Low-Complexity MIMO Detector with 1024-QAM

Authors

Hadi SARIEDDEEN Prof. Mohammad M. MANSOUR Dr. Louay M.A. JALLOUL Prof. Ali CHEHAB

December 15, 2015

Outline:

Introduction

- Motivation
- System Model
- Popular Detectors

Proposed Work

- Low-Complexity LORD
- Optimizing Search Region
- Optimizing LLR Saturation

Results

- Complexity Study
- Simulation Scenario
- Simulation Results

Summary & future work

Motivation

- Quadrature Amplitude Modulation (QAM) is rising
 - 1024QAM and beyond
 - Mainly in microwave backhaul but also in WiFi
- Broadcom announced new 5G WiFi chips
 - NitroQAM[™] (1024-QAM) technology
 - 8x8 MU-MIMO
- Detection with 1024QAM
 - Near-optimal detectors are complex
 - Their low complexity versions degrade performance
- Low complexity LORD detector has limitations
 - Optimize search region
 - Optimize LLR saturation

Introduction Proposed Work Results

System Model

MIMO system combined with OFDM

Received signal at resource element is given by: y = Hx + n

 $\mathbf{H} = N_r \times N_t$ channel matrix

- **x** transmitted QAM symbols
- **n** complex additive white Gaussian noise with zero mean and variance $\sigma^2 = \frac{N_t}{SNR}$

We consider the case $N_r = N_t = 2$

$$\mathbf{y} = \mathbf{h}_1 x_1 + \mathbf{h}_2 x_2 + \mathbf{n}$$

 h_1 : channel coefficients of user of interest h_2 : channel coefficients of interferer

$$\mathsf{E}[x_1. x_1^*] = \mathsf{E}[x_1. x_1^*] = 1$$

 x_1 and x_2 are drawn from a 1024QAM constellation ${\mathcal M}$

Introduction Proposed Work Results

Maximum Likelihood (ML) Detection

A hard-output ML detector solves:

$$\min_{\mathbf{x}\in S} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2$$

where S is the lattice of symbol vectors ($|S| = |\mathcal{M}|^2$)

Let $\mathbf{b}_{\mathbf{x}} = [x_b]_{b=1}^K$ be the bit vector of \mathbf{x} , $x_b \in \{0,1\}$ and $K = \log_2(|S|)$

A soft-output ML detector calculates the log-likelihood ration (LLR) of bit b as:

$$\lambda_b = \min_{\mathbf{x} \in S_{b,1}} \frac{\|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2}{\sigma^2} - \min_{\mathbf{x} \in S_{b,0}} \frac{\|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2}{\sigma^2}$$

 $S_{b,1}$ corresponds to points in S having in the bit position b a value of 1 $S_{b,0}$ corresponds to points in S having in the bit position b a value of 0

Introduction Proposed Work Results

Minimum Mean Square Error (MMSE) Detector

The MMSE detector solves for an equalized output $\hat{\mathbf{y}}$:

```
\hat{\mathbf{y}} = (\mathbf{H}^*\mathbf{H} + (1/SNR)\mathbf{I}_2)^{-1}\mathbf{H}^*\mathbf{y}
```

And the LLRs can be computed as:

$$\lambda_{\hat{b}}^{t} = \min_{\mathbf{x}(t) \in \mathcal{M}_{\hat{b},t,1}} \frac{|\hat{\mathbf{y}}(t) - \mathbf{x}(t)|^{2}}{\sigma_{\text{MMSE}}^{2}} - \min_{\mathbf{x}(t) \in \mathcal{M}_{\hat{b},t,0}} \frac{|\hat{\mathbf{y}}(t) - \mathbf{x}(t)|^{2}}{\sigma_{\text{MMSE}}^{2}}$$

 $t \in \{1,2\}$ is the symbol index $\sigma_{MMSE}^2 = \sigma^2 \mathbf{W}(t,t)$ is a scaled variance, where $\mathbf{W} = (\mathbf{H}^*\mathbf{H} + (1/SNR)\mathbf{I}_2)^{-1}$

 $\mathcal{M}_{\acute{b},t,1}$ corresponds to points in \mathcal{M} having in the bit position \acute{b} of symbol t a 1 $\mathcal{M}_{\acute{b},t,0}$ corresponds to points in \mathcal{M} having in the bit position \acute{b} of symbol t a 0

Introduction Proposed Work Results

Layered Orthogonal Lattice Detector (LORD)

QR decomposition in the preprocessing step:

 $\widetilde{\mathbf{y}} = \mathbf{Q}^* \mathbf{y} = \mathbf{R}\mathbf{x} + \mathbf{Q}^* \mathbf{n} = \mathbf{R}\mathbf{x} + \widetilde{\mathbf{n}}$ $\begin{bmatrix} \widetilde{y}_1 \\ \widetilde{y}_2 \end{bmatrix} = \begin{bmatrix} r_{1,1} & r_{1,2} \\ 0 & r_{2,2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \widetilde{n}_1 \\ \widetilde{n}_2 \end{bmatrix}$

Exhaustively search layer 2, for each possibility \bar{x}_2 , $\bar{x}_1 = slice\left(\left(\tilde{y}_1 - r_{1,2}\bar{x}_2\right)/r_{1,1}\right)$ The searched lattice of vectors $\bar{\mathbf{x}} = [\bar{x}_1, \bar{x}_2]$ is $\hat{S}(|\hat{S}| = |\mathcal{M}|)$

Searching layer 2, LLRs of x_2 can be computed

$$\lambda_{\hat{b}}^{2} = \min_{\mathbf{x} \in \hat{S}_{\hat{b},2,1}} \frac{\|\mathbf{y} - \mathbf{H}\mathbf{x}\|^{2}}{\sigma^{2}} - \min_{\mathbf{x} \in \hat{S}_{\hat{b},2,0}} \frac{\|\mathbf{y} - \mathbf{H}\mathbf{x}\|^{2}}{\sigma^{2}}$$

 $\hat{S}_{\dot{b},2,1}$ corresponds to points in \hat{S} having in the bit position \hat{b} of symbol 2 a value 1 $\hat{S}_{\dot{b},2,0}$ corresponds to points in \hat{S} having in the bit position \hat{b} of symbol 2 a value 0

To compute LLRs of x_1 the layers should be swapped and the same operation is repeated Output identical to ML detector with 2x2 MIMO

> Introduction Proposed Work Results

Turbo LORD (T-LORD)

T-LORD is a generalization of LORD

It builds on the maximum-a-posteriori (MAP) detector instead of the ML detector

Used with iterative detection and decoding (T iterations)

MAP detector accepts a-priori LLRs $\boldsymbol{\xi}$ from the decoder

The modified distance metric is:

$$\varphi(\mathbf{x}) - \frac{\|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2}{\sigma^2} + \sum_{k=1}^{K} \mathbf{b}_{\mathbf{x}}(k)\xi(k)$$

The a-posteriori LLRs can then be calculated as:

$$\lambda_{b}^{t} = \max_{\mathbf{x} \in S_{b,t,1}} \varphi(\mathbf{x}) - \max_{\mathbf{x} \in S_{b,t,0}} \varphi(\mathbf{x})$$

Introduction Proposed Work Results Notivation System Model Popular Detectors

Outline:

Introduction

- Motivation
- System Model
- Popular Detectors

Proposed Work

- Low-Complexity LORD
- Optimizing Search Region
- Optimizing LLR Saturation

Results

- Complexity Study
- Simulation Scenario
- Simulation Results

Summary & future work

Low Complexity LORD (LC-LORD)

Searching $|\mathcal{M}| = 1024$ lattice points is still computationally demanding

LC-LORD only explores a subset of the constellation at the root layer

- A reduced QAM θ
- A square subset centered on equalized output ${ ilde y}_2/r_{2,2}$

LLRs can not be computed when all points in heta have the same bit value at a specific bit

An LLR saturation mechanism is required

Especially for high order bits when Gray mapping is employed

LC-LORD need not be applied on all carriers

- Worst carriers can be isolated an treated with regular LORD
- This depends on the implementation constraints
- Criteria for sorting worst carriers is:

$$\min_{l=1,2} r^l(2,2)$$

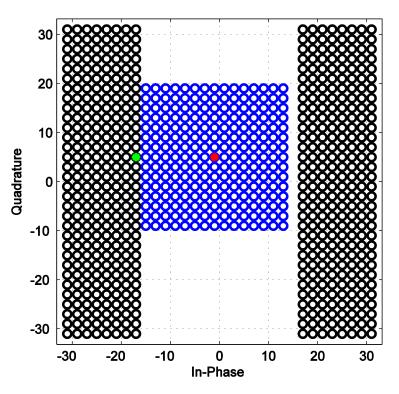
where l denotes the antenna index at the root layer

Introduction Proposed Work Results

Optimizing Search Region Location

LC-LORD fails when the actual transmitted symbol lies outside $\boldsymbol{\theta}$

This is worse with correlated channels


- H ill-conditioned
- $r_{2,2}$ tends to zero

One solution uses the hard-output of MMSE detection as a center of search on both layers

This is called MMSE-LC-LORD

Note that operations on both layers are now dependent

- Can not be fully parallelized

Constellation Schematic - Black Circles Indicate that Third MSB is 1

Introduction Proposed Work Results

Layer-Ordered LC-LORD (LO-LC-LORD)

This proposed solution is based on:

- Layer ordering
- Zero-forcing with decision feedback (ZFDF)

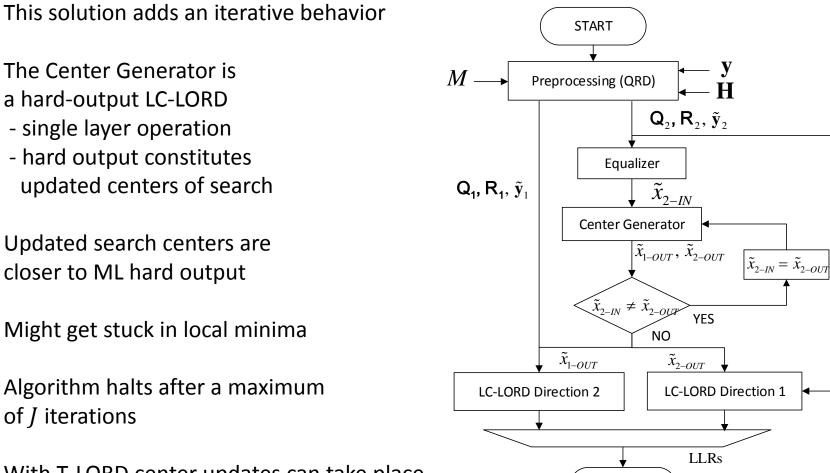
Find equalized output on layer 2

$$\bar{x}_2^1 = slice\left(\tilde{y}_2/r_{2,2}\right)$$

Get its corresponding projection on layer 1

$$\bar{x}_1^1 = slice\left(\left(\tilde{y}_1 - r_{1,2}\bar{x}_2^1\right)/r_{1,1}\right)$$

We obtain $\bar{\mathbf{x}}^1 = [\bar{x}_1^1, \bar{x}_2^1]$


Permute layers and apply same procedure to obtain $\bar{\mathbf{x}}^2 = [\bar{x}_1^2, \bar{x}_2^2]$

The centers of reduced search on both layers are the components of \mathbf{x}_{center}

$$\mathbf{x}_{\text{center}} = \min_{\mathbf{x} \in \{\bar{\mathbf{x}}^1, \bar{\mathbf{x}}^2\}} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2$$

Introduction Proposed Work Results

Iterative LC-LORD (Iter-LC-LORD)

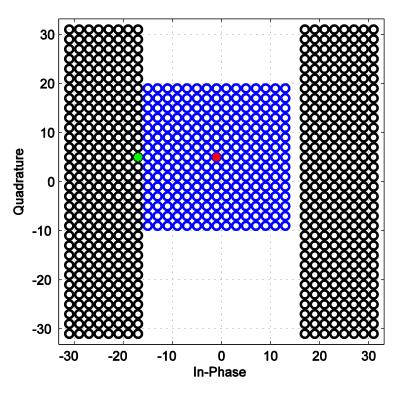
With T-LORD center updates can take place on every detection/decoding iteration

> Introduction Proposed Work Results

Low Complexity LORD **Optimizing Search Region** Optimizing LLR Saturation END

Region-Thresholding LC-LORD (RegTh-LC-LORD)

With LC-LORD one of the two terms below can go missing


$$\lambda_{\acute{b}}^{t} = \max_{\mathbf{x} \in \acute{S}_{\acute{b},t,1}} \varphi(\mathbf{x}) - \max_{\mathbf{x} \in \acute{S}_{\acute{b},t,0}} \varphi(\mathbf{x})$$

LLR saturation in Literature:

- Saturate LLR to a threshold value
- Substitute missing term by maximum Euclidean norm within $\boldsymbol{\theta}$

Proposed approach (RegTh-LC-LORD):

- Locate the closest point to the center of θ having opposite bit value (in green)
- Project on other layer + slice
- Substitute missing term by the distance from resultant vector to received vector

Constellation Schematic - Black Circles Indicate that Third MSB is 1

Introduction Proposed Work Results

Outline:

Introduction

- Motivation
- System Model
- Popular Detectors

Proposed Work

- Low-Complexity LORD
- Optimizing Search Region
- Optimizing LLR Saturation

Results

- Complexity Study
- Simulation Scenario
- Simulation Results

Summary & future work

Complexity Study

Preprocessing complexity

- QR decomposition (can be avoided in 2x2 MIMO)
- Handling search region boundaries

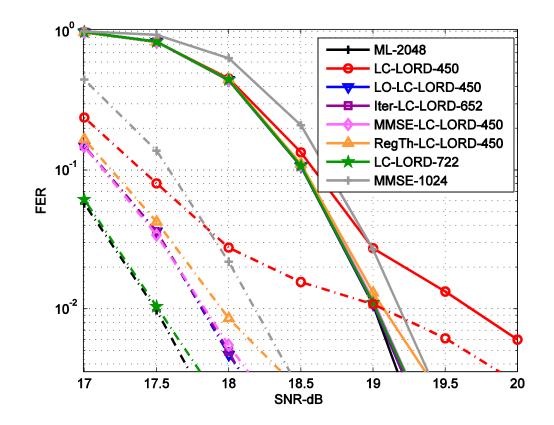
Search routine complexity

- Summarized in table
- In terms of Euclidean distance computations (visited nodes)
- Table shows the worst case
- When search center is close to boundaries of $\mathcal{M}, \, \theta$ gets clipped
- In Iter-LC-LORD θ s of subsequent iterations partially overlap and computations can be saved

Approach	Description	Nodes Visited
ML	Full Complexity LORD	$2 \times \mathcal{M} $
LC-LORD	Low Complexity LORD	$2 \times \theta $
LO-LC- LORD	Layer Ordered LC-LORD + Region Thresholding	$2 \times \theta $
lter-LC- LORD	Iterative LC-LORD + Region Thresholding	$(J+2) \times \theta $
MMSE-LC- LORD	MMSE-based LC-LORD + Region Thresholding	$2 \times \theta $
RegTh-LC- LORD	LC-LORD + Region Thresholding	$2 \times \theta $
MMSE	Soft-output MMSE	$ \mathcal{M} $

Introduction Proposed Work **Results**

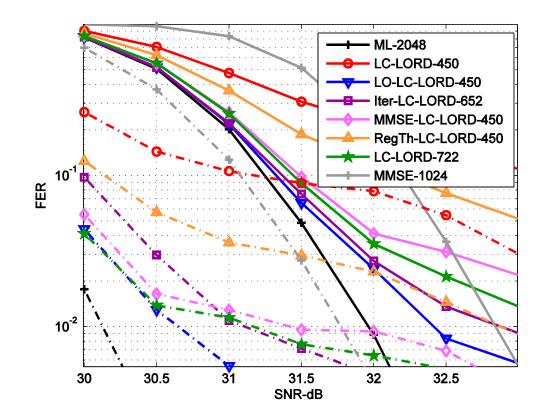
Complexity Study Simulation Scenario


Simulation Scenario

Simulation Scenario

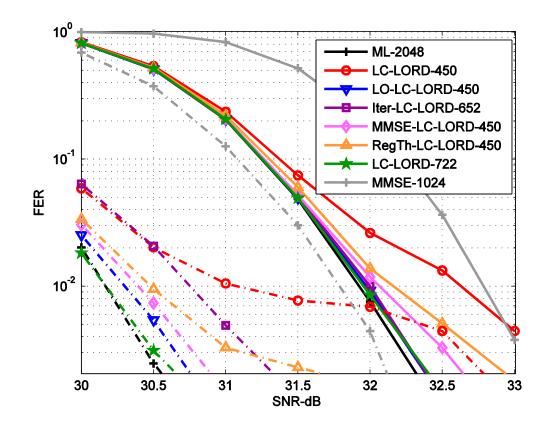
- A 2x2 MIMO simulation chain was implemented
 - System model in introduction
 - All studied detectors were implemented
 - Iterative detection/decoding
- Turbo coding/decoding
 - Code rate 1/2
 - 8 iterations
- Two channel types
 - Uncorrelated (rich scattering)
 - Highly correlated ($\alpha = 0.9$)
- Performance measure
 - Frame Error Rate (FER)

- Parameters
 - $|\theta| = 225$
 - J = 8 (1.8 on average)
 - T = 4


FER – Uncorrelated

Detectors Performance with Uncorrelated Channels and 15% Full Complexity Carriers, for T = 1 (solid) and T = 4 (dotted)

Introduction Proposed Work **Results**


FER – Correlated

Detectors Performance with Correlated Channels and 15% Full Complexity Carriers, for T = 1 (solid) and T = 4 (dotted)

Introduction Proposed Work **Results**

FER – Correlated

Detectors Performance with Correlated Channels and 30% Full Complexity Carriers, for T = 1 (solid) and T = 4 (dotted)

Introduction Proposed Work **Results**

Outline:

Introduction

- Motivation
- System Model
- Popular Detectors

Proposed Work

- Low-Complexity LORD
- Optimizing Search Region
- Optimizing LLR Saturation

Results

- Complexity Study
- Simulation Scenario
- Simulation Results

Summary & future work

- **2×2 MIMO** systems that use **1024-QAM** were studied.
- Building on the **LORD** detector, several algorithms were proposed.
- Optimizing the **location** of a reduced **region of search**.
- Optimizing **LLR saturation**.
- The optimizations resulted in an enhanced performance, at a reduced complexity.
- The proposed approaches are to be studied with higher order MIMO, where LORD loses optimality.

Thanks for listening

Hadi SARIEDDEEN Prof. Mohammad M. MANSOUR Dr. Louay M.A. JALLOUL Prof. Ali CHEHAB

