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Abstract—In medium-size Massive MIMO systems, the min-
imum mean square error parallel interference cancellation
(MMSE-PIC) based Soft-Input Soft-Output (SISO) detector is
often used due to its relatively low complexity and good bit
error rate (BER) performance. The computational complexity
of MMSE-PIC for detecting a block of data is dominated by the
computation of a Gram matrix and a matrix inversion. They have
computational complexity of O(K2

M) and O(K3), respectively,
where K is the number of uplink users with one transmit antenna
each and M is the number of receive antennas at the base station.
In this letter, by using an L (typically L ≤ 3) terms of Neumann
series expansion to approximate the matrix inversion, we reduce
the total computational complexity to O(LKM). Compared with
alternative algorithms which focus on reducing the complexity of
the matrix inversion only, the proposed method can also avoid
calculating the Gram matrix explicitly and thus significantly
reducing the total complexity.

Index Terms—Low complexity, Massive MIMO, Neumann
series expansion, iterative detection, MMSE.

I. INTRODUCTION

IN recent years, Massive MIMO which typically employs

a magnitude of more antennas at the base station than in

user terminals has attracted great interest from wireless com-

munication research community [1]. It has been shown that

with Massive MIMO, the throughput and spectral efficiency

of wireless systems can be greatly improved [2]. When the

number of receive antennas at the base station is large and

much larger than the number of total transmit antennas in user

terminals, a simple detection algorithm such as a matched filter

can achieve very good performance, as with the assumption of

i.i.d. entries for channel matrix H, the channel vectors become

orthogonal to each other and HHH converges to a scaled

identity matrix. But for practical medium-size Massive MIMO,

matched filter based detection algorithm suffers performance

loss [3]. Therefore, alternative linear detection algorithms

such as the minimum mean square error parallel interference

cancellation (MMSE-PIC) algorithm [4] are often employed

due to their relatively low complexity and good bit error rate

(BER) performance. However, the MMSE-PIC still requires

complexity of O(K3) for calculating a matrix inversion and

O(K2M) for calculating the Gram matrix, where K is the

number of transmit antennas and M is the number of receive

antennas.

To reduce the complexity, [5] and [6] employed Neumann

series expansion to approximate the matrix inversion by a

matrix polynomial. Then in [3] the authors proposed to use
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the same method to perform 3GPP-LTE uplink signal detection

and proved the convergence of the Neumann series expansion.

Different from using Neumann series expansion, in [7] an

iterative method based on successive overrelaxation (SOR) is

employed to calculate the product of the inversion of a matrix

and a vector, which can converge to the exact solution. These

work can successfully reduce the complexity of computing

matrix inversion from O(K3) to O(K2). But they all require

the pre-computed Gram matrix as an input. In Massive MIMO

with M ≫ K, the Gram matrix computation involves compu-

tational complexity of O(K2M), which is much higher than

the O(K3) complexity of matrix inversion .

In this letter, based on the MMSE detection algorithm [8],

we exploit Neumann series expansion to reduce the total com-

plexity of MMSE-PIC for Massive MIMO. With the proposed

method, computational complexity is reduced by avoiding

direct matrix inversion and replacing the matrix-matrix mul-

tiplication of Gram matrix with matrix-vector multiplications.

Specifically, we propose to employ an L (typically L ≤ 3)

terms Neumann series expansion for calculating the means of

data symbols to be detected, and a first order approximation

for calculating the variances and thus reducing the complexity

from O(K2M+K3) to O(LKM) with marginal performance

loss when L = 3 for MIMO size of K ×M = 16× 128. We

also investigate the application of the proposed algorithm in

an iterative detection and decoding (IDD) system, where the

symbol detector and the channel decoder work iteratively. We

found that with one iteration between the decoder and the

detector, the proposed approximation algorithm with L = 3
can achieve the same performance as the exact MMSE-PIC

algorithm.

The remainder of this letter is organized as follows. Section

II describes the turbo-MIMO system model. Then in Section

III, we propose to use Neumann series expansion to perform

MMSE detection without computing the Gram matrix. Simu-

lation results are shown in Section IV and Section V concludes

this letter.

The notations used in this letter are as follows. Lower and

upper case letters denote scalars. Bold lower and upper case

letters represent column vectors and matrices, respectively.

The superscripts “T” and “H” denote the transpose and

conjugate transpose, respectively.

II. SYSTEM MODEL

Consider a multiuser Massive MIMO system with M
receive antennas at the base station and K single-antenna

user terminals. Let x = [x1, x2, . . . , xK ]T denote the trans-
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mit vector comprising the symbols transmitted simultane-

ously by all users in one channel use where xn ∈ A =
{α1, α2, . . . , α2Q}(|A| = 2Q) denotes transmitted symbol

from user n, then each xn corresponds to a length-Q sub-

sequence of c denoted by cn = [cn,1, cn,2, · · ·, cn,Q]
T. Let

H = [h1, h2, . . . , hK ] denote the channel gain matrix, where

hn = [h1n, h2n, . . . , hMn]
T is the channel gain vector from

user n to the base station, and hjn denotes the channel gain

from the n-th user to the j-th receive antenna at the base

station. Assuming rich scattering, adequate spatial separation

between the base station antenna elements and perfect user

power control, hjn, ∀j are assumed to be i.i.d. complex

Gaussian distributed with zero mean and variance one. Thus

a length-M observation vector y at the base station can be

written as

y = Hx + w (1)

where w denotes a length-M circularly symmetric additive

white Gaussian noise (AWGN) vector with zero-mean and

covariance of σ2I.

The task of the Soft-In Soft-Out (SISO) detector is to

compute the extrinsic log-likelihood ratio (LLR) for each code

bit cn,q , which is the input to the decoder and can be expressed

as [8]

Le(cn,q) = ln

∑

xn∈A0
q

P (y|xn)P (xn)

∑

xn∈A1
q

P (y|xn)P (xn)
− La(cn,q) (2)

where La(cn,q) is the output extrinsic LLR of the decoder,

xn ∈ A0
q(A

1
q) represents constellations whose q-th bit is 0(1)

and P (xn) is the a priori probability of xn which can be

calculated from La(cn,q).

III. MMSE DETECTION BASED ON NEUMANN SERIES

EXPANSION

We employ the method proposed in [8] to perform MIMO

MMSE detection. With this algorithm, it is easy to reformulate

the matrix to be inverted with the size of K × K which is

preferable for Massive MIMO applications with M ≫ K.

The core part of this algorithm is to compute the a posteriori

mean mp and variance Vp of x by

Vp = (V−1 +
1

σ2
HHH)−1, (3)

mp = m +
1

σ2
Vp(HHy − HHHm), (4)

where m and V are the a priori mean and variance of x,

respectively, and they can be calculated from the feedback of

the decoder1. Then the extrinsic mean me
n and variance ven

of the n-th element of x (which are used to generate soft-out

LLR) can be calculated by

1At the beginning of the IDD, there is no feedback from the decoder.
Assuming that the constellation of the modulation is with zero mean and
normalized with unit power and data streams from different transmit antennas
are statistically independent, we have m be a zero vector and V be the identity
matrix IK with size K ×K.

Algorithm 1 Reduced Complexity Neumann Series expansion

based MMSE detection

Input: y, H, La

Output: Le ◃ extrinsic LLR value for every bit
1: Calculate a priori mean m and variance V from La

2: mn =
∑

αi∈A

αiP (xn = αi)

3: vn =
∑

αi∈A

|αi −mn|
2
P (xn = αi)

4: Calculate a posteriori mean mp

5: D = diag(V−1 + 1
σ2 HHH)

6: v0 = D−1(HHy − HHHm)
7: s0 = v0
8: for i = 1 to L do

9: vi = vi−1 − D−1(V−1 + 1
σ2 HHH)vi−1

10: si = si−1 + vi
11: end for

12: mp = m + 1
σ2 sL

13: Approximate the diagonal elements of Vp

14: vpn = dn ◃ dn is the (n, n)-th element of D−1

15: Calculate extrinsic mean me
n and variance ven

16: v
e
n = ( 1

v
p
n
− 1

vn
)−1

17: m
e
n = v

e
n(

mp
n

v
p
n

− mn

vn
)

18: Calculate extrinsic LLR Le

19: L
e(cn,q) = ln

∑

αi∈A0
q

exp
(

−
|αi−me

n|2

ve
n

) ∏

q
′
̸=q

P (c
n,q

′ =s
i,q

′ )

∑

αi∈A1
q

exp
(

−
|αi−me

n|2

ve
n

) ∏

q
′
̸=q

P (c
n,q

′ =s
i,q

′ )

ven = (
1

vpn
−

1

vn
)−1, (5)

me
n = ven(

mp
n

vpn
−

mn

vn
), (6)

where vn, vpn are the (n, n)-th elements of matrix V and Vp,

respectively, and mn, mp
n are the n-th elements of vector m

and mp, respectively. It is easy to see that (3) and (4) require

a computational complexity of O(K2M) for calculating HHH

and O(K3) for calculating the matrix inverse.

A. Neumann Series Expansion

The convergence of Neumann series expansion for detection

has been proved in [3]. It has been shown in [3] that, for

large ρ = M/K, the Gram matrix G = HHH tends to be

diagonally dominant, which enables the convergence of the

Neumann series expansion.

Let us decompose the regularized Gram matrix A = V−1+
1
σ2 G to A = D + E, where D is the main diagonal of A. As

V is a diagonal matrix, the complexity of computing D is the

same as computing the diagonal elements of G. We can then

approximate A−1 in the Neumann series as

A−1 ≈

L
∑

i=0

(

IK − D−1A
)i

D−1

=
L
∑

i=0

(

IK − D−1V−1 −
1

σ2
D−1G

)i
D−1.

(7)
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Using A−1 of (7) to replace Vp and plugging it into the

representation of mp of (4), it can be seen that only matrix-

vector multiplications are needed for calculating mp and the

calculation of the Gram matrix G itself is avoided. But we

should note that in (5) and (6) the diagonal elements of Vp

are also required to compute the extrinsic mean and variance.

To reduce the complexity, we propose to use the first order

approximation (L = 0) of (7) for computing the diagonal

elements of Vp (i.e. Vp ≈ D−1).

From (7), it is obvious that the multiplication of A−1 and a

vector v can be computed by L loops. The proposed MIMO

MMSE detection algorithm with Neumann series expansion is

summarized in Algorithm 1. We note that when L = 0, the

proposed algorithm coincides with the matched filter detector

as mp = 1
σ2 D−1HHy (Note that we assume m is a zero vector

at the beginning of IDD).

B. Computational Complexity Comparison

We focus on the number of real-valued multiplications

needed and only count quadratic or beyond terms. For the

real-valued system model, the matrix size of H is 2K × 2M ,

y is a length-2M vector and m is a length-2K vector. Note

that using the symmetric property of matrix G and Vp can

reduce the complexity by a half. Table I is a summary of

complexity comparison between MMSE, the proposed algo-

rithm, Neumann series expansion based algorithm in [5] and

SOR based algorithm in [7]. In the table, the term 4K2M
corresponds to the computing of Gram matrix G. Note that

for SOR based algorithm in [7], the number of iterations Ls

may be smaller than that of Neumann series expansion.

TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON

Algorithm Number of multiplications

Exact MMSE [8] 8K2 + 4K3 + 4(K2 +K)M
Proposed (16 + 8L)KM

Neumann series based [5] 4K2
M + 8(L− 2)K3

SOR based [7] 4K2
M + 4LsK

2

C. Discussion

In contrast to [5], [6], and [3], which also use the Neumann

series expansion to approximate matrix inversion, the proposed

methods avoid direct matrix inversion and replace the matrix-

matrix multiplication by matrix-vector multiplications, which

result in considerable saving in computations.

The method proposed in [7], after optimizing a parameter

by off-line exhaustive searching, can converge faster than

Neumann series expansion. But it requires each element of

matrix G as its input, which means that HHH has to be

computed explicitly, thus it cannot reduce the total complexity

significantly.

IV. SIMULATION RESULTS

We consider a Rayleigh block fading random channel where

H does not change over a codeword. During simulations, we

assume that perfect channel information is available in the
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Fig. 1. BER performance comparison for exact MMSE, proposed and SOR
based [7] with MIMO size of K ×M = 16× 128

detection module. A rate-1/2, regular (3,6) low-density parity-

check (LDPC) code with codeword length of 2000 bits is

employed as the channel code and the maximum number of

iterations of the decoder is 25. The constellation of 64-QAM

with Gray mapping is used. We constrain the total transmitter

power to one, and set the noise variance at each receive

antenna to σ2. Then the average received signal-to-noise ratio

(SNR) at each receive antenna is given by 1/σ2. For each

SNR value, we simulate at least 100000 codewords. In the

simulations, clipping is applied to both the soft-output and the

soft-input of the detector. The soft-in clipping threshold2 for

the a priori LLR is ±2, and soft-output module constrains the

output LLR range to [−50, 50].

Fig. 1 shows the BER performance comparison between

the exact MMSE detection [8], the proposed algorithm and

the SOR based algorithm [7]. The MIMO size is K ×M =
16×128. It is easy to see that the performance of the matched

filter (with legend Proposed (L=0)) is poor. At the same time,

with a larger L the approximation is more accurate and when

L = 3 the proposed algorithm can approach the performance

of the exact algorithm within 0.3dB. It can also be seen that

an extra IDD iteration (with legend Proposed (L=3) IDD)

achieves slightly better performance than the exact MMSE-

PIC algorithm without IDD.

To evaluate the performance loss caused by the first order

approximation of Vp, we use (7) to explicitly compute the

matrix inversion and assign the diagonal elements to vpn (as

in [5]) and the performances are shown in Fig. 1 with legends

ending with Var. It is obvious that the proposed approximation

to variance only leads to a small performance penalty.

2This clipping threshold can also help resolve the numerical stability issue
of Line 16 and Line 17 of Algorithm 1 when the a priori variance vn is
close to zero.



4

V. CONCLUSION

In this letter, we have proposed to use Neumann series

expansion to reduce the complexity of the MMSE-PIC al-

gorithm for Massive MIMO applications with M ≫ K.

Firstly, an L terms Neumann series was employed to avoid

computing the matrix inversion by replacing it with a cascade

of matrix-vector multiplications. Then, a first-order approxi-

mation was employed to compute the diagonal elements of the

a posteriori variance matrix for calculating LLR, which helps

to avoid computing the Gram matrix explicitly. Simulation

results showed that with a small L the proposed approximation

methods lead to marginal performance loss compared with

the exact implementation, but with considerable complexity

saving.
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