub-case 2: if this neighbor is an unmatched node, then it
becomes a right node with probability at least1/2. Hence, the
request fromA will be acknowledged with probability at least
1
2 (1−F1(d

∗)), in which caseA will be matched. If the request
from A is not acknowledged (which occurs with probability
at most1− 1

2 [1−F1(d
∗)]), the worst case will be thatA does

not receive any reply from the neighbor being requested, and
hence nodeA’s number of potentially available neighbors does
not change. Combining the above arguments, we can conclude
that, conditioned on the event thatA requests a neighbor (other
thanB) that is not matched, a lower bound on the probability
that neitherA nor B is matched ink + 1 rounds is

1

2
(1 − F1(d

∗)) + (1 −
1

2
(1 − F1(d

∗))p(a, k)

=
1 − F1(d

∗)

2
+

1 + F1(d
∗)

2
p(a, k).

Finally, taking the smaller value between the above two sub-
cases, we can then conclude the following: conditioned on the
event thatA becomes left in the first round and it requests a
neighbor other thanB, a lower bound on the probability that
neitherA nor B is matched ink + 1 rounds is

min [(1 − F3(d
∗))p(a − 1, k) + F3(d

∗)p(a, k),

1 − F1(d
∗)

2
+

1 + F1(d
∗)

2
p(a, k)

]

.

Combining all of the discussions above, we can derive a
value forp(a, k + 1) as

p(a, k + 1)

= min
{

p(a − 1, k + 1),

1

2
p(a, k) +

1

2a

[

1 − F4(d
∗)

2
+

1 + F4(d
∗)

2
p(a, k)

]

+
1

2
(1 −

1

a
)min [

(1 − F3(d
∗))p(a − 1, k) + F3(d

∗)p(a, k),

1 − F1(d
∗)

2
+

1 + F1(d
∗)

2
p(a, k)

]

}

(26)

where in the first term we have incorporated the requirement
that p(a, k + 1) must be non-decreasing ina.

We can then use iteration (26) to compute all values of
p(a, k), a ≥ 1, k = 1, 2, .... The initial condition fork = 0
is given byp(a, 0) = 0 if a ≥ 1 and p(0, k) = 1 for all k.
The probability of interest in Lemma 3 is thenPr(MAB) ≥
p(d∗, K). It remains to show the following claim.

Lemma 5: Given d∗ and M , for any a ≥ 0, p(a, k) → 1
ask → ∞.

Proof: We prove by induction ona. By our definition
that p(0, k) = 1 for all k, the claim holds trivially fora = 0.
Assume that the claim holds fora, we next show that it must
also hold fora + 1. To see this, note that by the induction
hypothesis, for anyε > 0, we can findK0 such thatp(a, k) ≥
(1 − ε) for k ≥ K0. Let

F = max{
1 + F1(d

∗)

2
, F3(d

∗),
1 + F4(d

∗)

2
}.

Note thatF < 1. Then, using (26), we have, for allk ≥ K0,

p(a + 1, k + 1) ≥ min{1 − ε,
1

2
p(a + 1, k) +

1

2
[(1 − F )(1 − ε) + Fp(a + 1, k)]}.

Since1 − F > 0, this implies thatlim infk→∞ p(a + 1, k) ≥
1− ε. Sinceε can be arbitrarily small, the results of Lemma 5
then follows.

Hence, the result of Lemma 3 must hold.
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