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Abstract: We propose a low-complexity indoor localization scheme using a hybirid of particle

swarm optimization (PSO) and Newton-Raphson (NR) search. The signal of global positioning

system (GPS) can be utilized outdoors only, and other schemes are needed for indoor localiza-

tion. A triangulation-based location estimation using ultra-wide band (UWB) signals between

more than three reference terminals and the target node is widely used for centimeter-order

localization. In particular, a time of arrival (TOA)-based least square (LS) estimation is pop-

ular because the balanced performance in terms of calculation complexity and the accuracy

is obtained. However, when the height of reference terminals and the target node is close,

the three-dimensional LS-based estimation tends to fall into a local-minimum solution and it

needs an accurate initial value of search to keep the estimation performance, resulting in the

calculation complexity increase. Therefore, in this paper, we adopt a particle swarm opti-

mization (PSO) method which effectively searches in wide-area space and propose an LS-based

localization scheme using the combination of PSO and NR method achieving lower calculation

complexity. The improved performances are shown with comparing to conventional search

schemes by computer simulations.

Key Words: location-based service, ultra-wide band, least square-based localization, particle

swarm optimization, Newton-Raphson method

1. Introduction
Outdoor location-based services (LBS) such as map or navigation system in smartphone are widely

used these days. The location information of those communication terminals is given by global

positioning system (GPS) and various new service architectures based on the location information

are being developed. One of the hot topics of LBS is a self-driving car system. To achieve the

self-driving car an accurate location information is indispensable, otherwise car accidents may easily
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happen. The utilization of indoor location information is also expected to be developed. There

are lots of new indoor services utilizing LBS. For example, a high-resolution location information

enables segmented air condition, audio, and lighting supplies which contribute energy-saving and

personalized environments. In long-distance wireless power transmission system, an accurate three-

dimensional location of the terminal to be supplied must be required . However, because the radio

wave of GPS cannot be received in indoor, other measurement schemes are needed. As a popular one,

ultra-wide band (UWB) radio wave-based triangulation between the target node whose location is

unknown and the reference anchor nodes is utilized for centimeter-order localization. As the distance

measurement between the target node and the anchor node, there are a few schemes such as time

of arrival (TOA), time difference of arrival (TDOA), angle of arrival (AOA), and received signal

strength (RSS). Among those schemes, TOA has a high measurement resolution and is often used [1].

Using more than three measured distance data the location of target node is estimated, and there

are several estimation algorithms from the distance data to the location. The simplest one is the

linear least square (LLS) scheme [2] which needs the least calculation complexity. However, for more

accurate estimation, it is popular to use the maximum likelihood (ML) scheme or nonlinear least

square (NLS or simply LS) scheme [3]. ML scheme provides the most exact location estimation with

the requirements of higher calculation complexity and channel parameters. Meanwhile, LS scheme

needs less calculation complexity and doesn’t need the channel parameters. Hence, the LS scheme is

widely used in indoor localization. Thus, in this study we focus on the LS-based localization scheme.

There are lots of optimization algorithms applicable for LS-based localization and among them, the

full grid search, Newton-Raphson (NR) algorithm, and a nonlinear optimization are often adopted.

We have considered a hybrid use of NR and grid search in which a rough grid search is conducted

in advance and its result is used as the initial value of NR fine search in the second stage [4]. This

scheme can balance the calculation complexity and the accuracy. However, to get the result of NR

search converged a relatively exact initial value has to be supplied. In general, the three-dimensional

localization tends to need higher complexity [5]. In particular, when the height of the target and anchor

nodes is close in three-dimensional localization, more exact initial value is needed to avoid making a

local optimal solution output by NR scheme, resulting in the calculation complexity increase in grid

search. This happens in the low-height anchor node case which is rather general because the roof

of rooms is usually not so high. In addition to that, the indoor terminals whose location is to be

estimated moves in many cases such as a mobile phone with person or a forklift in industrial plant.

Hence, to achieve the LBS, a short time delay estimation with lower calculation complexity is needed.

To solve this problem, in this paper we adopt a particle swarm optimization (PSO) algorithm [6] and

propose a lower-complexity LS-based localization scheme with the hybrid of PSO and NR optimiza-

tion. PSO is one of the metaheuristic (MH) optimization schemes [7] and a wide-range optimization

is efficiently conducted. Other than PSO, there are several MH optimization methods such as genetic

algorithm (GA) [8], simulated annealing (SA) [9], and tabu search (TS) [10]. Among these methods,

PSO is adopted in this study because PSO is suitable for a wide-area search on continuous variables

(three-dimensional coordinate) with lower complexity. As the conventional studies, the PSO localiza-

tion with RSS signals has been proposed in [11, 12]. However, the estimation error is relatively high

because RSS signals are utilized. The TDOA-based exact localization using PSO has been studied

in [13, 14] and the ML estimation using PSO has been studied in [15]. However, those studies are

two-dimensional localization and the height problem is not considered. We also have proposed the

PSO and NR optimization scheme in [16]. However, the performance was degraded at the lower and

higher heights of the target node because the estimation accuracy of height direction was lowered, and

the effect was limited. In the proposed scheme here, the first estimation results are obtained by the

PSO scheme with low calculation complexity, and then, the result is handled to the NR fine search

with some modification and the fine search is conducted. By this algorithm, the complexity reduction

and the accurate estimation is simultaneously achieved.

In the following, the system model and LS estimation is introduced in Section 2, the conventional

and the proposed optimization schemes for LS estimation are described in Section 3, and the numerical

results are illustrated in Section 4. Finally, the conclusions are drawn in Section 5.
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Fig. 1. Three-dimensional sensor field in this study.

2. System model and least square localization

Figure 1 shows the indoor location estimation system in this study. The three dimensional sensor

field with X = Y = 10, Z = 2 meter is considered and the four anchor nodes whose positions are

known are located at the four corners with the height of Z = 2. The location of i-th anchor node

is denoted by lAi
= (xi, yi, zi), 1 ≤ i ≤ N where N = 4 is the number of anchor nodes. One target

node whose location is to be estimated exists and it broadcasts an ultra-wide band (UWB) beacon.

Four anchor nodes receive it and calculate the distance between each anchor node and the target node

in TOA manner, and a central unit estimates the target node location by triangulation using those

distance data. In this paper, we focus on the construction of position estimation scheme, and the

UWB beacon transmission model is assumed to be the same as [17] scheme. In [17], based on Howard’s

measurement scheme [18], a chirp-waveform UWB pulse is transmitted and a coherent detection using

network analyzer is adopted, and this transmission model is assumed in this study. The antennas of

each node are assumed as an isotropic antenna.

The true location of the target node is denoted by lT = (x, y, z). Then, the true distance between

the anchor node Ai and the target node T is denoted by

di = ‖lT − lAi
‖ =

√

(x − xi)2 + (y − yi)2 + (z − zi)2 (1)

When it is measured at Ai, the error is added and it becomes d̂i = di + εi where εi is the noise

component in measurements, caused by the multipath reception of UWB beacon (Eq. (2) in [17]).

It is assumed in this study that the propagation channel between all anchor nodes and the target is

in line-of-sight (LOS) environments. According to [17] and [19], in this UWB measurement d̂i has a

Gaussian distribution with the error mean of mi = mLOS log(1+di) and the variance σ2
i . Here, mLOS

and σ2
i are the parameters depending on the bandwidth of UWB signal. The probability density

function (pdf) of d̂i is given by

p
(

d̂i|di

)

=
1√

2πσi

exp

[

−(d̂i − di − mi)
2

2σ2
i

]

(2)

Therefore, the accuracy of TOA distance can be raised by the multiple signal measurements at each

anchor node. It is assumed that the target node does not move during one position estimation. Then,

when the anchor node Ai measures the distance M times and k-th distance is denoted by d̂i,k, the

measurement results of distance d̂i is given by

d̂i =
1

M

M
∑

k=1

d̂i,k (3)

which is more reliable than a single measurement. For exploiting the M -time measurements more,

the integration and averaging of the UWB waveforms will be effective. However, because it needs

more memory and signal processing, the averaging of each measured distance of (3) is adopted in this

study. Using d̂i, the estimated location of the target node is calculated in the LS manner by
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l̂T = arg min
x,y,z

N
∑

i=1

[

√

(x − xi)2 + (y − yi)2 + (z − zi)2 − d̂i

]

(4)

This equation is a nonlinear optimization problem and there are several solution algorithms. Some of

typical schemes and the proposed scheme are introduced in the next section.

3. Optimization schemes in LS-based localization

The LS estimation of (4) needs less calculation complexity than that of ML estimation. Different from

ML scheme, the LS scheme doesn’t need channel parameters in calculation but can obtain relatively

good estimation performance. However, it still needs the nonlinear solution search as well as ML

scheme. As the conventional algorithm, grid search and the sequential search of gird and NR schemes

are introduced here, and the proposed scheme further reducing the calculation complexity is also

described.

3.1 Grid search

Grid search is the simplest solution search algorithm. In the grid search, the solution is fully searched

at the discrete and equally-spaced grid in the search space in general. For (4), the grid search becomes

l̂T = arg min
j,k,l

N
∑

i=1

[

√

(jδd − xi)2 + (kδd − yi)2 + (lδd − zi)2 − d̂i

]

(5)

0 ≤ j ≤ ⌊X/δd⌋ , 0 ≤ k ≤ ⌊Y /δd⌋ , 0 ≤ l ≤ ⌊Z/δd⌋

where δd is the grid interval and ⌊x⌋ means the maximum integer less than x. The search number of

(5) becomes (⌊X/δd⌋ + 1) (⌊Y /δd⌋ + 1) (⌊Z/δd⌋ + 1), and the estimation accuracy and the calculation

complexity are increased when δd is smaller.

3.2 Seqeuntial search of grid and Newton-Raphson

NR scheme is an iterative optimal solution search algorithm of equation and it needs an appropriate

initial value close to the true solution value to avoid converging to local optimal values. Hence, in (4)

calculation, the coarse search of Subsection 3.1 using a relatively large grid is conducted at first, and

its result is used as the initial value of NR search. Then, the fine search is conducted by NR search

in the second stage. When the object function of LS estimation by NR search is denoted as

f(x, y, z) =
N

∑

i=1

[

√

(x − xi)2 + (y − yi)2 + (z − zi)2 − d̂i

]

(6)

then, the estimation result is obtained by

l̂T = arg min
x,y,z

f(x, y, z).

When a neighborhood solution of l̂T is given as l̂T = (x̂, ŷ, ẑ), the update equation of NR scheme and

the difference parameters are obtained as follows.

l̂T,new = l̂T + δl, δl = (δx, δy, δz) (7)

⎡

⎢

⎢

⎣

∂g1 (̂lT )
∂x

∂g1 (̂lT )
∂y

∂g1 (̂lT )
∂z

∂g2 (̂lT )
∂x

∂g2 (̂lT )
∂y

∂g2 (̂lT )
∂z

∂g3 (̂lT )
∂x

∂g3 (̂lT )
∂y

∂g3 (̂lT )
∂z

⎤

⎥

⎥

⎦

⎡

⎣

δx

δy

δz

⎤

⎦ =

⎡

⎢

⎣

−g1(̂lT )

−g2(̂lT )

−g3(̂lT )

⎤

⎥

⎦
(8)

⎧

⎪

⎨

⎪

⎩

g1(x, y, z) = ∂f(x,y,z)
∂x

= 0

g2(x, y, z) = ∂f(x,y,z)
∂y

= 0

g3(x, y, z) = ∂f(x,y,z)
∂z

= 0

(9)

197



Here, (9) is the derivative of (6) and the solution satisfying (9) is searched by (7) and (8). The

iterative search is conducted using δl calculated by LU decomposition of (8), and the update of (7)

and (8) is iterated from the initial value of coarse search results on (5) until

f
(

l̂T,new

)

≥ f
(

l̂T

)

(10)

is satisfied. Finally, l̂T at that point is output as the solution. Note that the estimated coordinate is

limited in the range of sensor field, that is, x, y, or z is forced to be zero when it is negative and to

be X, Y , or Z when it is over that value.

3.3 Particle swarm optimization-based search

In the scheme of Subsection 3.2, when the heights of the target node z becomes larger, the estimation

result tends to converge to local optimal value that means the result having large estimation error

(see Fig. 5). As a result, the small δd of (5) was needed to generate an accurate initial value and the

calculation complexity was increased. Hence, we consider applying MH search because it is efficient

for wide-area search [7]. GA, SA, TS, and PSO are popular in MH and each method has different

characteristics. In general, GA, SA, and TS are suitable for combination optimization and an increased

number of states is needed when applied to continuous optimization. It is known that SA tends to

need long time to converse the search results and TS needs less time. PSO can deal with continuous

variable optimization and need less calculation complexity in general. Here, the optimization function

of the localization on (6) has a continuous variables of three-dimensional coordinate, and the low-

complexity estimation is needed to achieve a real-time estimation. Thus, we adopt PSO method in

this study. The PSO-based LS estimation is described in the following.

The object function to be minimized in PSO search is the same as (6) and let Np as the number of

particles. The location and velocity of the particle i at time n are defined, respectively, by

li(n) =
[

xi(n), yi(n), zi(n)
]

, 1 ≤ i ≤ Np

vi(n) =
[

vi
x(n), vi

y(n), vi
z(n)

] (11)

Then, the personal best of i-th particle is given by

pi =
(

pi
x, pi

y, pi
z

)

, f
(

pi
)

≤ f
(

li(n)
)

, 0 ≤ n ≤ nc (12)

where nc is the current time. The global best of all particles is given by

g = (gx, gy, gz) , f (g) ≤ f
(

pi
)

, 0 ≤ i ≤ Np (13)

and the local best bi =
(

bi
x, bi

y, bi
z

)

is configured as a ring connection for i-th particle such as

f
(

bi
)

≤ f
(

pj
)

, 0 ≤ i ≤ Np,

(i − 1 + Np) mod Np ≤ j ≤ (i + 1 + Np) mod Np

(14)

Then, the update of i-th particle in the x axis is given by

{

vi
x(n + 1) = wvi

x(n) + ρ1{pi
x − xi(n)} + ρ2{bi

x − xi(n)}
xi(n + 1) = xi(n) + vi

x(n)
(15)

where w, ρ1, and ρ2 are the behavior control parameters of particle. The location and velocities of

other axes vi
y, vi

z, yi, and zi are calculated in the same way. In this study, by the heuristic adjustment

for the sensor field of Fig. 1, these parameters are configured as follows: w of (15) is set as 0.5, ρ1

and ρ2 are set as ρ1, ρ2 ∈ RND[0, 0.42] for x and y axes, and as

ρ1 ∈ RND[0, 0.42], ρ2 ∈ RND

[

0,
0.42Z

X

]

(16)

for z axis because z space is smaller than x and y spaces. Here, RND[a, b] denotes the uniform random

number in the range of [a, b]. The initial value of i-th location and velocity is randomly given by
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li(0) = (RND[0, X], RND[0, Y], RND[0, Z])

vi
x(0), vi

y(0), vi
z(0) ∈ RND[0, 0.4] − 0.2

(17)

The global best solution g is the estimated output at time n. The terminating condition is set as

f (g) ≤ 10−4 which is close to the exact solution and the maximum iteration number is set as nmax.

In this termination condition, because the iteration reaches nmax in almost all cases, the calculation

complexity and the accuracy can be controlled by nmax. Here, as with Subsection 3.2, the estimated

coordinate gx, gy, or gz is modified to the boundary value of the sensor field if it is over that range.

3.4 Proposed search scheme

To reduce the calculation complexity while sustaining the estimation accuracy, we propose a sequential

search scheme in which the result of rough PSO search is used in NR scheme. In the proposed scheme,

the global best solution g of PSO with relatively small nmax is passed to NR scheme as the initial value

and the sequential LS estimation is conducted. Because the accuracy of PSO search is higher than

that of grid search at the same calculation complexity in general, the better estimation performance

is expected. However, we found the problem that the estimation error became relatively large in z

direction when the result of PSO search was directly handled to NR search. Then, by numerical

analysis, it is found that when the initial ẑ value of NR search is larger than the actual z value of

target node, the estimation error increases in z direction. Therefore, in the proposed scheme, the

scaled-down z value of PSO search is handled to the initial value of NR fine search as follows:

ẑ = 0.3gz (18)

which is derived by numerical analysis. The derivation of this scale down parameter is discussed with

numerical analysis in the next section.

4. Numerical results
The performances of calculation complexity and estimation accuracy of the proposed scheme are

evaluated by computer simulations. The UWB measurement environment is assumed as the same

as [17], where a chirp-waveform UWB pulse is transmitted and a complex value of received signal is

stored. In practice, the characteristics of d̂i,k in (3) will be changed according to the UWB system

such as performance of analog to digital (A/D) converter, antenna pattern, and UWB waveform.

The three-dimensional root mean square error (RMSE) is calculated as the estimation error. Table I

shows the simulation conditions. The target node at the location of (x, y, z) sends beacons 30 times

(M = 30) and the anchor nodes receive them. The RMSE is calculated after 1000 times trial at each

target node location. The target node location is changed at every 0.5 m for x and y axes while z = 1

m is fixed, and RMSE is calculated on all x-y plane. The UWB signal bandwidth is assumed as 3

GHz and the channel parameter is configured by the experimental results of [17]. This 3GHz UWB

pulse is transmitted and received in LOS environments in the sensor field in Fig. 1. As the calculation

complexity, the calculation of (6) is defined as one search, and the average number of calculation on

one location estimation is compared.

Table I. Simulation conditions.

Sensor field X = Y = 10 m , Z = 2 m

Number of anchor nodes N = 4 (Fig. 1)

Target node location
0 ≤ x ≤ X and 0 ≤ y ≤ Y

on every 0.5 m grid, z = 1 m

Number of TOA measurements per one estimation M = 30

Number of simulation for RMSE calculation 1,000 times

UWB bandwidth 3 GHz

UWB channel parameter mLOS = 4.0 × 10−3, σ2
i = 4.5 × 10−2 [17]

Channel model Line of sight (LOS)

Number of particles Np = 10
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Fig. 2. RMSE performance comparison of the proposed and conventional
schemes versus calculation complexity.

Table II. Relationship between parameter settings and required calculation
complexity.

average number of calculation average number of calculation

δd m grid grid+NR nmax PSO proposed PSO+NR

8.0 4.0 9.6

3.0 32.0 37.6

2.0 72.0 77.3 5 62.0 68.1

1.5 128.0 131.6 10 112.0 118.4

1.0 363.0 368.6 20 212.0 218.6

0.9 432.0 437.4 36 371.9 378.6

0.8 507.0 512.5 50 511.6 518.2

0.7 900.0 905.0 100 1004.7 1011.4

0.6 1296.0 1302.0 150 1487.9 1495.3

The average RMSE of x-y plane versus average calculation complexity is shown in Fig. 2 where

the grid search in Subsection 3.1, the sequential scheme of grid and NR in Subsection 3.2, and PSO

scheme are compared as the conventional schemes. Here, the relationship between the average number

of calculation and the grid width δd or the maximum number of iteration nmax in PSO is listed in

Table II. The result of Fig. 2 shows that the RMSE performances are improved according to the

calculation increase in all schemes. This is because the calculated location approaches to the true

location with a small grid δd in the grid-based search, and the each particle become easier to converge

into the true location with the increased nmax in PSO scheme. When compared with other schemes,

the grid scheme has the worst performance and it needs further calculation complexity with much

smaller δd for improvement. The hybrid scheme of grid and NR has better performance than the grid

scheme because of the fine search of NR scheme. However, the RMSE is increased when the accuracy

of initial value is not good. On the other hand, compared to the grid and NR scheme, PSO-based

schemes have relatively better performance at the lower complexity that means the effective particle

initial search is valid in the LS-based localization. Among all schemes, the proposed PSO and NR

scheme needs less calculation complexity to obtain the same RMSE. It can be seen that over 1300

calculation the RMSE of the proposed scheme becomes almost the same as the hybrid scheme of grid

and NR, and that the proposed scheme has better performance below that calculation complexity.
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Fig. 3. RMSE performances on x-y plane at calculation complexity of 370;
(a) grid search, (b) hybrid search of grid and NR, (c) PSO scheme, (d) proposed
hybrid search of PSO and NR.

Fig. 4. Performance comparison of RMSE variance on x-y plane in the pro-
posed and conventional schemes versus calculation complexity.
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Fig. 5. RMSE performance comparison at calculation complexity of 370 ver-
sus the height of target node.

Fig. 6. Performance comparison of RMSE variance at calculation complexity
of 370 versus the height of target node.

In addition, the proposed scheme has the best RMSE performance of four schemes and the RMSE is

converged to lower bound with the calculation complexity of 370, 1/3 times of the hybrid scheme of

grid and NR. This means the PSO scheme effectively produces a good initial value to NR scheme with

less complexity, and the proposed combination of PSO initial search and NR fine search is effective.

Hence, the proposed scheme achieves an accurate LS estimation with lower complexity. Note that in

the configuration of Fig. 1 where all anchor nodes have the same height, the three-dimensional LLS

estimation [2] generates an extreme coordinate value (in our simulation (10,10,0) with the average

RMSE of 7.77 m), and neither single LLS scheme nor LLS with NR scheme work correctly.

Next, the RMSE performances of four schemes on x-y plane at δd = 1.0 or nmax = 36 whose

calculation complexity becomes around 370 as shown in Table II are compared. The results of Fig. 3

show that there are irregular and relatively large errors in Fig. 3(a) due to the grid-based search. In

Fig. 3(b), the center area is improved thanks to NR fine search but there still exists a large error

in the side area because the initial value is not sufficiently accurate. On the other hand, as shown
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Fig. 7. Two-demensional (x-y) RMSE performance at calculation complexity
of 370 versus the height of target node.

Fig. 8. RMSE performance comparison versus the height of target node with
the parameter of initial value of ẑ.

in Figs. 3(c) and (d), PSO schemes have averagely good RMSE performances in all areas and the

proposed scheme has the best performance.

To confirm the uniform performance of the proposed scheme, the variance of RMSE on x-y plane of

Fig. 3 and of the simulation in Fig. 2 is calculated. When the variance is small, it means the RMSE

is more uniform regardless of the x-y position of the target node. As shown in Fig. 4, in the grid

search the variance largely changes because the search point depends on δd and the results become

irregular as shown in Fig. 3(a). In the conventional grid and NR search, the variance is still large due

to the initial discrete grid search. On the other hand, PSO searches have relatively small variance

because the effective wide-area search can be conducted by particle search, and as a result, almost

the uniform estimation results are obtained after more than 200 calculation in PSO and the proposed

schemes. Around 100 calculation, the variance performance of the proposed scheme is worse than the

PSO scheme because the PSO estimation is stably degraded, while some estimation is degraded in

the proposed scheme, as shown in Fig. 3. Thus, the proposed scheme has averaged and good RMSE
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Fig. 9. Performance comparison of RMSE variance versus the height of target
node with the parameter of initial value of ẑ; (a) 0 ≤ z ≤ 1.75, (b) 1.75 ≤ z ≤ 2.

performance.

Then, the average RMSE on x-y plane versus the z height (0 ≤ z ≤ 2.5) of the target node when

the calculation complexity is fixed at around 370 is calculated. The simulation conditions are the

same as Table I except the z height. Note that nmax is reduced to 35 in the proposed scheme to

reduce the complexity to 368, and that the RMSE until the height of 2.5 m is shown to view the

performance trends for z. Here, because the estimated z is limited to Z, the RMSE of all schemes is

degraded over the height of 2.0 m. The results of Fig. 5 shows that the RMSE of the proposed scheme

is similar or less than that of the conventional grid and NR scheme. In particular, it can be seen that

RMSE at the height between 0.5 and 1.5 m, which is a practical height of the target node in indoor

environments like the configuration of Table I, is a half. As well as Fig. 4, the RMSE variance versus

z height is calculated as shown in Fig. 6. The variance of the conventional grid-based schemes change

largely for z value because the initial grid search is discrete, while that of the proposed scheme is

much smaller below z = 1.5 m and the proposed scheme has better performance except 1.75 m of z.

Therefore, it is clarified that the proposed scheme achieves the low-complexity, accurate, and stable

LS estimation compared to the conventional schemes except higher z area close to Z of anchor nodes.
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Here, to investigate the performance degradation at the roof area, we calculated the two-dimensional

x − y RMSE in the same simulation. As shown in Fig. 7, it is seen that the RMSE of the proposed

scheme is the same as or less than that of the conventional grid and NR scheme in all z range. This

means that the performance degradation of the proposed scheme at the roof area mainly comes from

the error in z direction. It may be because the PSO tuning for z direction is difficult when the height

of all anchor nodes is the same, and further adjustments will improve the performance. To improve

the roof area performance, the simplest solution is that the height of anchor nodes is increased to

more than the upper bound of search area of z (for example, +1 m).

Next, the scale down parameter in (18) is changed to ẑ = αgz or fixed, and the three-dimensional

RMSE is calculated. Here, α = 1 is our conventional scheme of [16]. The results in Fig. 8 showed that

the performance with the fixed initial value ẑ = 1 was degraded, and that the performances at lower

height with the scaled-down initial value including ẑ = 0 (α = 0) were improved. Then, in the same

manner as Fig. 6, the RMSE variance with small α in the same simulation is calculated. The result in

Figs. 9 (a) and (b) shows that the variance is slightly smaller with a large α and a stable estimation

regardless of the target node position will be conducted with larger α. Hence, in the proposed scheme,

α = 0.3 which has good RMSE performance in Fig. 8 and lower variance in Fig. 9 is adopted.

Consequently, it was shown that the proposed scheme could accurately estimate the location with

less calculation complexity in three dimensional LS localization even when the height of the target

and anchor node are close.

5. Conclusion
In this study we proposed the hybrid scheme of PSO which effectively searched in wide areas and NR

which could conduct fine search for three-dimensional LS-based localization. Because the NR scheme

sometimes terminates at local optimal solution, the high-complexity accurate grid is needed in the

conventional scheme, while the proposed scheme achieves less-complexity and accurate estimation by

adopting PSO coarse search. By numerical results it was shown that the least RMSE of estimation

could be obtained with 1/3 times calculation complexity compared to the conventional hybrid scheme

of grid and NR. Also, except the upper height near anchor nodes, the proposed scheme has better

RMSE performances in the z direction.
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