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Abstract — Hybrid form FIR filters have been shown to pro-

vide a trade-off between the direct form and transposed direct

form FIR filters resulting in a low power implementation. Howev-

er, the use of multiple constant multiplication (MCM) techniques

is less advantageous as it results in several MCM blocks. In this

work a method of implementing low-complexity hybrid form FIR

filters using matrix multiple constant multiplication blocks is pro-

posed. The utilized filter structure can be seen as a polyphase de-

composition with common delay lines for the subfilters.

I.  INTRODUCTION

Finite-length impulse response (FIR) filters are commonly

used in many DSP systems. The transfer function of an Nth-or-

der FIR filter can be written as

(1)

A direct realization of (1) for N = 5 is shown in Fig. 1 (a).

This filter form is referred to as a direct form FIR filter. If the

signal flow graph is transposed the filter structure in Fig. 1 (b)

is obtained, referred to as transposed direct form. From an im-

plementation point of view both structures contain the same

number of multipliers, adders, and delay elements. However,

the width of the delay elements for the transposed direct form is

generally larger, depending on where the quantization is per-

formed. Furthermore, the fan-out of the input node is high as

one node is driving several multipliers. On the other hand, the

critical path for the transposed direct form FIR filter is only one

multiplier and one adder compared with one multiplier and

 adders for the direct form (when the additions

are rearranged in a binary tree).

A trade-off between the possibly large number of registers

for the transposed direct form and the long critical path of the

direct form is the hybrid form FIR filter [1]–[4]. Here, any

number of delay elements are moved to the opposite branch us-

ing retiming, as illustrated in Fig. 1 (c) where the middle delay

element of the direct form filter is moved to the opposite branch.

It is worth noting that moving all delay elements to the opposite

branch is identical to transposition. The number of multiplica-

tions, additions, and delay elements are kept the same. The crit-

ical path is reduced compared to the direct form, while only one

delay element have a possibly larger wordlength. The maxi-

mum fan-out for a node is also reduced. There are off course

several other hybrid forms available providing other trade-offs.

It has been noticed that the hybrid form FIR filters are suitable

for low-power applications [2],[4].

On the other hand, the implementation of FIR filters using

decomposition of the multiplier coefficients into shift-and-add

coefficients and utilizing the redundancy between partial results

has been a extensively studied area during the last decade [5]–

[13]. The aim is to reduce the number of additions/subtractions

for the multiplications when one data is multiplied with several

constant coefficients, as marked by the dashed box in the trans-

posed direct form FIR filter shown in Fig. 1 (b). The dashed box

is referred to as a multiple constant multiplication (MCM)

block. Note that transposing the multiplier section leads to a

sum-of-products, as marked by the dashed box in the direct

form FIR filter shown in Fig. 1 (a). As adders and subtractors

have similar implementation costs they will both be referred to

as adders.

H z( ) hiz
i–

i 0=

N

∑=

log2 N 1+( )

Figure 1. Different realizations of a fifth-order (six tap) FIR filter.

(a) Direct form, (b) transposed direct form, and (c) hybrid form (one of

several possible).
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Several different techniques have been proposed. The pro-

posed algorithms can be divided into three classes. In subex-

pression sharing (or elimination) the idea is to find recurring

patterns in the coefficient representation [6]–[8],[10],[13]. The

multiplier block algorithms uses a constructive algorithm to re-

alize the coefficients from previously realized coefficients [5].

Finally, the difference methods finds simple differences be-

tween the coefficients to be realized and realizes each coeffi-

cients as the sum of another coefficient and a simple difference

[9],[11]–[12].

The power consumption of MCM blocks has been studied in

[14]. The results give that the number of cascaded adders (adder

depth) is a significant measure of power consumption, due to in-

creased glitches in longer combinatorial structures. This would

indicate that transposed direct form is more advantageous than

direct form considering that aspect.

For the hybrid form FIR filter in Fig. 1 (c) it can be seen that

we now have two separate MCM blocks. This leads to that the

redundancies can not be utilized to the same degree as for the

direct form and transposed direct form FIR filters in Figs. 1 (a)

and (b), where all multiplications are in the same MCM block.

In this work an FIR filter structure introduced in [15] is utilized.

By using this filter structure the previous problem of multiply-

ing one data with several coefficients now is transformed into

multiplying a vector with a constant matrix1. The matrix multi-

plication can then be simplified using multiple constant tech-

niques for matrices [16]–[19].

A similar structure can be obtained for polyphase decom-

posed interpolation and decimation FIR filters [20].

In the next section the utilized hybrid form FIR filter form

is discussed. Then, in Section III, results are presented where

the proposed structure is compared with the traditional hybrid

form FIR filter. Finally, some conclusions are given.

II.  PROPOSED HYBRID FIR FILTER STRUCTURES

The transfer function for an FIR filter as given in (1) can be

divided into subsections of M taps and rewritten, assuming that

N + 1 is an integer multiple2 of M, as

(2)

Reordering the sums in (2) gives

(3)

which is equivalent to the polyphase decomposition of the

transfer function. The structure of the polyphase decomposed

FIR filter is shown in Fig. 2, where

(4)

Now, assume that each subfilter in Fig. 2 is composed of a

transposed direct form FIR filter. Then, the delay elements of

the subfilters can be shared resulting in the structure shown in

Fig. 3. Here, the matrix MCM block performs a matrix multipli-

cation as

(5)
1. Note that the direct form FIR filter in Fig. 1 (b) can be seen as a 

scalar product.

2. If not, the length can be increased by introducing zeros for the 

extra taps.
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Figure 2. Polyphase decomposed FIR filter.
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Figure 3. Proposed hybrid form FIR filter with matrix multiple constant 

multiplication block.
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resulting in the transfer function

(6)

which is identical to that in (1). Notice that for M = 1 the filter

structure is identical to the transposed direct form FIR filter and

for M = N + 1 the filter structure is identical to the direct form

FIR filter. The number M – 1 can be seen as the number of

equally spaced delay elements that has been retimed from the

lower (output) branch to the upper (input) branch of the trans-

posed direct form filter in Fig. 1 (b). Then, additional retiming

must be applied to end up with the final structure that includes

a matrix multiplication.

The filter structure in Fig. 3 have the same number of mul-

tipliers, adders, and delay elements as any of the structures in

Fig. 1, provided that N + 1 is an integer multiple of M. However,

in a similar way as for the traditional hybrid form FIR filters, the

critical path is reduced compared to the direct form filter and the

number of wide delay elements are smaller than for the trans-

posed form FIR filter. Furthermore, as opposed to the tradition-

al hybrid form FIR filter, we no longer have a number of smaller

MCM blocks, but one matrix MCM block. This not only allows

us to utilize redundancies between the coefficients in a row or a

column, but also between complete rows or columns.

If the signal flow graph in Fig. 3 is transposed the resulting

transfer function becomes

(7)

resulting in a different matrix multiplication and with different

number of delay elements in the top and bottom row of Fig. 3.

However, as the matrix in (7) is the transpose of the matrix in

(6), they require the same number of additions, except for the

possible change of dimension.

III.  RESULTS

A 62nd-order FIR filter designed in [21] is used as an exam-

ple. The matrix MCM blocks are designed using the algorithm

in [19], while the MCM blocks for the reference hybrid filters

are designed using the algorithm in [5]. The algorithm in [5] is

known to produce the best results published for the MCM prob-

lem.

In Fig. 4 the number of adders for varying M is shown. For

the traditional hybrid form M – 1 denotes the number of delay

elements in the input delay line, similarly as discussed for the

proposed filter structure. Hence, N – M + 1 is the number of de-

lay elements in the output delay line. This leads to that the tra-

ditional hybrid form filter will have a symmetrical number of

adders as the coefficients in the resulting MCM blocks for

M = K and M = N – K + 1 are identical. Notice that the number

of delay elements for the introduced filter structure is

 Hence, for certain M, typically large M,

the resulting number of delay elements may be significantly

larger.

From Fig. 4, it is clear that utilizing the proposed hybrid

form FIR filter reduces the number of adders compared with the

traditional hybrid form. The fact that the traditional form re-

quires fewer adders for M = 1 and 63 is due to the algorithms [5]

producing relatively better results than the algorithm in [21]. An

optimal matrix MCM algorithm would always produce at least

as good results.

Furthermore, it can also be seen from Fig. 4 that the worst

case for the traditional hybrid form structure is when every oth-

er delay element is retimed to the opposite branch (M = 32). For

this case each MCM block consists of at most two multiplica-

tions. However, for the introduced hybrid form filter this situa-

tion is not a problem.

An additional degree of freedom for the hybrid form FIR fil-

ter is the possibility to distribute the extra zeros required when

M is not an integer multiple of N + 1. These can be placed either

at the start or the end of the impulse response and yield different

matrices. For most cases it is simple to just try all different com-

binations. Clear variations have been observed.

Different matrix MCM algorithms have different properties.

The algorithm in [18] and to some extents the algorithm in [17]

works better for matrices with many rows and few columns as

the methods of sharing are more row oriented. The algorithms

in [16] and [19] is based on pattern matching, and, hence,

should give results whose quality is independent of the matrix.
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section using the proposed hybrid FIR filter form compared with the 

traditional hybrid FIR filter form.
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IV.  CONCLUSIONS

In this work a hybrid form FIR filter structure that allows the

use of matrix multiple constant multiplication (MCM) blocks

were considered. The considered hybrid form FIR filter can also

be seen as a special case of a polyphase decomposed filter with

common delay elements for the subfilters. It was shown by an

example that the considered structure requires fewer adders

than the traditional hybrid form filter. The benefits of hybrid

form FIR filters over direct and transposed direct form filters

are that the critical path, maximum fan-out for a node, and the

number of wider delay elements can be traded for each other,

possibly reducing the power consumption. By utilizing the con-

sidered structure these benefits are obtained, while still keeping

the possibility to significantly reduce the number of additions/

subtractions using MCM techniques.

Further evaluation on the circuit level must be performed,

but it seems like the proposed structure can be an attractive al-

ternative as both the trade-off possibilities of the hybrid form

filters as well as the complexity reduction of MCM are obtained

at the same time. This is something that previously have not

been able to combine.
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