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Abstract— We present a new class of Space-Time-Frequency
Block Codes (STFBC) for Multiantenna Orthogonal Frequency
Division Multiplexing (MIMO-OFDM) transmissions over fre-
quency selective Rayleigh fading channels. We show that these
codes admit symbol-by-symbol decoding (decoupled decoding)
when the number of nonzero taps of the channel impulse response
is equal to two and they admit reduced complexity (1/2 of that of
known schemes) for more than two channel taps. We also present
simulation results to show that our codes perform better than
the known codes.

I. INTRODUCTION & PRELIMINARIES

It has been proved that when the channel is a frequency flat,
Rayleigh and quasi-static fading channel, we can achieve a
diversity order equal to the product of number of transmit and
the number of receive antennas with appropriate coding across
the spatial and temporal domains called Space-Time Coding
(STC) [1], [2]. Several authors have constructed Space-Time
Codes achieving full diversity [1]–[7]. When the channel is
frequency selective, coding intelligently across the spatial,
temporal and frequency domains results in a diversity order
equal to the product of the channel order, the number of
transmit and the number of receive antennas [8]. Coding
for such channels is called Space-Time-Frequency Coding
(STFC). In this paper, we deal with Space-Time-Frequency
Block Codes (STFBCs).

Let the number of frequency carriers be Nc, the number of
transmit antennas be Nt, the number of receive antennas be
Nr and the number of OFDM symbol intervals be Nx. An
STFBC for such a system is a finite set of Nt ×Nx ×Nc 3-D
matrices with entries from complex field. If X is a codeword
of such a code, then

X =
[

X(0) X(1) · · · X(Nc − 1)
]

(1)

where X(p) is a Nt ×Nx matrix. Thus, the codeword X can
be seen as a three-dimensional array with transmit antennas,
time and subcarriers as the three dimensions.

The impulse response of the channel between the i-th trans-
mit and the j-th receive antenna is assumed to be known at the
receiver and is equal to hij = [hij(0) hij(1) . . . hij(L)]T ∈

0This work was partly funded by the DRDO-IISc programme on Advanced
Research in Mathematical Engineering through a grant to B.S.Rajan.

C
(L+1)×1, where L is the channel order, C denotes the com-

plex field and hij(l), l = 0, 1, . . . L are zero mean complex
Gaussian random variables with variance equal to 1/(2L + 2)
per dimension. The tap coefficients hij(l), j = 0, 1, . . . , Nr−1
are assumed to be statistically independent of each other.
And the tap coefficients hij(l), i = 0, 1, . . . , Nt − 1 and
l = 0, 1, . . . , L, are assumed to be correlated with each other.
The covariance matrix of the vector (hij(l))i∈[1,Nt],l∈[0,L] is
denoted as Rh. Let xi

n(p), the (i, n)-th element of X(p), be the
complex symbol (baseband signal) transmitted from the i-th
transmit antenna on the p-th subcarrier during the n-th OFDM
symbol interval. We assume ideal carrier synchronization,
timing, along with perfect symbol-rate sampling. A cyclic
prefix (CP) of length L has been inserted at the transmitter
and removed at the receiver to eliminate the Inter-symbol
Interference (ISI).

The output of the FFT on the j-th receive antenna during
the n-th OFDM symbol interval is

yj
n(p) =

Nt∑
i=1

Hij(p)xi
n(p)+wj

n(p), p = 0, 1, . . . , Nc−1 (2)

which when written in matrix notation is

Y (p) = H(p)X(p) + W (p), p = 0, . . . , Nc − 1 (3)

where

Hij(p) =
L∑

l=0

hij(l)e−j(2π/Nc)lp.

The design criteria [8] for constructing good STFBCs based
on the Pair-wise Error Probability (PEP) analysis with ML
decoding are
Diversity gain: [8] Maximize the rank of the matrix Λ̄e given
by1

Λ̄e := BT
h

(
Nc−1∑
p=0

(INt ⊗ ω(p))�(p)�H(p) (INt ⊗ ω(p))H
)

B∗
h

where

• INt
is the Nt × Nt identity matrix

1H, T, ∗ denote Hermitian, transpose and conjugate respectively
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• �(p) = X(p) − X ′(p)
• Bh is the square root of the covariance matrix Rh

• ω(p) is the vector containing the first (L + 1) entries of
the pth column of the Nc-point FFT matrix

• ⊗ denotes the Kronecker product
The diversity achieved is equal to Nr · rank(Λ̄e). Notice that
the rank of Λ̄e is upper bounded by Nt(L + 1). If rank of the
matrix Λ̄e is equal to Nt(L + 1), then we call the STFBC a
full-diversity STFBC.
Coding gain: [8] Maximize the product of the non zero eigen
values of Λ̄e, i.e., maximize

rank(Λ̄e)∏
i=1

1
L + 1

λe,i


1/rank(Λ̄e)

where λe,i, i = 1, . . . , rank(Λ̄e) are the non-zero eigen values
of Λ̄e. This product of eigen values is called the coding gain.
If Λ̄e is a full-rank matrix, then coding gain is equal to the
determinant of the matrix Λ̄e.

Since Λ̄e could have full rank even if Nx = 1, coding across
multiple time slots is not necessary. Such a coding is called
Space-Frequency Coding (SFC) and have been studied in [9]–
[13].

In general Nc is very large and hence, it is very difficult
to design STFBCs that maximize the rank of the matrix Λ̄e.
In order to reduce the design complexity while preserving
both diversity and coding advantages, subchannel grouping
was proposed in [8]. Though it is actually subcarrier grouping,
it was termed as subchannel grouping in [8] and hence we
also use the term subchannel grouping. Subchannel grouping
is dividing the set of generally correlated OFDM subchannels
into several groups of subchannels. Block Codes designed after
subchannel grouping are Group STFBCs (GSTFBCs) and it
has been proved in [8], that subchannel grouping preserves
diversity gain and also reduces decoding complexity at the
receiver.

We use sub-channel grouping such that Nc = Ng(L + 1)
for a certain positive integer Ng denoting the number of
groups. Then the three dimensional STF codeword X in
(1) is rewritten as X ′ := [X0 X1 . . . XNg−1] which is
a permutation of X in (1), where Xg = [X(g) X(Ng +
g) X(2Ng + g) . . . , X(LNg + g)] ∈ C

Nt×Nx(L+1). Now,
with this subchannel grouping the received matrix is Y =
[Y0 Y1 . . . YNg−1] where Yg = [Y (g)Y (Ng +g) . . . Y (NgL+
g)] ∈ C

Nr×Nx(L+1). Now with this subchannel grouping
and the assumption that covariance matrix Rh is the identity
matrix, we can reperform the PEP analysis and obtain design
criteria as follows:
Sum-of-ranks criterion: Design the STFBC C such that the
set A = {Xg|X ∈ C} has the following property: For every
pair Xg �= X ′

g ∈ A, the matrices Λe(l) given by

Λe(l) = [X(Ngl+g)−X ′(Ngl+g)][X(Ngl+g)−X ′(Ngl+g)]H

(4)
should have full rank, for all l ∈ [0, L]. The minimum of sums
of ranks of Λe(l), l = 0, 1, . . . , L is equal to the diversity
achieved by X .

Product-of-determinants criterion: For the set of matrices
satisfying sum-of-ranks criterion, design A such that ∀Xg �=
X ′

g ∈ A, the minimum of

L∏
l=0

det[Λe(l)], (5)

called the coding gain, is maximized.
In order to achieve maximum diversity gain, it follows

from the sum-of-ranks criterion that we must have Nx ≥ Nt.
Therefore, coding across different time slots is indispensable in
GSTFBCs, as compared with SFCs where coding across time
is not a must. However, to achieve full diversity GSTFBCs,
it is sufficient to code across subcarriers within a group and
let the carriers in different groups be independent of each
other, whereas to achieve full diversity SFCs coding across
all subcarriers is must. Thus, in the case of GSTFBCs the ML
decoding of the received matrix can be broken into the ML
decoding of each group. Due to this, without loss of generality
we consider only the first group (g = 0) for further analysis
in this paper and hence, drop the index g of the group. Thus,
the system model henceforth is
 Y (0)

Y (Ng)

.

.

.
Y (NgL)


 =


H(0) 0 · · · 0

0 H(Ng) · · · 0

.

.

.

.

.

.

.
.
.

.

.

.
0 0 · · · H(NgL)




 X(0)

X(Ng)

.

.

.
X(NgL)


+


 W (0)

W (Ng)

.

.

.
W (NgL)




Since the analysis is independent of the number of groups Ng ,
to avoid notational inconvenience we assume that Ng = 1
unless specified.

To avoid exhaustive listing of STFBC codewords, let us
define a “design” which will enable us to describe an STFBC
succinctly, as follows:

Definition 1: A rate-k/n, n×l design is an n×l matrix with
entries complex linear combinations of k complex variables
and their complex conjugates. By restricting these k variables
to take values from a finite subset A of the complex field, we
obtain an STFBC, with symbol rate k/n and bit rate

RT =
k

n|A| bps/Hz (6)

where k is the number of information symbols, n = NcNx

and |A| is size of constellation.
In this paper, we present Group STFBC, using Coordinate

Interleaved Designs (CID) [14], [15], (Definition.3 in sec-
tion.III) for arbitrary number of transmit antennas and for
arbitrary number of channel taps.

The rest of the material of this paper is arranged as
follows: In Section II, we describe single-symbol decodability
of STFBCs and in Section III we present STFBCs from Co-
ordinate Interleaved Orthogonal Designs (CIODs). In Section
IV we prove that the proposed STFBCs admit single-symbol
decodability for two channel taps and reduced complexity
for more than two channel taps. In the same section, we
also present the decoding algorithm for two transmit and Nr

receive antennas and for two channel taps. Simulation results
are presented in Section V for NT = 2, Nx = 2, Nr = 1
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and Nc = 64 for channel taps L = 1 and L = 3 for 4-
QAM and 16-QAM constellations. These Simulation results
are compared with Alamouti code with precoder and with
uncoded system.

II. SINGLE-SYMBOL DECODABLE STFBCS

Let X be the transmitted GSTFB codeword. Then, at the
receiver, with ML decoding, we decode the received matrix Y
to X ′ if

X ′ = arg min
L∑

l=0

tr (Y − HX) (Y − HX)H (7)

where Y = [Y (0) . . . Y (L)], is the received matrix and H is
the Discrete Fourier Transform (DFT) of the channel impulse
matrix.

The term tr (Y − HX) (Y − HX)H is called the ML met-
ric and is denoted as M(X). Clearly, this is a function of all
the variables in the design X and hence the ML decoding
complexity is exponential in the size of the signal set in
general, due to joint decoding of the variables.

Definition 2: A design X is to be single-symbol decodable
(decoupled decoding) design if the ML metric for X can be
written as

M(X) =
k−1∑
i=0

fi(xi)

where fi is a function of xi only and xi, i = 0, 1, 2, . . . , k−1
are the variables in the design X .

If the design X is single-symbol decodable, then the ML
metric is a sum of several functions each of which depends
on only one variable and thus minimizing the ML metric is
same as minimizing each function separately. Thus, the ML
decoding complexity is not exponential, but is linear in the
size of the signal set.

Example 1: Let the number of channel taps L + 1 = 1
(i.e., L = 0). Then, all the orthogonal designs are single-
symbol decodable. For example, the Alamouti code S =[

x0 x1

−x∗
1 x∗

0

]
.

Single-symbol decodable STBCs are well studied in [3],
[14], [15], [17]. However, single-symbol decodable STFBCs
have not been dealt so far and to the best of our knowledge
this is the first paper on this issue.

The main disadvantage with Alamouti code is that, if the
number of channel taps is greater than one, then this code
will not exploit full diversity because there is no coding across
subcarriers and from (4) it is clear that to achieve full diversity,
coding across the correlated subcarriers is a must. So, the
diversity advantage of the Alamouti code is 2Nr, instead of
2Nr(L + 1) for arbitrary number of channel taps. In the
following example, we illustrate a method of obtaining full
diversity using Alamouti code and precoding techniques [8].
A constellation precoder for a symbol constellation A is an
M × M unitary matrix Q such that for any non-zero M -
length vector s ∈ AM , the vector Qs has all its components

non-zeros [18]. It is known that for any symbol constellation
there exists a constellation precoder for that constellation.

Example 2: Let the number of channel taps be 2. And let
the symbol constellation of interest be 4-QAM. Let X be the
codeword [X(0) X(1)], where

X(0) =
[

x0 x1

−x∗
1 x∗

0

]
and X(1) =

[
x2 x3

−x∗
3 x∗

2

]
From (4), X(0) and X(1) should not be independent of
each other. So, we precode x0 and x2 using the constellation
precoder

Q =
1√
2

[
1 ejπ/4

1 ej5π/4

]
(8)

as [x̂0 x̂2]T = Q[x0 x2]T and similarly, we precode x1 and
x3 as [x̂1 x̂3]T = Q[x1 x3]T . The precoded STFBC is thus
full-diversity STFBC because the sum-of-ranks criterion given
in (4) is satisfied.
In the above example, in the process of obtaining full diversity
from Alamouti code, the most important property of Alamouti
code, i.e., the single-symbol decodability, is lost as x0 and x2

are entangled and similarly x1 and x3 are entangled. Increasing
the number of channel taps increases the decoding complexity
to be exponential to the size of the signal set. This is true with
any other orthogonal design also.

III. STFBCS FROM CIODS FOR MIMO-OFDM

In this section, we present a generalized construction of
STFBCs using CIODs [14] and show that these STFBCs admit
low ML decoding complexity. We recollect the definiton of
GLPCOD as they are used in constructing CIODs.

Definition 3: A Generalized Linear Processing Orthogonal
Design (GLPCOD) in variables x0, x1, . . . , xk−1 is an n×m
matrix Θn,m with entries that are complex linear combinations
of variables x0, x1, . . . , xk−1 and their complex conjugates
such that Θ∗

N,M/2ΘN,M/2 = D, where D is a diagonal
matrix where all diagonal entries are linear combinations
of |x0|2, |x1|2, . . . , |xk−1|2 with all strictly positive real
coefficients.

Definition 4: For any positive integer N and even integers
M,K a (N,M,K) Co-ordinate Interleaved Orthogonal Design
in variables xi, i = 0, ...,K − 1 is an N × M matrix
S(x0, ..xK−1) given by

S =
[

ΘN,M/2(x̃0, .., x̃K/2−1) ΘN,M/2(x̃0, .., x̃K−1)
]
(9)

where ΘN,M/2(x̃0, .., x̃K/2−1) is a N×M/2 GLPCOD (Gen-
eralized linear processing complex orthogonal Design) [2] and
x̃i = Re{xi} + jIm{x(i+K/2)K

} and where (a)K denotes
a(modK). The term K/M is called the rate of the CIOD.

Example 3: Let xi = xi,I + jxi,Q, i = 0, 1, 2, 3,
denote four complex indeterminate, where xi,I and xi,Q

denote respectively the real and imaginary parts of xi.
Let x̃i = xi,I + jx(i+2)4,Q, i = 0, 1, 2, 3 where
(a)4 denotes a (mod 4). The indeterminate x̃i will be referred
as the coordinate interleaved versions of xi, i=0,1,2,3. The
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CID S(x0, x1, x2, x3) in variables xi, i=0,1,2,3 is defined to
be the 2 × 4 matrix

S(x0, x1, x2, x3) =
[

x̃0 x̃1 x̃2 x̃3

−x̃∗
1 x̃∗

0 −x̃∗
3 x̃∗

2

]
(10)

=
[

x0,I + jx2,Q x1,I + jx3,Q x2,I + jx0,Q x3,I + jx1,Q
−x1,I + jx3,Q x0,I − jx2,Q −x3,I + jx1,Q x2,I − jx0,Q

]
A. STFBC Construction for two channel taps

First, we give construction of full-diversity STFBCs for (L+
1) = 2 taps. In this case, the STFBC for Nt transmit antennas
is given by

X =
[
ΘNt,Nx(x̃0, . . . , x̃K/2−1) ΘNt,Nx(x̃K/2, . . . , x̃K−1)

]
where ΘNt,Nx

(x0, . . . , xK/2−1) is a Nt × Nx complex or-
thogonal design and x̃i = xi,I + jxi+k,Q, x̃i+k = xi+k,I +
jxi,Q. Clearly, the above code achieves full-diversity if
for any pair of codewords X and X ′, both the matrices
ΘNt,Nx

(x̃0, . . . , x̃K/2−1) and ΘNt,Nx
(x̃K/2, . . . , x̃K−1) are

full-rank matrices. And since ΘNt,Nx
(x̃0, . . . , x̃K/2−1) is

an orthogonal design, a non-zero ΘNt,Nx
(x̃0, . . . , x̃K/2−1)

is a full-rank matrix. So, it is sufficient to ensure
that the difference matrices ΘNt,Nx

(x̃0, . . . , x̃K/2−1) −
ΘNt,Nx

(x̃′
0, . . . , x̃′

K/2−1) and ΘNt,Nx
(x̃K/2, . . . , x̃K−1) −

ΘNt,Nx
(x̃′

K/2, . . . , x̃′
K−1) are non-zero matrices. This con-

dition can be satisfied if the Co-ordinate Product Distance
(CPD), defined below, of the signal set A from which the
variables xi take values from, is non-zero.

Definition 5: Let A be any signal set which is a finite subset
of the complex field. Then the Co-ordinate Product Distance
of A is ΓA given by,

ΓA = min
xk �=x′

k∈A
|xkI − x′

kI ||xkQ − x′
kQ|.

The STFBC from CIODs constructed as above achieve full
diversity iff CPD of the signal set is non-zero. For con-
stellations with CPD=0, like QAM, we can obtain another
signal constellation with non-zero CPD by simply rotating
the constellation. For square lattice constellations, the CPD
is maximized when the angle of rotation θ = arctan(2)

2 =
31.7175◦ [16].

Example 4: The design given in Example 2, when
x0, x1, x2, x3 are allowed to take values from a rotated QAM
signal set, gives rise to a full-diversity STFBC for two transmit
antennas and two channel taps, with codewords as follows:

X =


 x̃0 x̃1

−x̃∗
1 x̃∗

0︸ ︷︷ ︸
X(0)

x̃2 x̃3

−x̃∗
3 x̃∗

2︸ ︷︷ ︸
X(1)




where xi take values from a rotated QAM signal set.

B. STFBC construction for more than two channel taps

When the number of channel taps L + 1 is greater than
two and is even, we construct full-diversity STFBCs in the
following way: Let L′ = (L + 1)/2 and X(i), i =

0, 1, . . . , L′ − 1, be the Nt × 2Nt CIODs in the variables
xKi, xKi+1, . . . , xKi+K−1. Then, consider the design

X =
[
X(0) X(1) · · · X(L′−1)

]
. (11)

The above design gives rise to an STFBC for Nt transmit
antennas and L + 1 taps. However, this is not a full-diversity
STFBC. To make this STFBC, a full-diversity one, we use
the technique of precoding [18]. In this technique, we replace
the symbols xi, xKi, . . . xK(L′−1) with x̂i, x̂Ki, . . . , x̂K(L′−1)

where

[x̂ix̂Ki · · · x̂K(L′−1)]T = Q[xixKi . . . xK(L′−1)]T

where Q is a constellation precoder of size L′ × L′ [18].
With this precoding and the assumption that xi take values
from a signal set of non-zero CPD, for any pair of distinct
codewords X and X ′, the difference matrix X − X ′ =[
X(0) − X ′(0)X(1) − X ′(1) · · ·X(L′−1) − X ′(L′−1)

]
has the

property that X(i) −X ′(i) is a non-zero matrix. Thus, the de-
sign (11) with appropriate precoding and signal set (CPD �=
0) gives rise to a full-diversity STFBC.

Example 5: Let the number of channel taps be four and the
number of transmit antennas be two then the STFBC is

X =


 x̂0 x̂1

−x̂∗
1 x̂∗

0︸ ︷︷ ︸
X(0)

x̂2 x̂3

−x̂∗
3 x̂∗

2︸ ︷︷ ︸
X(1)

x̂4 x̂5

−x̂∗
5 x̂∗

4︸ ︷︷ ︸
X(2)

x̂6 x̂7

−x̂∗
7 x̂∗

6︸ ︷︷ ︸
X(3)




where [x̂i x̂i+4] = Q [x̃i x̃i+4] , i = 0, 1, 2, 3, and each
variable xk, k = 0, 1, . . . , 7 takes values a rotated QAM signal
set and Q is the constellation precoder given in (8).

IV. DECODING

We now compare the decoding complexity of our STFBCs
with that of some well known STFBCs. First, we have the
following theorem.

Theorem 1: Let L+1 be even. Then, the decoding complex-
ity of our STFBCs is equal to that of STFBCs from orthogonal
designs with precoding when the number of channel taps is
L′ = (L + 1)/2. In other words, the decoding complexity
of our STFBCs is half of that of STFBCs from orthogonal
designs with precoding for the same number of channel taps.
Proof: Let X be an STFBC codeword and
Xeven = [X(0) X(2) X(4) · · ·X(2L′ − 2)] and
Xodd = [X(1) X(3) X(5) · · ·X(2L′ − 1)]. Then the
ML metric M(X) is

M(X) =

L∑
l=0

tr
(
(Y (l) − H(l)X(l)) (Y (l) − H(l)X(l))H

)

=
L′∑

r=0

||Y (2r) − H(2r)X(2r)||2

︸ ︷︷ ︸
M′(Xeven)

+

+
L′∑

r=0

||Y (2r + 1) − H(2r + 1)X(2r + 1)||2

︸ ︷︷ ︸
M′(Xodd)
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Since, both the Xeven and the Xodd parts of X are inde-
pendent of each other, minimizing the metric M(X) over all
codewords X is same as minimizing M ′(Xeven) over Xeven

part of all codewords and M ′(Xodd) over Xodd part of all
codewords independently. But this is same as that of STFBCs
from orthogonal designs with precoding for (L+1)/2 channel
taps [8].

Corollary 1: Let L = 1. Then, STFBCs from CIODs admit
single-symbol decoding (decoupled decoding).
Proof: From Theorem 1, the decoding complexity of X is
twice that of Xeven. But, since Xeven and Xodd are both
single-symbol decodable, the ML metric M(X) can be written
as

k−1∑
i=0

fi(xi)

where xi, i = 0, 1, . . . , k − 1 are the variables of the CIOD.

In our proposed model the number of information symbols
used to generate an STF codeword is NI = NcNx. As per (6),
our proposed STFBC is a full rate code. The disadvantage
in our proposed model is, it will not allow to choose any
arbitrary constellation. However, this is not a serious drawback
since given any complex constellation there exists infinitely
many angles of rotation for which the CPD �= 0. Choosing
any non-zero CPD constellation guarantees all the advantages
mentioned in our model.

V. SIMULATIONS

We present simulation results for L = 1, Nt = 2 and Nx =
2 for the STFBCs of Examples 4 and 2 with 4-QAM signal
set.

Figure 1 shows simulation results comparing the two codes.
It can be observed that our proposed codes perform better than
the Alamouti scheme with precoder given in Example 2 by
more than 1.5dB at 10−4 OFDM symbol error rate.
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