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Abstract—In this paper, we develop a new low-complexity
linear frequency domain equalization (FDE) approach for con-
tinuous phase modulated (CPM) signals. As a CPM signal is
highly correlated, calculating a linear minimum mean square
error (MMSE) channel equalizer requires the inversion of a non-
diagonal matrix, even in the frequency domain. In order to regain
the FDE advantage of reduced computational complexity, we
show that this matrix can be approximated by a block-diagonal
matrix without performance loss. Moreover, our MMSE equalizer
can be simplified to a low-complexity zero-forcing equalizer. The
proposed techniques can be applied to any CPM scheme. To
support this theory we present a new polyphase matrix model,
valid for any block-based CPM system. Simulation results in a
60 GHz environment show that our reduced-complexity MMSE
equalizer significantly outperforms the state of the art linear
MMSE receiver for large modulation indices, while it performs
only slightly worse for small ones.

Index Terms—Continuous phase modulation (CPM), fre-
quency domain equalization (FDE), minimum mean square
error (MMSE) equalization, complexity reduction, polyphase
representation

I. INTRODUCTION

WE ARE WITNESSING an explosive growth in the
demand for wireless connectivity. Short range wireless

links will soon be expected to deliver bit rates of over
2 Gbits/s. Worldwide, recent regulation assigned a 3 GHz
or wider frequency band at 60 GHz to this kind of appli-
cations [1]. Continuous phase modulation (CPM) has been
proposed as an attractive modulation technique for 60 GHz
communications in [2], [3] and [4] and in the IEEE 802.15.3c
standardization committee.

Nevertheless, CPM is a nonlinear modulation technique.
Therefore, it is mathematically less tractable. Fortunately,
using the Laurent decomposition [5] and its extensions [6] and
[7], any CPM signal can be decomposed into a sum of linearly
modulated signals. In this decomposition, the data symbols
are first nonlinearly mapped onto a set of pseudocoefficients
(PCs) which then pass through a bank of linear pulse shaping
filters called Laurent pulses (LPs). A maximum likelihood
(ML) CPM receiver in additive white Gaussian noise (AWGN)
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based on the Laurent decomposition contains a Viterbi decoder
which exploits the correlation properties of the LPs and PCs to
perform ML sequence detection (MLSD) of the sent symbols
[8].

Typical 60 GHz channels are severely frequency-selective
for the targeted signal bandwidth. Equalizing such channels
in the frequency domain (FD) rather than in the time domain
(TD) can significantly lower the system complexity [9]. An ex-
cellent framework for frequency domain equalization (FDE) of
CPM signals based on the Laurent decomposition is provided
in [10]. A filter-based joint equalization of the channel and
the LPs is perfomed. However, this is suboptimal. Indeed, the
correlation properties of the LPs can in this case not be used
anymore in the Viterbi decoder following the equalizer. This
decoder only inverts the mapping of the input symbols on the
PCs. A similar approach was presented in [11].

We take a different approach by separating channel equal-
ization on the one hand and demodulation of the equalized
CPM signal on the other. The application of this approach to
the framework of [10] is the first contribution of this paper.
A linear equalizer is first applied to filter out the intersymbol
interference (ISI) introduced by the channel. The output of this
equalizer is then fed to a CPM demodulator, which can still
exploit the correlation properties of the LPs and of the PCs
to perform MLSD. This approach has two main advantages.
First, our MMSE channel equalizer followed by a CPM
demodulator is shown to perform well for any modulation
index, and to outperform the joint channel and LP equalizer
from [10] significantly for large modulation indices. This is
currently of interest for military systems using CPM [12].
Second, separating equalization and demodulation offers an
advantage in terms of flexibility since all CPM demodulators
already known in the literature can be used after the equalizer,
including reduced-complexity ones.

Separating channel equalization and CPM demodulation has
already been proposed in [13] and [14]. However, in these
papers the tilted-phase representation [15] of CPM is used,
whereas we use the Laurent decomposition as in [10]. In this
latter, the nonlinear nature of CPM is completely captured in
the mapping of the input symbols on the PCs. This allows us to
construct a TD polyphase matrix model, valid for any block-
based CPM system. The development of this matrix model
is the second contribution of this paper. The model has two
advantages.

First, it allows us to derive our new equalizers using the
well-known framework for block-based FDE described in [16].
In this framework, a matrix model is first established in the
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TD and then transformed into the FD. The two equivalent TD
and FD models allow us to perform all signal processing tasks
where they can be done most efficiently, either in the TD or in
the FD. This is not the case for the FD model of [10], which
does not have a direct TD counterpart.

Second, the autocorrelation properties of the PCs are well-
known [5]. This enables us to significantly reduce the com-
plexity of our MMSE equalizer, which is the last contribution
of the paper. We show that the elements beyond the main
block diagonal of the CPM autocorrelation matrix can be
neglected. The calculation of the resulting reduced-complexity
MMSE equalizer then only requires the inversion of a block-
diagonal matrix. This lowers the computational requirements
significantly. We show that the approximation does not cause
any noticeable performance loss. Moreover, it can be applied
to any CPM scheme, independently of the modulation index.
Finally, as it is based only on the structure of the CPM
autocorrelation matrix, the conclusions are valid for CPM in
general. The technique can therefore also be used to reduce
the complexity of other known algorithms, such as the ones
presented in [10].

The paper is structured as follows. In Section II, the CPM
polyphase matrix models in both the TD and the FD are
constructed. Section III introduces our new linear MMSE
channel equalization and CPM demodulation approach. These
techniques are compared to the state of the art linear CPM-
FDE algorithm in Section IV. The equalizer complexity re-
duction techniques are introduced in Section V, followed by a
complexity analysis in Section VI. Finally, simulation results
are discussed in Section VII.

We still introduce some notation conventions. Vectors in
the TD are represented by underlined lowercase letters x,
in the FD by uppercase letters X. The nth element of a
vector x is xn. Matrices in the TD are represented by doubly
underlined lowercase letters x, in the FD by uppercase letters
X. We do not use the classical boldface lowercase notation for
vectors and uppercase for matrices as it does not allow us to
distinguish between vectors and matrices both in TD and FD.
The (n,m)th element of a matrix x is

[

x
]

(n,m)
. In a matrix or

vector, [x, y, z] are elements on a row, whereas [x; y; z] form
a column. An identity matrix of size N is denoted by IN , an
N×M matrix containing all zeros by 0N×M , and an N×M

matrix containing all ones by JN×M . The conjugate transpose

of a matrix is denoted by (.)H and (.)∗ denotes the complex
conjugate of a scalar. The Kronecker product is denoted by ⊗
and � denotes the Hadamard matrix product. A convolution
is denoted by ?.

II. POLYPHASE MATRIX MODELS FOR BLOCK-BASED
CPM SYSTEMS

In Section II-A of this section, we briefly review the CPM
waveform and its linear representation. We then construct a
polyphase representation of the received signal in Section II-B.
Next, we introduce the block-based CPM transmitter in Sec-
tion II-C. Following the approach of [16], we subsequently
model the system as a TD matrix model in Section II-D, which
is afterwards converted into the FD in Section II-D.

A. CPM and its Linear Representation

A transmitted CPM signal has the form

s(t, a) =

√

2ES
T

ej ψ(t,a) (1)

where a contains the sequence of M -ary Amplitude Shift
Keyed (ASK) symbols an ∈ {±1,±3, ...,±M − 1} [17]. The
symbol duration is T and ES is the energy per symbol, nor-
malized to ES = 1. The transmitted information is contained
in the phase:

ψ(t, a) = 2πh
∑

n

an · q(t− nT ) (2)

where h is the modulation index and q(t) is the phase re-
sponse, related to the frequency response f(t) by the relation-
ship q(t) =

∫ t

−∞
f(τ) dτ . The pulse f(t) is a smooth pulse

shape over a finite time interval 0 ≤ t ≤ LT where L is an
integer, and zero outside this interval. The function f(t) is
normalized such that

∫

∞

−∞
f(t) dt = 1

2 .
Exploiting the Laurent decomposition [5], we can write (1)

as a sum of P = 2L−1 linearly modulated signals

s(t) =
P−1
∑

p=0

∑

n

bp,n lp(t− nT ) (3)

where the PCs bp,n are given by

bp,n = exp

[

jπh

( n
∑

i=0

ai −

L−1
∑

i=1

an−i βp,i

)

]

(4)

with βp,i the ith bit in the binary representation of p (p =
∑L−1
i=1 2i−1 βp,i). The LPs lp(t), p = 0, ..., P−1 are real func-

tions with nonzero values in the interval LpT, p = 0, ..., P −1
respectively, where Lp ≤ L + 1. Representation (3) is only
valid for binary modulation formats (M = 2) and noninteger
h. Using [6] and [7] though, the Laurent decomposition can
be generalized to any CPM scheme, so that the techniques
presented in this paper can be applied to all CPM schemes.

In this paper, we assume that the frequency components of
the CPM signal above 1/T are negligible. This assumption
allows us to construct a discrete version of (3) as

sn =

P−1
∑

p=0

∑

m

bp,m lp,n−2m (5)

where lp,n , lp(t)|t=nT/2 and sn , s(t)|t=nT/2. If the as-
sumption made above is not satisfied for a particular CPM
scheme, a higher oversampling rate should be chosen. The
model in this paper can easily be adapted accordingly and
thus stays valid.

We will construct our receiver based on the digital repre-
sentation of the sent signal (5). It is shown in the left part of
Fig. 1. In the next section we model the received signal by
introducing the channel impulse response and the noise.
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Fig. 1. Equivalent system model. The analog-to-digital and digital-to-analog
converters are not shown.

B. Received Signal Model

Equivalent to the approach of [16], (5) is digital-to-analog
converted and filtered by the transmitter filter ψtr(t). It is then
sent through a linear multipath channel ψh(t) and through
the receive filter ψrec(t). Let h(t) = ψtr(t) ? ψh(t) ? ψrec(t)
denote the overall impulse response of the cascade transmit
filter, linear channel and receive filter with maximum length
LCT . The received baseband signal can then be written as

r(t) =
∑

n

sn h(t− nT/2) + η̃(t) (6)

where η̃(t) = η(t) ? ψrec(t) with η(t) the Additive White
Gaussian Noise (AWGN). The received signal is sampled at
fs = 2/T and split into two polyphase components i = 0, 1

rin ,r(t)
∣

∣

t=(2n+i)T/2
=
∑

m

s0m h
i
n−m+

∑

m

s1m h
(1−i)
n−m−1+i+η̃

i
n

(7)
where

hin , h(t)
∣

∣

t=(2n+i)T/2
(8)

η̃in , η̃(t)
∣

∣

t=(2n+i)T/2
(9)

sin , s2n+i =

P−1
∑

p=0

∑

m

bp,m l
i
p,n−m (10)

lip,n , lp,2n+i. (11)

We now have a well established polyphase model of the re-
ceived CPM waveform in a multipath environment. As we
want to perform block-based FDE on this signal, we review
in the next section how the blocks should be constructed cor-
rectly.

C. Block-Based CPM and the Need of an Intrafix

The block-based CPM system is now introduced. A cyclic
prefix (CP) is appended to each transmitted block to enable
low-complexity equalization in the FD [9]. However, as a
CPM signal contains memory, an intrafix of K data-dependent
symbols has to be inserted in each block, in addition to the CP.
This was shown in [10] but in this paper we follow a slightly
different procedure, which is described in detail in [18]. As
shown in Fig. 2, the input symbol stream a is first cut in blocks
[

a
(l)
f ; a

(l)
s

]

of length N −K, where the superscript (l) refers

to the lth block. Then, an intrafix a(l)
c of length K is inserted

in each block, yielding blocks
[

a
(l)
f ; a

(l)
c ; a

(l)
s

]

of length N .

Finally, the CP of length NP is inserted so that we obtain
blocks of size NT = N +NP

a(l) =
[

a(l)
p ; a

(l)
f ; a(l)

c ; a(l)
s

]

. (12)

The CP length NP is chosen such that NP > LC to avoid
interblock interference (IBI). In [19], it is explained how pre-
coded CPM can be combined with FDE by introducing a
second intrafix in each block.

The intrafix insertion operation is nonlinear and can thus not
be described in the matrix model below. We therefore assume
that a correct intrafix has been inserted in each block. The CP
insertion operation on the other hand is linear. It will therefore
be incorporated in the matrix model, introduced in the next
section.

D. Time Domain Matrix Model

In this section, we apply the approach of [16] to formulate
the system (7) - (11) in matrix form. We define blocks of PCs

b(l)p ,
[

bp,lN bp,lN+1 ... bp,(l+1)N−1

]T (13)

for p = 0, . . . , P − 1. As stated above, the blocks (13) do not
contain the CP yet, but they do already contain an intrafix.
As described in [16], the CP insertion is written as a matrix
operation. We therefore define

T CP ,

[

0NP ×(N−NP ), INP
; IN

]

(14)

such that the CP insertion can be written as a left multiplication
of the blocks bp with T CP as

ḃ(l)p , T CP b
(l)
p . (15)

We now stack all blocks of PCs into one large vector

b(l) ,

[

b
(l)
0 ; b

(l)
1 ; ...; b

(l)
P−1

]

(16)

so that we can write

ḃ
(l)

,

[

ḃ
(l)
0 ; ḃ

(l)
1 ; ...; ḃ

(l)
P−1

]

=
(

IP ⊗ T CP

)

b(l). (17)

To describe the LPs and the linear channel in matrix form,
we proceed as in [16] and define NT×NT convolution matri-
ces as

[

lip,0
]

(n,m)
, lip,n−m , i = 0, 1 (18)

[

h
i(l)
0

]

(n,m)
, h

i(l)
n−m , i = 0, 1 (19)

[

h
1′(l)
0

]

(n,m)
, h

1(l)
n−m−1 (20)

[

lip,1
]

(n,m)
, lip,NT +n−m , i = 0, 1 (21)

[

h
i(l)
1

]

(n,m)
, h

i(l−1)
NT +n−m , i = 0, 1 (22)

[

h
1′(l)
1

]

(n,m)
, h

1(l−1)
NT +n−m−1. (23)

Here we assumed that the channel impulse response remains
constant during the transmission of block l, and can therefore
be written as h(l)

n . Matrices (21) - (23) with subscript 1 will
describe the IBI. Matrices (20) and (23) will be needed to
represent the second term of (7) for i = 0. The structure
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Cyclic Prefix

a
(l)
p

Data

a
(l)
f

Data

a
(l)
sa

(l)
c

Intrafix

n
0 NP N NTN−K

Previous Block

a
(l−1)
s

Fig. 2. Structure of an overall data block a(l). The index NP refers to the first data symbol, N − K to the first intrafix symbol and N to the first symbol
after the intrafix. The index of the last symbol in the block is NT − 1.

of these matrices is illustrated in Fig. 3 and will be further
clarified below.

Using (18) - (23) and (8) - (11), we can now write the first
polyphase component i = 0 of the received signal (7) in vector
form

ṙ0(l) ,

[

r0lNT
r0lNT +1 ... r0(l+1)NT −1

]T

= h
0(l)
0

(

P−1
∑

p=0

l0p,0 ḃ
(l)
p

)

+ h
1′(l)
0

(

P−1
∑

p=0

l1p,0 ḃ
(l)
p

)

+ h
0(l)
1

(

P−1
∑

p=0

l0p,1 ḃ
(l−1)
p

)

+ h
1′(l)
1

(

P−1
∑

p=0

l1p,1 ḃ
(l−1)
p

)

+ η̃0(l) (24)

whereas the second polyphase component i = 1 can be written
as

ṙ1(l) ,

[

r1lNT
r1lNT +1 ... r1(l+1)NT −1

]T

= h
1(l)
0

(

P−1
∑

p=0

l0p,0 ḃ
(l)
p

)

+ h
0(l)
0

(

P−1
∑

p=0

l1p,0 ḃ
(l)
p

)

+ h
1(l)
1

(

P−1
∑

p=0

l0p,1 ḃ
(l−1)
p

)

+ h
0(l)
1

(

P−1
∑

p=0

l1p,1 ḃ
(l−1)
p

)

+ η̃1(l) (25)

where

η̃i(l) =
[

η̃ilNT
η̃ilNT +1 ... η̃i(l+1)NT −1

]T

, i = 0, 1. (26)

Stacking these components (24) and (25) into one vector, and
writing the sums over p as a matrix multiplication using (17),
we get

ṙ(l) ,

[

ṙ0(l)

ṙ1(l)

]

=





h
0(l)
0 h

1′(l)
0

h
1(l)
0 h

0(l)
0





[

l00,0 l01,0 ... l0P−1,0

l10,0 l11,0 ... l1P−1,0

]

(

IP⊗ T CP

)

b(l)

+





h
0(l)
1 h

1′(l)
1

h
1(l)
1 h

0(l)
1





[

l00,1 l01,1 ... l0P−1,1

l10,1 l11,1 ... l1P−1,1

]

(

IP⊗ T CP

)

b(l−1)

+

[

η̃0(l)

η̃1(l)

]

. (27)

This matrix model is visualised in Fig. 3. The useful infor-
mation is contained in the first term, the IBI in the second
one and the noise in the last one. The first term itself is a

product of four factors: one matrix representing the channel
convolution, a second one representing the LPs convolution,
a third one representing the CP insertion and a final vector
containing the P blocks of PCs.

The first operation in the receiver is the removal of the CP.
This can be done by multiplying both polyphase components
of the received signal (27) with the matrix

R CP ,

[

0N×NP
, IN

]

. (28)

It can be seen that the second term of (27) becomes zero,
which means that the IBI has been eliminated. We can there-
fore drop the block dependence (l) and the subscript 0 of the
remaining term for simplicity:

r ,

[

r0

r1

]

=
(

I2 ⊗R CP

)

ṙ

=

[

R CP h
0 R CP h

1′

R CP h
1 R CP h

0

][

l00 T CP l01 T CP ... l0P−1 T CP

l10 T CP l11 T CP ... l1P−1 T CP

]

b

+

[

η̃0

η̃1

]

. (29)

If we choose NP > LC + L, it can be seen that

R CP h
i ljp T CP = R CP h

i T CP R CP l
j
p T CP (30)

for any i, j ∈ {0, 1}, such that (29) can be written as

r =

[

R CP h
0 T CP R CP h

1′

T CP

R CP h
1 T CP R CP h

0 T CP

]

·

[

R CP l
0
0 T CP R CP l

0
1 T CP ... R CP l

0
P−1 T CP

R CP l
1
0 T CP R CP l

1
1 T CP ... R CP l

1
P−1 T CP

]

b

+

[

η̃0

η̃1

]

. (31)

As explained in [16], left multiplication with R CP and right
multiplication with T CP of an NT×NT convolution matrix x
results in a circulant N×N matrix ẋ

ẋ , R CP xT CP (32)

where the dot denotes the circulant property, such that
[

ẋ
]

(n,m)
=
[

x
]

((n−m+1) modN,1)
. (33)

Therefore, we can write (31) as

r =





ḣ
0

ḣ
1′

ḣ
1

ḣ
0





[

l̇00 l̇01 ... l̇0P−1

l̇10 l̇11 ... l̇1P−1

]

b+

[

η̃0

η̃1

]

(34)

, h l b+ η̃ (35)
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+ . . .
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=
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Fig. 3. Matrix model of the received signal, showing the channel and LP convolution matrices for both polyphase components, the CP insertion operation
and the noise addition. The IBI (second term of the sum) is eliminated when the CP is discarded.

where all N×N submatrices ẋ of l and h appearing in (34)
are circulant.

We now have a well-structured polyphase TD matrix model
which describes the received samples of any block-based cyclic-
prefixed CPM system. In the next section, we will transform
this model into the FD such that all circulant matrices become
diagonalized.

E. Frequency Domain Matrix Model
Any circulant N×N matrix ẋ can be transformed into a

diagonal N×N matrix X as

X = FN ẋ FHN (36)

where FN is an N -size discrete Fourier transform (DFT) ma-
trix. Moreover,

diag(X) = FN x (37)

where x is the first column of ẋ [16]. To diagonalize all
circulant submatrices of h and l, we therefore define the block
diagonal NM×NM matrix FN,M as

FN,M , IM ⊗ FN , (38)

such that the matrices L and H defined as

L , FN,2 l F
H
N,P (39)

H , FN,2 h F
H
N,2 (40)

consist only of diagonal N×N submatrices. One of the prop-
erties of a DFT matrix is F−1

N = FHN such that F−1
N,M =

FHN,M . If we now define

B , FN,P b (41)

R , FN,2 r (42)

N , FN,2 η̃ (43)

and use these definitions together with (39) and (40) in (35),
we finally get the matrix model in the FD

R = H L B +N. (44)

This model describes the received samples of any block-based
cyclic-prefixed CPM system in the FD. Three major differ-
ences exist between (44) and the FD model presented in [10].

First, we separate the channel matrix H from the one rep-
resenting the LPs L. This will allow us to treat the channel
equalization separately from the CPM demodulation, as will
be shown in Section III-A. In [10] on the other hand, the LPs
are linearly equalized together with the channel. Therefore,
their correlation properties cannot be exploited anymore in
the Viterbi detector.

Second, we have used polyphase components to build com-
pletely equivalent matrix models in the TD and in the FD.
This allowed us to apply the well-known framework of [16] to
any block-based cyclic-prefixed CPM system. The FD model
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proposed in [10] on the other hand, does not have a direct
TD counterpart. Therefore, the familiar framework of [16]
cannot be applied. The equivalent TD and FD models will
also enable us to perform all signal processing tasks where
they can be done most efficiently, in the TD or in the FD.
For instance, we will implement the matched filterbank of
our CPM demodulator in the FD, whereas its Viterbi detector
operates in the TD, as explained in Section III-B.

Third, as can be seen from (42), we transform the received
signal into the FD by two N -point DFT’s, whereas in [10]
one single 2N -point DFT is taken. This has a computational
complexity advantage, as will be explained in Section VI.

III. OUR NEW FREQUENCY DOMAIN EQUALIZATION
APPROACH FOR CPM

In this section, we use the FD matrix model (44) we derived
so far to construct our new receiver. In Section III-A we
introduce our new FDE approach, and in Section III-B the
CPM demodulation. A block diagram of the whole system is
provided in Fig. 4.

A. New Frequency Domain Channel Equalizer

As shown in Fig. 4, the first step of our approach is to
equalize the channel H in the FD. Let us define

S , L B (45)

so that (44) can be written as R = H S + N . According
to [20], the MMSE matrix equalizer for this system is given
by

GMMSE = RSS H
H
[

H RSS H
H + σ2

n I2N

]

−1

(46)

where σ2
n is the noise variance and

RSS , E
{

S SH
}

= L E
{

B BH
}

LH , L RBB LH (47)

with E{·} the expectation operator. As shown in [5], RBB can
be calculated and stored once for a given CPM scheme and
block size. We assume that the channel H is always known at
the receiver. Using the matrix inversion lemma, we can rewrite
(46) as

GMMSE =

[

R−1
SS +

1

σ2
n

HH H

]

−1
1

σ2
n

HH . (48)

This equalizer produces an estimate Ŝ of the sent signal in the
FD

Ŝ = GMMSE R. (49)

We emphasize that it only equalizes the channel H but not
the LPs L. The CPM demodulator following the equalizer can
thus still exploit the memory introduced by the LPs, unlike the
receiver proposed in [10]. The demodulator is now described.

B. CPM Demodulator

After (48), the noise is colored and residual ISI is present
but we make the simplifying assumption that both can be
modeled as AWGN. The equalizer can then be followed by
any demodulator for CPM in AWGN available in the literature.

We construct a demodulator very similar to the one pre-
sented in [8]. This latter consists of a filterbank matched to
the LPs and a Viterbi decoder. It operates completely in the
TD. We follow its approach but implement the filter bank in
the FD. Our Viterbi decoder is the same as in [8] and thus
operates in the TD.

The demodulator decides that message S̃ is transmitted if
and only if it maximizes the metric

Λ = S̃
H
Ŝ (50)

and substituting (41) and (45) into (50) yields

Λ = b̃
H
FHN,P L

H Ŝ. (51)

We define

z ,
[

z0; z1; ...; zP−1

]

= FHN,P L
H Ŝ (52)

such that (51) can be written as

Λ = b̃
H
z. (53)

The vector z can be interpreted as the output of a bank of P
filters matched to the LPs. This bank is represented in the FD
by LH and its outputs are converted back to the TD by FHN,P .

As the length of b is NP , the number of possible hypotheses
b̃ grows exponentially with the block size N . To keep the
decoding complexity under control, the search for the maxi-
mum Λ in (53) is therefore implemented in the TD using the
Viterbi algorithm as follows. The memory in a CPM signal
can be represented by a trellis [17]. A combination of P PCs
b̃
i
= [b̃i0, b̃

i
1, ..., b̃

i
P−1] corresponds to every branch i = 1, ..., I

of this trellis [8], where I is the total number of branches of a
trellis section. The metric at time n associated with the branch
i of the trellis is then calculated as

λin = Re

(

P−1
∑

p=0

zp,nb̃
i*
p

)

(54)

for all instants n = 0, ..., N − 1 and for all trellis branches
i = 1, ..., I [8] where Re(·) denotes the real part. The Viterbi
algorithm then finds the ML path through the trellis, i.e. the
path with the highest total metric. The corresponding ã is
chosen as estimate of the sent symbols a in (1).

IV. COMPARISON WITH THE STATE OF THE ART LINEAR
CPM-FDE RECEIVER

In this section, we compare our new approach with the linear
FD MMSE receiver presented in [10]. Below, the latter is
called the state of the art (SoA) receiver. Similar algorithms for
linear equalization of CPM in the FD have also been proposed
in [11]. As mentioned in [10] though, these algorithms offer
the same error performance at comparable complexities as the
ones described in [10]. Therefore, we limit our comparison to
this latter.
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Fig. 4. Block diagram of the total system including transmitter (upper part) and receiver (lower part).

The main conceptual difference of our approach is clearly
the separation of the channel matrix H from the one rep-
resenting the LPs L. As explained in Section II-E, another
difference with [10] is our new matrix model, but to compare
both equalization approaches we do not want to focus on
this distinction. Therefore, we keep our model (44) and apply
the equalization technique of [10] to it in Section IV-A. In
Section IV-B we review the demodulator of [10].

A. Channel and Laurent pulse Equalizer

We first define as in [10]

M = H L (55)

so that we can write (44) as R = M B + N . According to
[20], an MMSE equalizer for this system is given by

GSoA = RBBM
H
[

M RBBM
H + σ2

n I2N

]

−1

. (56)

This is the linear MMSE equalizer proposed in [10], applied
to our new model (44). It produces an estimate B̂ of the PCs
in the FD

B̂ ,
[

B̂0; B̂1; ...; B̂P−1

]

= GSoA R. (57)

We emphasize that equalizer (56) jointly equalizes the chan-
nel H and the LPs L, whereas our new equalizers (46) and
(60) only equalize the channel but not the LPs. The demodu-
lator after equalizer (46) can thus still exploit the correlation
introduced by the LPs L, as it was explained in Section III-B.
Moreover, an MMSE equalizer trades off residual interference
versus noise power. Therefore, equalizer (56) pays a price in
increased noise power by equalizing the LPs in addition to the
channel.

B. CPM Demodulator

For completeness we briefly review the demodulator of [10].
The estimates of the PCs B̂ are transformed back into the TD

b̂p = FHN B̂p (58)

for p = 0, ..., P − 1, and fed to a CPM demodulator. It is as-
sumed that the residual ISI after the equalizer can be modeled
as AWGN. Therefore, the trellis structure used by the Viterbi
decoder is the same as the one described in Section III-B. The
metric at time n associated with the branch i of the trellis on

the other hand, corresponding to the combination of Laurent
coefficients b̃

i
, is now calculated as

λin =

P−1
∑

p=0

ηp

∣

∣

∣
b̂p,n − b̃ip

∣

∣

∣

2

, (59)

where ηp is the energy in the pth LP lp(t) [10]. We can now
see how our receiver exploits the correlation in the LPs by
calculating the weights as in (54), whereas the SoA receiver
cannot exploit it anymore, as shown by (59).

V. EQUALIZATION COMPLEXITY REDUCTION

In Section V-A of this section, we first explore how our
MMSE equalizer (48) can be reduced to a ZF equalizer, and
how this latter can be calculated efficiently. Afterwards, we
study how the computational complexity of the MMSE equal-
izer (48) can be reduced in Section V-B.

A. Zero-Forcing Equalizer
Our MMSE equalizer (48) can easily be simplified to a ZF

equalizer by letting σ2
n → 0

GZF =
[

HH H
]

−1

HH . (60)

In contrast to (48), the calculation of this equalizer does not
depend on the structure of the CPM autocorrelation matrix.
Therefore, we can exploit the knowledge of the structure of
H , which consists of four diagonal submatrices, to calculate
(60) efficiently. For this purpose, we define the 2N×2N per-
mutation matrix

P ,

[

IN ⊗

[

1
0

]

, IN ⊗

[

0
1

]

]

(61)

so that P−1 = PH , which allows us to transform H into a
block diagonal matrix HP as

HP = P H PH . (62)

Using (62) in (60) yields

GZF = PH
[

HH
P HP

]

−1

HH
P P . (63)

Unlike (60), calculating (63) only requires the inversion of a
block diagonal matrix with 2×2 submatrices on its diagonal,
which is a very low-complexity operation. Therefore, this ZF
equalizer is a good alternative for the MMSE equalizer at high
signal-to-noise ratios (SNR) or when the higher complexity of
the MMSE equalizer calculation is not acceptable.
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h=0.1 h=0.25 h=0.5 h=0.75 h=0.9

Fig. 5. Energy distribution of R−1
SS,P for different modulation indices and

block length N = 16. Most energy is concentrated along the main block
diagonal.

B. MMSE Equalizer Complexity Reduction

The primary aim of equalizing in the FD rather than in
the TD is complexity reduction. By transforming the signal
into the FD, we can diagonalize the channel matrix H so that
it can be inverted at very low complexity. However, in the
MMSE equalizer (48) the inverted autocorrelation matrix of
the CPM signal R−1

SS shows up. This matrix is not diagonal as
a CPM signal is highly correlated. In this section, we study
its structure and prove that we can approximate it by a block
diagonal matrix without a noticeable performance loss. This
way we regain the low complexity advantage of FDE. We first
apply permutation P , defined in (61), to R−1

SS to obtain R−1
SS,P

R−1
SS,P = P R−1

SS P
H . (64)

Using (62) and (64) in (48) yields

GMMSE = PH
[

R−1
SS,P +

1

σ2
n

HH
P HP

]

−1
1

σ2
n

HH
P P (65)

and for simplicity we define

D , R−1
SS,P +

1

σ2
n

HH
P HP . (66)

The complexity of the calculation of the MMSE equalizer
will be dominated by the inversion of D. We therefore study
its structure here. As stated above, HP is always block di-
agonal. The second term of D is therefore also always block

diagonal. The energy distribution of the first term R−1
SS,P is

shown for different modulation indices in Fig. 5 for a block
length N = 16. The darker the shade of gray, the more energy
is concentrated in that part of the matrix. The value N = 16
is too small for practical systems, but it is chosen just for
this illustration as it allows us to illustrate that most energy is
concentrated along the main block diagonal.

To formalize this observation mathematically for practical
values of N , we define

C , IN ⊗ J2 (67)

where J2 is a 2×2 unit matrix. Using C, we can calculate

Eε =

∥

∥C �R−1
SS,P

∥

∥

2

F
∥

∥

∥

(

J2N − C
)

�R−1
SS,P

∥

∥

∥

2

F

(68)

where ‖·‖2
F represents the Frobenius norm. In words, Eε is

the ratio of the energy in the block-diagonal elements to the
energy in the remaining elements of R−1

SS,P . Fig. 6 shows Eε

64 128 256 512

16

18

20

22

24

26

28

Block size N

E
ε [d

B
]

 

 
h = 0.9
h = 0.25

Fig. 6. Proportion of energy in the block diagonal elements of R−1
SS,P

compared to the energy in the remaining elements. The major part of the
energy is clearly always in the block diagonal elements (high Eε values).
This proportion grows with the blocksize.

versus block size N ranging from 64 to 512, for h = 0.25 and
h = 0.9. For h = 0.5, R−1

SS,P is purely block diagonal, so that
Eε = ∞. For all cases, high values for Eε are obtained. We
can thus expect that R−1

SS,P can be very well approximated by

C � R−1
SS,P . Moreover, R−1

SS,P is only the first term of D, the
matrix that is actually to be inverted. Therefore, we propose
a low-complexity approximation to D−1 as

D−1 ≈
(

C �D
)

−1

(69)

which means that we neglect the elements outside the main
block diagonal of D, and then invert this matrix.

To assess the performance of the equalizers (63) and (65)
and of the approximation (69), extensive simulations were
performed. In Section VII, we will present the results and see
that the effect of approximation (69) is always negligible. But
first we still present a complexity analysis in the next section.

VI. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, the computational complexity of the CPM-
FDE techniques presented in this paper is compared to the SoA
linear CPM-FDE algorithm, as well as to a system using TD
equalization. We follow the approach of [10] and express the
complexity in floating-point operations (flops) per block. As
this paper focuses on the equalization complexity reduction,
channel coding is not taken into account. We assume a digital
oversampling rate fs = 2/T in the receiver. The results are
presented in Table I and discussed below.

For this complexity analysis, we assume ML CPM demod-
ulation. In other words, all P LPs are used in the receiver and
the Viterbi detector operates over all S states of the chosen
CPM scheme [8]. The Viterbi detector is the same in all re-
ceivers and requires O(SMN) flops. However, as explained
in Section III-B, in our approach this ML demodulator is in-
dependent from the proposed equalization technique so that it
can be replaced by any reduced-complexity CPM demodulator
to further reduce the system complexity.

Calculating an MMSE equalizer operating in the TD re-
quires the inversion of a 2N×2N matrix, which takes ap-
proximately (2N)3 flops. The equalizer is followed by a fil-
terbank with P filters matched to the LPs, an operation taking
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TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON BETWEEN DIFFERENT RECEIVER TYPES. TYPICAL VALUES ARE N ∈ {64, 128, 512}, S ∈ [4, 80],

M ∈ {2, 3, 4} AND P ∈ [1, 16].

Receiver type
Number of flops per block:

FFT Equalizer Equalization Viterbi
and IFFTs calculation and filtering decoding

Linear MMSE-TDE 0 +8N3 +O(PN3) +O(SMN)
SoA linear MMSE-FDE 2N log2(2N) + PN log2(N) +8N3 +O(PN3) +O(SMN)
SoA decision feedback FDE 2N log2(2N) + PN log2(N) +(8 + 12P 2)N3 +O(PN3) +O(SMN)
New linear MMSE-FDE 2N log2(N) + PN log2(N) +8N3 +O(PN3) +O(SMN)
New reduced-complexity linear FDE (MMSE or ZF) 2N log2(N) + PN log2(N) +2N +O(PN) +O(SMN)

O(PN3) flops. To reduce the complexity of these operations,
we will move them to the FD.

However, FDE requires FFT and inverse FFT (IFFT) oper-
ations in the receiver. First we look at the FFT. In the SoA
receiver, the received signal is transformed into the FD by one
size-2N FFT, whereas in this paper the 2 polyphase compo-
nents are transformed into the FD by 2 size-N FFTs. As the
complexity of an FFT is N log2N , this means that we save
in the order of 10% in computational and memory require-
ments imposed on the receiver compared to the SoA receiver
for typical block sizes. As we are aiming at low-complexity
systems, this is a small but non-negligible saving. Concerning
the IFFTs, there is no difference beween the SoA receiver and
our new one as both transform the signal back into the TD
by P size-N IFFTs. However, this number can be reduced by
using reduced-complexity CPM demodulators, as mentioned
above.

As explained in the previous section, the complexity of
calculating both the SoA linear MMSE or decision feedback
FD equalizer and our new MMSE FD equalizer depends on the
structure of R−1

SS,P . General conclusions about the structure of
this matrix cannot be drawn, as it is related to the modulation
index h in a very nontransparant way [5]. Therefore, if we do
not take any information about its structure into account, the
equalizer calculation requires a full 2N×2N matrix inversion.
The complexity of this operation therefore remains (2N)3

flops, the same as in the TD. Clearly we cannot exploit the
complexity-reduction advantage of FDE in this way.

However, as could be seen from Fig. 5, R−1
SS,P is in general

sparse. This inspired us to apply approximation (69). The
matrix to be inverted is then always a 2N×2N block-diagonal
matrix with 2×2 blocks on its diagonal. The equalizer com-
putation complexity is therefore only 2N . Moreover, as we
implement both the equalizer and the matched filterbank in
the FD, the complexity of these operations is only O(PN). We
have thus regained the originally targeted complexity-reduction
advantage of FDE. Moreover, as we will show in the next
section, this approximation does not cause a noticeable per-
formance loss.

VII. SIMULATION RESULTS

For simulations, the binary 3-RC CPM scheme was chosen.
Here, 3-RC refers to the raised cosine pulse shape f(t) =
(1 − cos 2πt

LT )/2LT with L = 3. Results with modulation
index h = 0.25, h = 0.5 and h = 0.9 are presented. A

huge bandwidth is available at 60 GHz. Hence, the bit rate
Rb = 1 Gbit/s is chosen. For this system, the channel is
severely frequency-selective. Therefore, a blocksize N = 256
and CP length NP = 64 are chosen. The receiver lowpass (LP)
filter is modeled as a raised cosine filter with roll-off factor
R = 0.5. The multipath channel h(t) is simulated using the
Saleh-Valenzuela (SV) channel model [21] and the simulated
60 GHz indoor environment is described in [22]. The base
station has an omni-directional antenna with 120◦ beam width
and is located in the center of the room. The terminal has an
omni-directional antenna with 60◦ beam width and is placed
at the edge of the room. The corresponding SV parameters are
1/Λ = 75 ns, Γ = 20 ns, 1/λ = 5 ns and γ = 9 ns.

Fig. 7 shows the bit error rate (BER) of our ZF (63), MMSE
(48) and approximated MMSE (69) equalizers in the 60 GHz
environment. To verify the simulation framework, a reference
curve in AWGN that can be compared to [23] is also provided.
The BER is presented in function of Eb/N0 where Eb is the
energy per bit and N0 is the noise one-sided power spectral
density (PSD). First, we observe that increasing h lowers the
BER. This is because the higher h, the higher the minimum
Euclidean distance of the CPM scheme. Second, the MMSE
equalizer always performs better than the ZF. The gap between
ZF and MMSE performance becomes larger as h grows. This
is because a larger h means that more correlation is introduced
in the CPM signal. This correlation can be better exploited by
the MMSE equalizer since it takes into account R−1

SS,P as it
can be seen from (65). Third, there is no noticeable difference
between the exact MMSE and the approximation: the curves
almost perfectly coincide.

Moreover, we notice two flooring phenomena. First, for
h = 0.25, the curves start to floor at high Eb/N0 due to bad
channels containing spectral zeros in the chosen set. This was
verified by removing the 10% worst channels, which made
the flooring disappear (not shown here). The linear equalizers
presented in this paper cannot mitigate this effect. If it is
important, iterative equalizers such as presented in [13] and
[14] should be considered. Second, the BER curve of the
h = 0.9 MMSE receiver also starts to floor. This is because
part of the PSD of the h = 0.9 CPM scheme falls beyond the
passband of the LP filter. Therefore, part of the information is
lost. To mitigate this problem, a higher sampling rate should
be used in the receiver, as it was explained in Section II-A.

In Fig. 8, we compare the BER performance of our new
MMSE equalizer (48) to the SoA receiver. For h = 0.25, the
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Fig. 7. BER in the 60 GHz multipath environment for our MMSE (solid
lines), approximated MMSE (dotted lines) and ZF (dashed lines) receivers for
h = 0.25, h = 0.5 and h = 0.9. A reference curve in AWGN for h = 0.5
is also provided.

SoA receiver outperforms the MMSE receiver. For h = 0.5,
the MMSE receiver outperforms the SoA receiver for high
Eb/N0 values. For h = 0.9, the SoA receiver cannot re-
cover the information reliably anymore whereas the MMSE
receiver keeps on performing very well. These observations
can be explained by the correlation properties of the PCs.
Studying (4), we note that the larger h, the more correlation
is introduced in the PCs. Comparing (54) and (59), our new
MMSE receiver exploits this correlation in the Viterbi detector
by calculating the weights as in (54), whereas the correlation
is partly lost and can therefore not be used anymore in the
SoA receiver, which calculates the weights as in (59). For
h = 0.25, the correlation is small and therefore so is the
loss. The approximation made in our MMSE receiver that
models the residual ISI and colored noise at the input of
the CPM demodulator as AWGN is then more deteriorating.
Therefore, the SoA receiver outperforms the MMSE receiver.
For h = 0.5, the correlation exploitation starts to pay off, and
the MMSE receiver starts to outperform the SoA receiver. For
h = 0.9, the correlation becomes so important that it cannot be
neglected by the receiver anymore. The SoA receiver therefore
can no longer recover the information properly, whereas our
new MMSE receiver still performs very well.

For h = 0.5 finally, results with channel estimation errors
made in the receiver are also provided. The channel estimate
used by the receiver is ĥ = h + hε. Here, h is the perfect
channel and hε is a white Gaussian error term with zero mean.
Its variance satisfies σ2

h/σ
2
hε

= Eb/N0. Our MMSE receiver
suffers from a constant degradation of about 3 dB. It is more
sensitive to channel estimation errors than the SoA receiver.
For this latter, the gap between the perfect and channel esti-
mate curves becomes smaller when Eb/N0 grows. This can
be explained as follows. In the low Eb/N0 region, the SoA
receiver suffers relatively more from channel estimation errors
than from the lack of correlation exploitation in the Viterbi
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Fig. 8. BER in the 60 GHz multipath environment for our MMSE (white
markers) and the SoA (black markers) receivers for h = 0.25, h = 0.5 and
h = 0.9. For h = 0.5, the BER with channel estimation errors made in the
receiver (dashed lines) is also provided for both receivers.

decoder. However, when the Eb/N0 grows, this correlation
exploitation becomes more important as the performance gets
limited by ISI rather than by noise. The channel estimation
error effect on the other hand, stays constant. Therefore, the
gap narrows. For h = 0.25 and h = 0.9, the same results were
obtained (not shown).

VIII. CONCLUSION

We presented a new high-performance, low-complexity ap-
proach to linear FDE of block-based CPM systems. To support
our theory we first developed a new polyphase matrix model,
valid for any block-based CPM system, according to the famil-
iar framework of [16]. The main difference with respect to the
SoA receiver is that we separated channel equalization on the
one hand and CPM demodulation on the other. This enabled
us to exploit the correlation properties of the CPM signal
in the demodulator, after the channel equalizer. Calculating
the MMSE equalizer required the inversion of a nondiagonal
matrix. This defeats the primary objective of FDE, namely
low-complexity equalization requiring only inversion of diag-
onal matrices in the frequency domain. Therefore, in order to
restore the original advantage of FDE, we have shown that the
CPM autocorrelation matrix can be approximated by a block-
diagonal matrix. Finally, our new MMSE equalizer was also
simplified to a low-complexity zero-forcing equalizer.

As shown by simulations in a 60 GHz environment, sepa-
rating channel equalization and CPM demodulation leads to
significantly better BER performance for modulation indices
h = 0.5 and h = 0.9. Only for h = 0.25, we perform
slightly worse than the state of the art receiver because in this
case the correlation in the CPM signal is small. The gain of
exploiting it is therefore smaller than the deterioration caused
by our assumption that colored noise and residual ISI after
the equalizer can be modeled as AWGN. Finally, simulations
confirmed that our MMSE complexity reduction technique
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can be applied for any modulation index without noticeable
performance loss.
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