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Abstract—Millimeter wave (mmWave) multiple-input multiple-
output (MIMO) communication with large antenna arrays has
been proposed to enable gigabit per second communication for
next generation cellular systems and local area networks. A key
difference relative to lower frequency solutions is that in mmWave
systems, precoding/combining can not be performed entirely at
digital baseband, due to the high cost and power consumption
of some components of the radio frequency (RF) chain. In this
paper we develop a low complexity algorithm for finding hybrid
precoders that split the precoding/combining process between the
analog and digital domains. Our approach exploits sparsity in the
received signal to formulate the design of the precoder/combiners
as a compressed sensing optimization problem. We use the prop-
erties of the matrix containing the array response vectors to find
first an orthonormal analog precoder, since sparse approximation
algorithms applied to orthonormal sensing matrices are based on
simple computations of correlations. Then, we propose to perform
a local search to refine the analog precoder and compute the
baseband precoder. We present numerical results demonstrate
substantial improvements in complexity while maintaining good
spectral efficiency.

I. INTRODUCTION

Millimeter wave (mmWave) is the new spectral frontier for
next generation cellular networks and wireless local area net-
works [1], [2], [3], [4]. An important requirement in mmWave
systems is the use of large arrays at the transmitter and receiver
to provide a reasonable link budget. The antennas form a
multiple-input multiple-output (MIMO) communication link
that can be configured for different objectives. The de facto ap-
proach is spatial directivity, which provides beamforming gain
needed to achieve a reasonable signal-to-noise ratio (SNR) at
the receiver. MmWave channels though also have the ability
to support spatial multiplexing of multiple data streams due
to scattering and polarization [5], [6], [7], [8]. Unfortunately,
power and cost requirements in the mmWave analog front-
end make it challenging to implement the typical MIMO
precoding transceiver found in lower frequency systems, which
is implemented in entirely in baseband. A solution is the
hybrid precoding framework, where the precoding/combining
process is divided between analog and digital domains [9],
[10], [11].
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A popular design of hybrid precoders for mmWave channels
based on variable phase shifters was proposed in [9] for
a particular mmWave system model incorporating: i) the
constraints on the analog precoder/combiner, ii) presence of
large antenna arrays, and iii) the limited scattering nature
of the mmWave channel. The design of the precoders and
combiners is formulated as a sparsity seeking optimization
problem with hardware constraints. It resembles the problem
of sparse signal recovery via multiple measurement vectors
(MMV), also known as the simultaneous sparse recovery
problem (S–OMP) [12]. The approach in [9] is elegant yet
solving for the precoders still results in high complexity.
A limitation of the work in [9], is that perfect channel
state information is assumed at the receiver. This has been
overcome in work on adaptive channel estimation [10], where
the mmWave channel estimation problem is formulated as a
compressed sensing problem, so that the channel parameters
are estimated using standard CS tools. Training beamforming
and combining vectors during the channel estimation phase are
designed using a multi-resolution codebook. The main limita-
tion of this work is that it assumes known array geometries
for both the transmitter and receiver. Further investigation is
also needed to obtain lower complexity solutions to both the
channel estimation and the hybrid analog/digital precoding
design problems. Hybrid precoding structures based on the
use of variable phase shifters have been proposed earlier for
general MIMO architectures in [13], but do not take into
account the characteristics of millimeter wave propagation or
leverage sparsity of the received signal. A related concept
called beamspace MIMO communication has been proposed
in [14], which uses a high-resolution discrete lens array for
analog spatial beamforming. This avoids the need for phase
shifters but does not have uniform performance across a broad
range of angles.

In this paper we propose a low-complexity solution to the
hybrid precoding optimization problem posed in [9]. We take
into account the full structure of the optimization problem
by exploiting the semi-unitary optimum precoder (optimum in
the absence of hardware constraints). This structure reduces
significantly the search space in the array manifold and thus
leads to a lower complexity procedure versus that found in [9].
The reduction in complexity is due to an orthogonal matching
step that fits the optimum precoder with the closest semi-
unitary structure in the array manifold that emulates its behav-
ior. The orthogonal matching step eliminates the need for the,
slow, greedy matching pursuit steps deployed in the previous
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approach [9]. This step is then followed by a local search
that further improves the solution by using either a fast one-
by-one selection procedure or a full matching pursuit search
but both only on a reduced section of the array manifold,
around the semi-unitary solution previously found. Numerical
results show that the computational advantage comes with no
significant performance degradation in the proposed method
as compared to previous results.

II. PROBLEM FORMULATION

A. System model

Consider the mmWave system shown in Figure 1. The
transmitter sends Ns data streams using Nt antennas to the
receiver, which has Nr antennas. The transmitter has NRF

t RF
transmit chains. Due to the high cost and power consumption
associated with providing each antenna with an RF chain
and a digital-to-analog converter (DAC) capable of handling
the high frequencies and bandwidths of mmWave systems,
Ns ≤ NRF

t ≤ Nt. In the hybrid precoding approach, the trans-
mitter applies two precoders: the NRF

t ×Ns digital baseband
precoder FBB and the Nt × NRF

t analog precoder FRF. The
digital precoder FBB is designed assuming infinite precision
while the analog precoder FRF is assumed to have elements
of equal norm assuming only phase shifting is performed in
the analog domain. The total power constraint is enforced
by normalizing FBB such that ‖FRFFBB‖2F = Ns. While the
analog precoder FRF may be applied at some intermediate
frequency or at the RF frequency, we represent it using its
complex baseband equivalent.

Assuming narrowband operation as in [9], the transmitted
signal is x = FRFFBBs, where s represents the symbol vector.
In this paper, the input symbol vector is normalized such that
E[ssH ] = 1

Ns
INs . Using ρ to denote the average received

power, H the Nr × Nt channel matrix, and n a vector with
IID CN (0, σ2) entries, the received complex baseband signal
of dimension Nr × 1 is

y =
√
ρHFRFFBBs+ n. (1)

MmWave channels are expected to have limited scattering
with only a few scattering clusters. To incorporate this fact,
we use a clustered channel model with Ncl scattering clusters,
each of which contribute Nray propagation paths. The clustered
model is widely used as a MIMO channel model [15], [16],
[17] and is also used in mmWave [18], [2]. With a clustered
model, the channel matrix is

H =

√
NtNr

NclNray

Ncl∑
i=1

Nray∑
`=1

αi,`ar(φ
r
i,`)at(φ

t
i,`)

H . (2)

where αi,` is the complex gain of the lth ray in the ith cluster,
whereas at(φ

t
i,`) and ar(φ

r
i,`) are the antenna array response

vectors at the transmitter and receiver evaluated at the lth path
ith cluster azimuth angles of departure or arrival (we assume
uniform linear arrays, whose responses do not depend on the
elevation angle).

The receiver applies the Nr×NRF
r analog combining matrix

WRF and the NRF
r × Ns baseband combining matrix WBB.

Fig. 1: Block diagram of a mmWave single user system with
hybrid precoding: baseband precoding and radio frequency
precoding with RF phase shifters. Dimensions follow Ns ≤
NRF

t ≤ Nt and Ns ≤ NRF
r ≤ Nr.

The dimensions satisfy Ns ≤ NRF
r ≤ Nr to use a limited

number of RF chains and a low dimensional digital combiner
following the analog-to-digital converter (ADC). The post-
processed received signal after the hybrid combining structure
is

ỹ =
√
ρWH

BBW
H
RFHFRFFBBs+WH

BBW
H
RFn. (3)

B. The precoder and combiner design problem

There are many potential metrics to be used in the design
of the hybrid precoding and combing matrices. In this paper,
we are interested in designs that maximize the achievable sum
rate with low computational complexity.

In the conventional precoding paradigm, a single optimal RF
precoder Fopt and combiner Wopt would be applied leading to

ỹ =
√
ρWH

optHFopts+WH
optn. (4)

The mutual information maximizing solution (assuming Gaus-
sian signaling) is given by the usual water filling strategy,
where Fopt consists of weighted columns that correspond to
the right singular values of H . The design of the combining
matrix in this framework is flexible: it takes the form of the left
singular vectors of H multiplied by any nonsingular matrix
on the left [13].

Maximizing the spectral efficiency in the hybrid precoding
case requires maximizing

R = log2

∣∣∣∣INs +
ρ

Ns
R−1n WH

BBW
H
RFHFRFFBB

FH
BBF

H
RFH

HWRFWBB
∣∣ ,

over all precoding and combining matrices, being Rn =
σ2
nW

H
BBW

H
RFWRFWBB the noise covariance matrix after com-

bining. Since maximizing the mutual information involves a
joint optimization of four matrix variables with non-convex
constraints for FRF and WRF, finding global optima is very
difficult.

The solution for the design of the analog and digital
precoders and combiners in [9] simplifies the joint transmitter-
receiver optimization problem by decoupling the design into
the transmitter and the receiver, solving similar optimization
problems. The objective is to obtain an equally good solution
in terms of spectral efficiency but with lower computational
complexity. Because we propose a low complexity solution
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to the algorithm in [9], we summarize the key steps of the
algorithm here.

a) Transmitter: The goal is the design of FRFFBB to
maximize the mutual information achieved with Gaussian
signaling over the mmWave channel:

log2

∣∣∣∣INs +
ρ

Nsσ2
n

HFRFFBBF
H
BBF

H
RFH

H

∣∣∣∣ . (5)

In the absence of hardware limitations and considering equal
power allocation across streams, the optimum precoder that
maximizes (5) is given by: Fopt = V (:, 1 : Ns) where H =
UΣV H is the singular value decomposition. Fopt is the set
of the Ns columns in V associated with the highest singular
values in Σ.

It has been shown in [9] that the problem of finding the
precoder that maximizes the mutual information with the
hardware constraints associated to mmWave architectures can
be well approximated by solving

arg min
At,F̃BB

‖Fopt −AtF̃BB‖F

subject to ‖diag(F̃BBF̃
H
BB)‖0 = NRF

t

‖AtF̃BB‖2F = Ns,

(6)

where ‖•‖0 is the `0 pseudo-norm accounting for the number
of non-zero elements, At of size Nt × NclNray is the matrix
of array response vectors and F̃BB of size NclNray × Ns has
only NRF

t non-zero rows (the sparsity constraint) and their
product has an energy constraint. We denote by FBB the
NRF

t ×Ns matrix F̃BB restricted to the rows that are non-zero
and with FRF the subset of columns from At that participate
in the solution. This problem consists in finding NRF

t array
response vectors and their optimal baseband combination. The
At matrix contains the set of feasible RF precoders, i.e., the
steering vectors.

b) Receiver: Assuming FRFFBB fixed, design WRFWBB
to minimize the mean squared error (MMSE) between trans-
mitted and processed received signals. The optimum MMSE
combiner is well known [19] as

WH
MMSE =

1
√
ρ

(
FH

BBF
H
RFH

HHFRFFBB +
σ2
nNs

ρ
INs

)−1
× FH

BBF
H
RFH

H . (7)

The solution proposed in [9] consists of finding hybrid
combiners that minimize

arg min
WRF,WBB

‖E
[
yyH

]1/2
(WMMSE −WRFWBB) ‖F

subject to WRF ∈ WRF,

(8)

whereWRF is the set of Nr×NRF
r matrices with constant-gain

phase-only entries.
Note that the optimization problems in (6) and (8) to

be solved at the transmitter and receiver, respectively, are
similar. The solution proposed in [9] involves a greedy strategy
based on the Orthogonal Matching Pursuit (OMP) approach,
which can be ultimately seen as a variant of Simultaneous

OMP (SOMP) [12], and connected to the problem of sparse
representations of multiple-measurement vectors (MMV) [20].

In this paper, we find a method that produces good results
when solving these optimization problems (6) and avoids the
use of the, slow, greedy steps. High complexity reduction
is achieved without performance degradation, as shown in
Section IV.

III. LOW COMPLEXITY HYBRID PRECODING/COMBINING
SOLUTIONS

A. The proposed method

In this section we explain the proposed low complexity
precoding algorithm in detail; the derivation of the combiner is
similar and is omitted for brevity. The key idea to reduce com-
putational complexity when solving the optimization problem
in (6) is to reduce the process of searching columns of the
overcomplete matrix At to searching columns of orthonormal
matrices, subsets of this overcomplete matrix, such that simple
correlations replace the matching pursuit iterations.

Recall that the Nt–element steering vectors of an uniform
linear array (ULA) take the form

aULA(φ) =
1√
Nt

[
1 ejkd sinφ . . . ejkd(Nt−1) sinφ

]T
.

(9)
The dot products, in absolute value, between any two such dis-
tinct vectors, assuming the sine terms are uniformly distributed
in N points in the interval [−1, 1) (i.e., sinφ` = −1 + 2`/N ,
for ` = 0, . . . , N − 1) are given by:

|aULA(φ`)
HaULA(φi)| =

1

Nt

∣∣∣∣∣1− e2jπ
(`−i)Nt

N

1− e2jπ
(`−i)

N

∣∣∣∣∣
=

1

Nt

∣∣∣∣ sin(π(`− i)Nt/N)

sin(π(`− i)/N)

∣∣∣∣ .
(10)

The parameter N is the angular resolution. In general, the
objective is to solve the problem on a grid as fine as possible,
i.e. N as large as possible. It is clear that the dot products
only depend on the distance between the two steering vectors
(` − i) –this actually leads to a circulant Hermitian Gram
matrix G = AH

t At. Because of this, when α = N/Nt is
an integer it is possible to construct α orthonormal matrices
of size Nt × Nt by choosing columns of At equally spaced
with distance Nt (modulo wrapping). In this way At is
viewed as a concatenation of α orthonormal matrices. We are
interested in these orthonormal matrices since Fopt is semi-
unitary (since this matrix has orthonormal columns but is not
square, i.e., FH

optFopt = INs but FoptF
H
opt 6= INt ). Therefore,

its approximation needs to obey (FRFFBB)
H(FRFFBB) ≈ INs

and thus FH
RFFRF and FH

BBFBB need to closely approximate
identity matrices. By this argument we search for FRF among
the α orthonormal matrices from At. We move to solve (6)
with an additional constraint that the solution FRF needs to be
an orthonormal matrix (but still composed of steering vectors).
The proposed two-step process is described next.

The proposed algorithm is divided into two distinct steps. In
step A we propose to design an orthonormal RF precoder FRF,
without any concern to the baseband coder. This simplifies
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Algorithm 1 Hybrid Analog-Digital Design by Orthogonal
Matching and Local Search (OM+LS).
Input: the optimal unconstrained precoder Fopt, the resolution
N , the sparsity target NRF

t and the local search length (L)
Output: FRF and FBB such that the objective function of (6)
is as low as possible under the given constraints.

• Step A. Compute an orthonormal FRF:
• Compute all correlations R = AH

t Fopt.
• With α = N/Nt, for ` = 1, . . . , α:

– Build orthogonal matrix Q` by selecting Nt columns
α–apart (mod N ) of At starting from index `.

– Compute correlations r` = norms(QH
` Fopt), where

the function computes the 2–norm for each row of
the resulting product. r` is of size Nt.

– Compute the overall energy contribution of Q` to:
c` =

∑Ns
k=1 |r`|2[k] where |r`|[k] represents the kth

largest entry of r`, in absolute value.
• Select `max = arg max

`
c`.

• Set FRF as the NRF
t columns of Q`max that have the

maximum entries in r`max , sorted according to these
values in descending order.

• Step B. Based on the orthonormal FRF with support S on
the columns of At (i.e., FRF = (At)S) construct the new
pair (FRF,FBB) based on a local search procedure:
• For ` = 1, . . . , NRF

t :
– Remove the `th column from the support S, to

produce the support S′.
– Construct the solution (FRF,FBB) on the support S′ :

FRF = (At)S′ ,FBB = (FH
RFFRF)\FH

RFFopt.
– Compute the normalized residual Fres = Fopt −

FRFFBB,Fres = Fres‖Fres‖−1F .
– Add to the support S a new index from the set
SL = {S(`) − L, . . . , S(`) + L} (modulo N ) of
columns from At that maximally correlates with
the current residual Fres – i.e., maximum entry in
norms((At)

H
SL

Fres).
• Compute final solution (FRF,FBB) on the support S.

greatly the computational complexity needed since sparse
approximation algorithms (like OMP) applied to orthonormal
sensing matrices are reduced to the computation of the correla-
tions and the selection of NRF

t columns of At that produce the
highest correlations. Since we are not interested in imposing
explicitly the orthogonal constraint on FRF, in step B we
further reduce the objective function by starting a local search,
of length L, around the selected steering vectors from At (the
support set S) to find a better support for the RF precoder.
The baseband precoder is computed this time at every step,
similarly to the OMP solution. The whole approach is similar
to a block learning mechanism presented in [21].

Notice another immediate approach also follows here. In-
stead of step B of the proposed method, suppose that we
apply the SOMP approach using the frequency dictionary
At restricted to the full index set SJ =

⋃NRF
t

j=1 Sj of size

(2L+1)NRF
t , and not on the full resolution N , as described in

step B. The full correlations still need to be computed, but the
subsequent steps involve a working dimension (2L+1)NRF

t �
N . Generally N is large since we want to produce results
under a good resolution. In this approach, step A acts like a
grid reduction step. We call this approach OM+SOMP, since
it differs from the initial approach by replacing step B with an
SOMP approach and not a sequential atom update. In terms of
complexity OM+LS is simpler than OM+SOMP but in terms
of performance we expect the latter to do better.

The same discussion applies at the receiver for the design
of the pair (WRF,WBB) by solving

arg min
Ar,W̃BB

‖E[yyH ]−1/2(WMMSE −ArW̃BB)‖F

subject to ‖diag(W̃BBW̃
H
BB)‖0 = NRF

r

(11)

using the same two step approach of orthogonal matching
followed by a local search strategy depicted in Algorithm 1
for the new objective function.

B. Computational complexity

Equipped with the two proposed strategies, orthogonal
matching to reduce the array manifold space followed by
either a fast local search (OM+LS) or a slower full matching
pursuit search (OMP+SOMP) in the reduced manifold, we
now establish how they improve on the previous solution to
problem (6) described in [9]. The computational complexity
of the proposed method is dominated by the computation of
the correlations R = AH

t Fopt. The other computations of step
A only represent fast manipulations of the elements of this
matrix –note that all products QH

` Fopt are contained in R.
Step B is dominated by correlation computations of subsets
of 2L + 1 columns from At with the current residual Fres.
The correlations in step B are computed only for (2L + 1)
steering vectors (instead of the full N ), again NRF

t times.
The local search parameter should obey 1 ≤ L ≤ dα/2e
and generally takes low values. All correlations of the type
FH

RFFopt are computed for both algorithms only once when
the full correlations AH

t Fopt are found. Considering that
α < NRF

t � Nt � N , with N = αNt the two methods
(we omit OM+LS for brevity) take approximately

CSOMP ≈ 2αNRF
t N2

t Ns(Nt + 1)

COM+SOMP ≈ 2αNsN
2
t + 2αNsNt + 2αNt+

2NsN
RF
t (NRF

t − 1)(α+ 1)(Nt + 1)

(12)

number of operations. The speed up comes from the fact that
the full correlation matrix in the proposed method is computed
only once (in step A) while for the SOMP approach its
computation needs to take place NRF

t times. Notice that both
computationally expensive procedures of step A are included
in the first step of the regular SOMP, thus the (NRF

t -1) factor
for the run of the matching pursuit steps of OM+SOMP.

We now leverage the speed-up provided by OM+SOMP
to increase the resolution and produce better solutions. Con-
sider that SOMP runs for a resolution N1 = α1Nt while
OM+SOMP runs for a different resolution N2 = α2Nt, we
would like to know how large can α2 be such that complexity
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Fig. 2: Evolution of speedup S when OM+SOMP and SOMP
are used with the same angular resolution N = 4Nt for fixed
Ns = 4.

of the proposed method does not surpass that of SOMP.
Considering the local search length L = α1/d, d ≥ 2, in the
case of OM+SOMP we analyze and compare the complexities
in (12) to reach:

α2 ≤
⌊

dNRF
t Ns(Nt + 1)(α1Nt −NRF

t )

NRF
t (NRF

t − 1)Ns(Nt + 1) + dNt(Ns(Nt + 1) + 1)

⌋
.

(13)
Keeping the value of α2 under this bound guarantees that the
computational complexity of the proposed will be lower than
that of SOMP.

Alternatively, consider that OM+SOMP and SOMP runs
with the same angular resolution N = αNt. In this case we
show the achieved speed-up (S = CSOMP/COM+SOMP). Figure
2 show the evolution of S for various dimensions.

IV. NUMERICAL RESULTS

In this section we provide several Monte Carlo simula-
tion results to illustrate the performance of the hybrid pre-
coder/combiner solution presented in the previous section.

We consider the narrowband clustered channel model in (2)
with Ncl = 6 clusters and Nray = 8 propagation paths per
cluster. For purposes of simulations, the entries of H denoted
by αi,` are assumed to be IID CN (0, σ2

α,i) where σ2
α,i is

the average power of the ith cluster. We set σ2
αi,`

= σ2
α,

all clusters with equal power satisfying the normalization
constraint E[‖H‖2F ] = NtNr. The scaling factor in front of the
summation in (2) is used to ensure that E[‖H‖2F ] = NtNr. The
angles of departure and arrival φt

i,`, φ
r
i,` are normal random

distributed with mean cluster angle φt
i, φ

r
i uniformly random

distributed in [0, 2π]. The angle spread is set to σt
φ = σr

φ =
7.5◦. Two ULAs with Nt = 32/64 and Nr = 32/64 are
considered for transmission and reception. The same total
power constraint is fixed for all precoders with equal power
allocation per stream and the signal to noise ratio is given by
SNR = ρ

σ2
n

.
Fig. 3 shows the spectral efficiency achieved by the hybrid

analog digital precoders SOMP and OM+SOMP, together with
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Fig. 4: Spectral efficiency achieved by different precoders for
ULA system with 64 transmit/receive antennas. The cluster
channel has Ncl = 6, Nray = 8 with an angular spread of 7.5◦.
NRF

t = NRF
r = 6 RF chains are considered and Ns ∈ {1, 2, 6}

data streams.

the the optimum unconstrained solution for different SNR
values. We assume a system with Nt = Nr = 32 ULAs for the
transmitter and receiver, NRF

t = NRF
r = 6 RF chains and Ns ∈

{1, 2, 4} data streams. Fig. 4 plots again the spectral efficiency
for a different setup: NRF

t = NRF
r = 6 and Ns ∈ {1, 2, 6}. We

see that the proposed precoder OM+SOMP achieves spectral
efficiencies that are very closed to those achieved by SOMP for
all the set ups. For low number of streams OM+SOMP almost
perfectly matches SOMP, while the gap between both methods
increases for high SNR and high number of data streams.
At the same time, the efficiencies obtained by both hybrid
precoders are similar to the optimum unconstrained solution
for low number of data streams. The differences between the
optimum unconstrained solution and the unconstrained ones,
however, becomes non-negligible when the number of streams
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Fig. 5: Spectral efficiency as a function of the Angle Spread.
We assume an ULA system with 32 transmit/receive antennas,
NRF

t = NRF
r = 4 RF chains and Ns ∈ {1, 2, 4} data streams.

The cluster channel has Ncl = 6, Nray = 8 and varying angular
spread. We have the SNR= 0 dB.

equals the number of available RF chains.
Fig. 5 shows the spectral efficiency as a function of the

angle spread of the channel scatterers. We assume a system
with Nt = Nr = 32 antennas, NRF

t = NRF
r = 6 RF chains and

Ns ∈ {1, 2, 4} data streams. The signal to noise ratio is fixed
to SNR= 0 dB. We see that the performance of the hybrid
precoders decreases with an increase of the angle spread, while
the gap between OM+SOMP and SOMP remains constant.

In all cases, OM+SOMP and SOMP run with the same
angular resolution N and thus OM+SOMP achieves a consid-
erable speedup without sacrificing the performance in terms
of the spectral efficiency.

V. CONCLUSIONS

In this paper we developed a new optimization algorithm
for the design of hybrid precoders and combiners for mmWave
MIMO systems. Our two solutions incorporate constraints that
account for the practical hardware limitations at these frequen-
cies: analog beamforming based on quantized variable phase
shifters and the use of a limited number of RF chains. The
main innovation in our work is to exploit the array geometry
in a way that allows us to reduce the search complexity and
thus the overall complexity of the algorithm. Simulation results
show that the spectral efficiency achieved by using the new
algorithms is comparable to the unconstrained solution, yet
with substantially lower overall complexity.
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