
LOW-COMPLEXITY MODE SELECTION FOR RATE-DISTORTION
OPTIMAL VIDEO CODING

A Thesis
Presented to

The Academic Faculty

by

Hyungjoon Kim

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
May 2007

LOW-COMPLEXITY MODE SELECTION FOR RATE-DISTORTION
OPTIMAL VIDEO CODING

Approved by:

Professor Russell Mersereau,
Committee Chair
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Allen Tannenbaum
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Yucel Altunbasak, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Xiaoming Huo
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Ghassan Al-Regib
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 28 March 2007

To my loving wife, Sookyung

To my parents, Mom and Dad

iii

ACKNOWLEDGEMENTS

I would like to thank to my advisor Dr. Yucel Altunbasak for the invaluable guidance,

encouragement, and support during my doctoral studies. It has been a great pleasure to have

him as a my advisor. My deepest thanks are also extended to Dr. Russell Mersereau, Dr.

Ghassan Al-Regib, Dr. Allen Tannenbaum, and Dr. Xiaoming Huo for serving as committee

member. I also thank to the members at EG Technology for helping me learning practical

techniques. Special thanks go to Junfeng Bai, Sam John, Santhana Krishnamachari, John

Lan, Joe Monaco, and Ramesh Panchagnula. Especially, I’m grateful to Dr. Kyeong-Ho

Yang for numerous useful comments and suggestions on my research. Finally, I would

like to express the deepest gratitude to my wife and my parents for giving me so much in

everything so that I can concentrate on my research and successfully complete this thesis.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

SUMMARY . xi

I INTRODUCTION . 1

1.1 Objective and Contributions . 1

1.2 Organization . 5

II BACKGROUND . 6

2.1 Motion Estimation . 7

2.2 Coding Mode Selection . 10

2.3 Transform . 13

2.4 Quantization . 14

2.5 Entropy Coding . 16

2.6 Rate Control . 17

III RATE-DISTORTION OPTIMAL MODE SELECTION 19

3.1 Rate-Distortion Model . 19

3.2 Coding Mode Selection in MPEG-2 . 22

3.3 Joint Rate-Distortion Optimal Mode Selection and Motion Estimation . . 26

3.4 Complexity Analysis on Model-Based Mode Selection 28

3.5 Experimental Results . 31

IV REAL-TIME VIDEO ENCODER IMPLEMENTATION ON DIGITAL SIGNAL
PROCESSORS . 43

4.1 Hierarchical Memory Structure . 43

4.1.1 Level-1 Memory . 44

4.1.2 Level-2 Memory . 46

4.1.3 Enhanced DMA . 47

4.2 Encoder Modules . 48

v

4.2.1 Integer-Pixel Accuracy Motion Estimation 49

4.2.2 Macroblock Mode selection . 51

4.2.3 Sub-Pixel Accuracy Motion Estimation 52

4.2.4 Others Modules . 58

4.3 Overall structure . 59

V CONCLUSION AND FUTURE WORK . 65

5.1 Contributions . 65

5.2 Suggestions for Further Research . 65

APPENDIX A INTRINSICS FOR TMS320DM64X/TMS320C64X 68

REFERENCES . 73

vi

LIST OF TABLES

1 Key compression features in the video coding standards. Progr. and Interl.
mean progressive and interlaced, respectively. 3

2 Macroblock modes for P- and B-type pictures in the MPEG-2 standard. MC
and ME mean motion compensation and motion estimation, respectively. . 5

3 The average PSNR values for (i) TM5, (ii) TM5 with ρ-domain rate control,
and (iii) the proposed mode selection and motion estimation algorithm with
ρ-rate control. 32

4 The average PSNR values when the two different γ adaptation method are
used. The encoding parameters are the same as in Table 3. 33

5 The average PSNR values of the proposed algorithm for different number of
λ values. The encoding parameters are the same as in Table 3 except M . . 34

6 Frame size and block size in hierarchical motion estimation for full D1 frame 49

7 Memory requirement for macroblock line based prefetch scheme 50

8 Number of calls for upsampling and cost calculation functions 64

vii

LIST OF FIGURES

1 History of video coding standards . 2

2 Hybrid encoder structure . 6

3 TM5 mode selection for (a) intra-mode vs. inter-mode and (b) Motion Com-
pensated (MC) mode vs. No MC mode . 10

4 Various block shapes in H.264 . 13

5 Frame DCT type (left) and field DCT type (right) for luma component in
the MPEG-2 standard . 14

6 4x4 transform in H.264. E is a multiplication matrix and symbol ⊗ indi-
cates scalar multiplication. In actual process, the scalar multiplication is
incorporated into quantization and only matrix multiplication is performed
in transform. 15

7 8x8 quantization matrix for (a) intra-mode and (b) inter-mode used in TM5
for MPEG-2 . 16

8 Scanning order for 8x8 block (a) zig-zag scan and (b) alternate scan 17

9 Experimental analysis of change of γ with respect to the rate for (a) intra-
coding and for (b) inter-coding. The experimental values are obtained using
a large set of randomly selected macroblocks. 21

10 RD optimal macroblock mode selection procedure. L is total number of
possible macroblock modes. 25

11 RD optimal joint macroblock mode selection and motion estimation proce-
dure. L is total number of possible macroblock modes, M is the number of
λ values used for optimization. 27

12 The PSNR value at each frame for Football for (i) TM5, (ii) TM5 with the
ρ-domain rate control, and (iii) the proposed algorithm with the ρ-domain
rate control. 34

13 The PSNR value at each frame for Flower Garden for (i) TM5, (ii) TM5
with ρ-domain rate control, and (iii) the proposed algorithm with ρ-domain
rate control. 35

14 The PSNR value at each frame for Carousel for (i) TM5, (ii) TM5 with
ρ-domain rate control, and (iii) the proposed algorithm with ρ-domain rate
control. 35

15 The PSNR value at each frame for Susie for (i) TM5, (ii) TM5 with ρ-domain
rate control, and (iii) the proposed algorithm with ρ-domain rate control. . 36

16 The PSNR value at each frame for News for (i) TM5, (ii) TM5 with ρ-
domain rate control, and (iii) the proposed algorithm with ρ-domain rate
control. 36

viii

17 Reconstructed 318th frame of Football when it is coded using (a) TM5,
(b) TM5 with ρ-domain rate control, and (c) the proposed algorithm with
ρ-domain rate control. The frame bit budget is 80112, 76608, and 42315 for
(a), (b) and (c) respectively. The motion vector bits are 69969, 65657, and
13263 for (a), (b) and (c) respectively. The corresponding PSNR values are
31.9, 32.5, and 34.8 dB, respectively. 37

18 Reconstructed 320th frame of Flower Garden when it is coded using (a)
TM5, (b) TM5 with ρ-domain rate control, and (c) the proposed algorithm
with ρ-domain rate control. The frame bit budget is 48203, 52963 and 29204
for (a), (b) and (c) respectively. The motion vector bits are 38696, 37534,
and 9509 for (a), (b) and (c) respectively. The corresponding PSNR values
are 25.8, 27.0, and 29.3 dB, respectively. 38

19 Reconstructed 318th B-type frame of the carousel sequence for (a) TM5, (b)
TM5 with ρ-rate control, and (c) proposed algorithm with ρ-rate control. The
frame bit budget is 68242, 65607, and 43011 for (a), (b) and (c) respectively.
The motion vector bits are 58172, 55554, and 12423 for (a), (b) and (c)
respectively. The corresponding PSNR values are 27.7, 27.3, and 30.2 dB,
respectively. 39

20 Reconstructed 171th frame of Susie when it is coded using (a) TM5, (b) TM5
with ρ-domain rate control, and (c) the proposed algorithm with ρ-domain
rate control. The frame bit budget is 62895, 62511, and 34400 for (a), (b)
and (c) respectively. The motion vector bits are 53100, 52958, and 10725 for
(a), (b) and (c) respectively. The corresponding PSNR values are 34.6, 35.4,
and 39.8 dB, respectively. 40

21 Reconstructed 123th frame of News when it is coded using (a) TM5, (b)
TM5 with ρ-domain rate control, and (c) the proposed algorithm with ρ-
domain rate control. The frame bit budget is 61611, 60601, and 32083 for
(a), (b) and (c) respectively. The motion vector bits are 42988, 43042, and
6562 for (a), (b) and (c) respectively. The corresponding PSNR values are
32.4, 35.1, and 36.3 dB, respectively. 41

22 The motion field of the 303th frame of Flower Garden when it is coded
using (a) TM5 and (b) the proposed method. 42

23 Hierarchical memory structure . 44

24 Sample encoder structure. M is the total number of macroblocks in a frame. 45

25 Hierarchical memory structure in TI’s TMS320DM64x/TMS320C64x 46

26 Cache-SRAM configurations for L2 memory in TMS320DM642 47

27 Sample data transfer scheme . 48

28 Three-step motion search at level-3 . 50

29 Required reference area at each level with macroblock line based prefetch . 51

30 Four cases in loading a reference block . 53

ix

31 Half-pixel accuracy interpolated reference image 54

32 Calculation of by,x . 54

33 Calculation of cy,x . 55

34 Calculation of dy,x . 55

35 Separate interpolated b-, c-, and d-images 56

36 SAD calculation for the b-image . 57

37 MPEG-2 encoder structure . 60

38 Frame and field prediction in the MPEG-2 coding standard 62

39 Calculation of frame SAD and four field SADs 63

40 Estimated rates vs. actual rates . 67

41 subabs4 takes single cycle . 69

42 dotpu4 takes four cycles . 69

43 avgu4 takes two cycles . 69

44 avg2 takes two cycles . 69

45 shrmb takes single cycle . 70

46 shlmb takes single cycle . 70

47 add2 takes single cycle . 70

48 sub2 takes single cycle . 70

49 packl4 takes single cycle . 71

50 packh4 takes single cycle . 71

51 unpklu4 takes single cycle . 71

52 unpkhu4 takes single cycle . 71

53 lo takes single cycle . 72

54 hi takes single cycle . 72

55 mpyu4 takes four cycles . 72

x

SUMMARY

The primary objective of this thesis is to provide a low-complexity rate-distortion

optimal coding mode selection method in digital video encoding. To achieve optimal com-

pression efficiency in the rate-distortion framework with low computational complexity, we

first propose a rate-distortion model and then apply it to the coding mode selection prob-

lem. The computational complexity of the proposed method is very low compared to overall

encoder complexity because the proposed method uses simple image properties such as vari-

ance that can be obtained easily. Also, the proposed method gives significant PSNR gains

over the mode selection scheme used in TM5 for MPEG-2 because the rate-distortion model

considers rate constraints of each mode as well as distortion. We extend the model-based

mode selection approach to motion vector selection for further improvement of the coding

efficiency.

In addition to our theoretical work, we present practical solutions to real-time imple-

mentation of encoder modules including our proposed mode selection method on digital

signal processors. First, we investigate the features provided by most of the recent digital

signal processors, for example, hierarchical memory structure and efficient data transfer

between on-chip and off-chip memory, and then present practical approaches for real-time

implementation of a video encoder system with efficient use of the features.

xi

CHAPTER I

INTRODUCTION

1.1 Objective and Contributions

International video coding standards offer very high compression ratios, allowing the trans-

mission, storage, and manipulation of visual information in various environments [9, 11, 12,

14, 15, 41]. They have a broad range of applications including digital TV, DVD, video con-

ferencing, video phone, video game, education, etc. International standard organizations,

such as International Telecommunication Union - Telecommunication Standardization Sec-

tor (ITU-T) or International Organization for Standardization/International Electrotech-

nical Commission (ISO/IEC), have continuously improved the video coding standards in

the past two decades to achieve better compression efficiency in the various applications.

For example, the ITU-T standards, called recommendations and denoted with H.26x, are

usually optimized for real-time video communication while the ISO/IEC video coding stan-

dards, denoted with MPEG-x, are designed mainly for storage and broadcasting. For the

most part, the two standardization committees have worked independently on the different

standards except H.262/MPEG-2 and H.264/MPEG-4 Part 10 that were developed jointly

by the two committees. Figure 1 shows the evolution of the ITU-T recommendations and

ISO/IEC MPEG standards, and Table 1 summarizes key features of the standards.

H.261 was originally designed for video conferencing over Integrated Service Digital Net-

work (ISDN) channels on which data rates are multiples of 64 kbit/s. The standard was

quite successful and continued to be used in all subsequent video coding standards. In an

attempt to improve on the compression performance of H.261, the ITU-T working group

developed H.263, which was also aimed for a low-bit rate encoding for video conferencing

based on experience from the H.261, MPEG-1, and MPEG-2 standards. It provides signifi-

cantly better compression performance as well as greater flexibility. It was further enhanced

in the projects known as H.263+ and H.263++. H.264, known as Advanced Video Coding

1

ITU-T

Standards

ISO/IEC

Standards

Joint

Standards

1984

1986

1988

1990

1992

1994

1996

1998

2000

2002

2004

2006

H.261

MPEG-1

H.263

H.263+

H.263++

H.262/

MPEG-2

MPEG-4

H.264/

MPEG-4

Part-10

Figure 1: History of video coding standards

(AVC) standard or MPEG-4 part 10, was designed to improve compression efficiency by

around 50% in comparison to any other existing video coding standards. An additional goal

was to provide flexible encoding schemes that allow the standard to be applied to a broader

range of applications. The video coding capabilities of H.264 cover from very low bit rate,

low frame rate, and postage stamp size video for mobile and dial-up services, through to

standard/high definition television services, high definition DVD, and beyond.

MPEG-1 video was originally designed for storage of CIF format (352x288) videos. It

is used in the Video CD (VCD) format and its quality at standard VCD resolution and

bit rate is roughly that of a Video Home System (VHS) tape. One critical disadvantage of

MPEG-1 video is that it supports only progressive pictures. This deficiency helped prompt

development of the more advanced video coding standard, MPEG-2. It is widely used

around the world to specify the format of the digital TV signals that are broadcasted by

terrestrial, cable, and direct broadcast satellite TV systems. It also specifies the format of

2

Table 1: Key compression features in the video coding standards. Progr. and Interl. mean
progressive and interlaced, respectively.

Features H.261 MPEG-1 MPEG-2 H.263 MPEG-4 H.264

Picture
type

I, P I, P, B I, P, B I, P, B I, P, B I, P, B

Entropy
coding

VLC VLC VLC VLC VLC CAVLC/
CABAC

MV reso-
lution

Integer-
pel

half-pel half-pel half-pel quarter-
pel

quarter-pel

Transform 8x8
DCT

8x8
DCT

8x8
DCT

8x8
DCT

8x8
DCT

4x4, 8x8 integer
transform

Block
shapes

16x16 16x16 16x8,
16x16

8x8,
16x16

8x8,
16x16

4x4, 4x8, 8x4,
8x8, 16x8, 8x16,
16x16

Intra pre-
diction

No No No No No Yes

Format Progr. Progr. Progr./
Interl.

Progr. Progr./
Interl.

Progr./ Interl.

Prediction
mode

Frame Frame Field/
Frame

Frame Field/
Frame

Field/ Frame

Deblocking
filter

Yes No No Yes No Yes

movies and other programs that are distributed on DVD and similar disks. The video part

of MPEG-2 is similar to MPEG-1 but also provides support for interlaced video. MPEG-2

video is not optimized for low bit-rates, e.g., less than 1 Mbit/s, but outperforms MPEG-1

at 3 Mbit/s and above. MPEG-4 absorbs many of the features of MPEG-1, MPEG-2, and

other related standards, adding new features such as extended Virtual Reality Modeling

Language (VRML) support for 3D rendering, object-oriented composite files, support for

externally-specified Digital Rights Management (DRM), and various types of interactivity.

MPEG-4 Part-10 was written by the ITU-T together with the ISO/IEC as the product of a

collective partnership effort known as the Joint Video Team (JVT). Thus, the ITU-T H.264

standard and the ISO/IEC MPEG-4 Part 10 are technically identical.

The main purpose of the video coding standards is to provide inter-operability between

encoders and decoders built by different manufacturers. However, the coding standards do

not necessarily represent the best solutions to implementation and compression, but rather

attempt to achieve a compromise between the amount of the implementation flexibility

3

and compression efficiency. Therefore, by specifying only decoder compatible bitstream

syntax, the video coding standards can leave enough room for algorithm optimization and

innovation, and also permit complexity reduction for practical implementation. In this

thesis, we focus on the computational complexity reduction and compression efficiency only

for encoder algorithms.

In general, a video encoder consists of non-normative modules, such as motion com-

pensated prediction, coding mode selection, quantization, and rate control, and normative

modules, such as transform, inverse quantization, run-length coding, and entropy coding.

Among the non-normative modules, coding mode selection is one of the key modules for

achieving high coding efficiency. Typical video sequences contain widely varying contents

and motions that can be more effectively encoded if different strategies are permitted to

encode different regions. Most standards address this problem by utilizing multiple modes

of operation that are selected on a block-by-block basis. For example, although block-based

motion compensation is generally regarded as an efficient means for coding a block, where

there is a significant change between the current frame and the previous frames, it may

be more efficient to encode the block without motion compensation. Table 2 shows the

macroblock modes for P- and B-type pictures in the MPEG-2 standard.

To obtain high compression efficiency, optimal coding mode selection is achieved within

a rate-distortion framework, which minimizes distortion given a rate constraint. In general,

it is required to evaluate a cost function, which requires both actual rate and distortion, for

each candidate mode, and then an optimal mode that produces minimal cost is selected in

the rate-distortion sense. However, a direct calculation of rate and distortion for all coding

modes causes prohibitively high computational complexity. In this thesis, we propose a

rate-distortion model and apply it to the rate-distortion optimal mode selection problem.

The proposed method requires low computational complexity because evaluating our cost

function derived from the model needs only the simple statistics of residual image and

some table lookups. On the other hand, the proposed approach can still provide good

compression efficiency because our model considers rate constraints and has adaptability to

varying video contents. The proposed method also can be easily extended to motion vector

4

Table 2: Macroblock modes for P- and B-type pictures in the MPEG-2 standard. MC and
ME mean motion compensation and motion estimation, respectively.

P-Type B-Type

Intra Intra

Inter, no-MC Inter, MC with frame ME-forward

Inter, MC with frame ME Inter, MC with frame ME-backward

Inter, MC with field ME Inter, MC with frame ME-interpolated

Inter, MC with field ME-forward

Inter, MC with field ME-backward

Inter, MC with frame ME-interpolated

selection when multiple motion vectors are available in a coding mode.

In addition to our theoretical work, we provide practical solutions to real-time im-

plementation of each encoder module as well as the proposed mode selection method on

Digital Signal Processors (DSPs). First, we investigate the features provided by state-of-

the-art DSPs. For instance, most of modern DSPs designed for digital media processing,

e.g., Texas Instruments’ TMS320DM64x or TMS320C64x DSPs, have hierarchical memory

structure to minimize the time to access to external memory that operates usually much

slower than CPUs, and also employ a peripheral that is dedicated to transfer data from one

memory space to another. Then, we present some implementation approaches that make

efficient use of these features for each encoder module and whole structure.

1.2 Organization

The organization of this thesis is as follows. Chapter 2 provides the backgrounds of hybrid

video encoders and the previous researches. We also present the new features of H.264

and differences between H.264 and the old standards. Chapter 3 describes our proposed

rate-distortion model and its application to coding mode selection. We also extend the

method to motion vector selection. At the end of the chapter, a complexity analysis and

experimental results are presented. In addition to the theoretical work, practical solutions

to real-time implementation of an MPEG-2 encoder on DSPs are presented in Chapter 4.

We investigate the features provided by most of modern DSPs, and discuss some practical

issues on the real-time implementation of encoder algorithms with consideration of the

features. In Chapter 5, we provide a conclusion and future work.

5

CHAPTER II

BACKGROUND

Most of video compression standards use the block-based hybrid motion compensated and

transform coding method with scalar quantization. In a hybrid encoder, motion compen-

sated prediction is employed to reduce temporal redundancy and then transform coding is

applied to the corresponding difference image to reduce spatial redundancy. Figure 2 shows

a block diagram of a typical hybrid encoder.

Quant.DCT

Inv. Quant.

Inv. DCT

Entropy

coding

Motion

Compensated

Prediction

Motion

Estimation

+

+

Rate Control

Video In

Bit stream

Motion vector

Ref. imagePred. image

-

+

Mode Selection

Residual image

+

+

Motion vector

Figure 2: Hybrid encoder structure

In this chapter, we provide background information on each encoder module in typical

hybrid encoders and a brief review of related works. In Section 2.1, we discuss general issues

on motion estimation and provide a literature review on fast motion search algorithms.

Section 2.2 presents a description on coding mode selection and a literature review on

related research works. Other modules, transform, quantization, entropy coding, and rate

control, are briefly described in Section 2.3, 2.4, 2.5, and 2.6, respectively. In each section,

we also describe the new features introduced in the H.264 standard.

6

2.1 Motion Estimation

In block-based video coding, motion compensated prediction assumes that a block of pixels

within the current image can be predicted from the previous encoded frames. Thus, most

of motion estimation algorithms use block-matching techniques that obtain motion vectors

by minimizing a cost function measuring the difference between a candidate block in the

previous frames and the current original block. For comparison criteria, the Sum of Squared

Difference (SSD) between the original and the reference block provides a good measure of

the energy remaining in the difference block. However, Sum of Absolute Difference (SAD)

is more commonly used than SSD because SAD can be easily calculated and also provide a

good approximation of the residual energy.

The simplest, but the most computational intensive method, is the full search that

evaluates the cost at every position in a search window. However, in most cases, search

strategies faster than the full search are utilized although they lead to suboptimal solutions.

Some examples of fast search algorithms include the three-step search, logarithmic search,

cross search, nearest neighbors search [25, 26, 32, 38]. These fast search algorithms evalu-

ate the criterion functions only at a predetermined subset of the candidate motion vector

locations. Hierarchical representation of images in the form of a Laplacian pyramid may be

used with the block-matching methods for fast motion estimation [23, 50]. The basic idea

of hierarchical block-matching is to perform motion estimation at each level successively,

starting with the lowest resolution level. The low resolution levels serve to determine a

rough estimate of the displacement. The estimate of the motion vector at a low resolution

is passed onto the next higher level as an initial estimate. The higher level serve to refine

the motion vector estimate. At higher levels, relatively smaller search window can be used

since motion searching starts with a good initial estimate.

A number of fast motion estimation techniques have been proposed to reduce computa-

tional complexity with minimizing degradation of prediction accuracy. The work by Chen

and Willson [18] involves finding the optimal vector that minimizes a cost function that

has both the distortion and the rate terms. They consider the inter-dependency between

the macroblocks and generate a trellis of the candidate motion vectors and use the Viterbi

7

algorithm to find the best motion vectors. The rate and distortion are explicitly computed

for each candidate motion vector. Because of the high complexity of the above algorithm,

they also proposed a faster but sub-optimal approach by choosing a finite depth and reduced

state trellis. The PSNR gains in the range of 0.3-1.5 dB over TMN5 were reported with

H.263 codec on CIF-format sequences at a rate of 10 Kbits/frame. In [19], Chen and Kung

also considered the rate explicitly. Based on their observation that piecewise continuous

motion field reduces the bit rate for differentially encoded motion vectors, a neighborhood

relaxation method was proposed. They reported an average rate reduction of 13.9% when

using a fixed quantization parameter with H.263 codec.

In [21], Chung et al. used parametric functions for the rate and the distortion to

estimate the R-D curve and to solve for Lagrangian minimization problem. The functions

are generated off-line, and as a result, the computational complexity is reduced. They

suggested to estimate the Lagrangian multiplier by preprocessing some parts of the source.

They also proposed a simplified mode decision. PSNR gains of 2.5 dB and 2.0 dB were

reported with H.261 and Telenor H.263 codecs, respectively, for Miss America sequence.

In [56], Subramanian and Chan used the same parametric functions and chose a fixed

value for the Lagrangian multiplier within a frame to solve for R-D optimal motion esti-

mation. The Lagrangian multiplier was predicted from the previous frame. The proposed

motion estimation algorithm was reported to achieve 0.6 dB and 1.1 dB PSNR gains over

TMN5 algorithm of H.263 when fixed quantization parameters of 20 and 12, respectively,

were used to encode Salesman sequence.

Shen and Chan suggested reduction in the number of the candidate motion vectors of the

exhaustive R-D optimal motion search to achieve a faster but suboptimal motion estimation

in [54]. They reported 0.4 - 0.6 dB PSNR gains at the expense of 100 % increase in com-

putational complexity with Car Phone and Foreman sequences, respectively, compared

to TMN5 H.263 encoder.

In [31], Hu et al. achieved 0.4-0.7 dB PSNR gains with their proposed model-based

R-D optimal motion compensation approach on Car Phone and Foreman sequences,

respectively. They used polynomials for rate and distortion as a function of the quantization

8

parameter, and employed motion vector pruning for complexity reduction.

It is self-evident that actual scene motion has arbitrary accuracy and is oblivious to

the pixel grid structure resulting from spatial sampling at the image acquisition stage,

for example, charge-coupled device arrays or other analog to digital post-acquisition op-

erations. A theoretical and experimental analysis has established that sub-pixel accuracy

has a significant impact on motion compensated prediction performance for a wide range

of natural moving scenes [27]. As a consequence, recent standardization efforts in video

compression have embraced the principle of sub-pixel accuracy for motion estimation and

motion compensated prediction. Since searching on a sub-pixel grid obviously requires more

computation than the integer-pixel accuracy motion search, in practice, most block search

algorithms first locate the best matching block with a resolution of one integer pixel, and

then in a separate and subsequent step, calculate the best possible block with a sub-pixel

resolution. Many fast schemes have been proposed to decrease computational complexity

in [20, 24, 33, 34, 42, 52, 53].

To reduce temporal redundancy further, many advanced features for motion estimation

are employed in H.264 [15]. The standard supports the use of multiple reference pictures

from which inter-prediction of macroblocks and blocks can be made. Multiple reference pic-

tures may help prediction of transitionally covered background and periodic non-transitional

motion. For sub-pixel motion estimation, quarter-pixel accuracy motion compensation is

used. Six-tap interpolation filtering for the half-pixel positions is followed by bi-linear in-

terpolation to derive the quarter-pixel positions. By using various block shapes for motion

compensation, H.264 can increase the accuracy of motion estimation significantly. Accord-

ing to the standard, a macroblock can be partitioned horizontally and/or vertically, resulting

in 16x8, 8x16, and 8x8 block shapes, and also each 8x8 block may be divided further into

8x4, 4x8, and 4x4 block shapes. More details on block sizes and various coding modes

associated with the block shapes are discussed in the next section.

9

2.2 Coding Mode Selection

After the motion estimation module in Figure 2 finds the best motion vector(s)1 for each

mode, mode selection/motion compensated prediction module receives motion vector in-

formation from the motion estimation module. After the best mode is determine in the

module, the best prediction image associated with the mode is sent to the next module.

The mode selection method used in the Test Model 5 (TM5) for MPEG-2 [8] uses the

SADs that are associated with the best motion vector(s), and the variances of the residual

images. The mode selection rule is shown in Figure 3. Although this approach is very simple

and gives reasonable performance at high bit-rate, its coding efficiency at low bit-rate is

not acceptable because of a lack of consideration of rate constraints.

Inter
VAR

Inter mode

Intra mode

T1

Intra
VAR

Slope=1

MC
VAR

MC mode

No MC mode

NoMC
VAR

Slope=1.25

T2

(a) (b)

Figure 3: TM5 mode selection for (a) intra-mode vs. inter-mode and (b) Motion Com-
pensated (MC) mode vs. No MC mode

A number of mode selection techniques have been proposed to improve compression

efficiency. Recent developments [40, 45, 47, 48, 55, 57, 60] show that the coding efficiency of

encoders can be improved significantly by applying rate-distortion theories to mode selection

selection problem. In general, encoder performance is measured by its bit rate (R) and

distortion (D) that is introduced by quantization and measured as the SSD between the

original and the coded video frame. In a rate-distortion optimization framework, the goal

is to minimize D subject to a rate constraint. This constrained problem reads as follows:

1The number of motion vectors for a coding mode varies depending on the video coding standards,

coding structure, picture type, etc. For example, for an inter-mode in MPEG-2, there is one motion vector

for progressive prediction and two for interlaced prediction in P-type pictures.

10

min {D(R)} subject to R ≤ R∗, where R∗ is the allowed rate. (1)

In [60], Wiegand et al. provided a solution to Eq. 1 for a given group of blocks,

where the quantization parameter and mode selection are jointly optimized. The search

for the best combination of modes is viewed as an equivalent search for the best path in a

trellis. This work was extended in [45], where a near-optimal M -best-search Viterbi-type

algorithm was proposed to efficiently find a set of rate-distortion optimal modes. In the

proposed algorithm, the rate and distortion are explicitly computed. The PSNR gains in

the range of 0.5-1.0 dB over Test Model Near-term 5, version (TMN5) for H.263 [10] of

H.263 were reported for the encoding rates of 10 to 50 Kbps.

Sun et al. proposed a heuristic approach for the mode selection in [57], wherein a

spatial-masking-activity weighted quantizer scale was used as the distortion measure. The

optimal mode was selected to minimize the overall rate subject to uniform distortion over

the picture, given a set of motion vectors. A near-optimum algorithm was proposed for

obtaining an upper bound to achievable performance, and a suboptimal practical algorithm

was provided for efficient mode selection. PSNR gains in the range of 0.4-1.0 dB over TM5

were reported on Bicycle, Flower Garden, and Football sequences with the proposed

suboptimal algorithm, compared to 0.5-1.2 dB gains with the near-optimum algorithm using

the MPEG-2 encoder at 3 Mbps.

Peel et al. proposed the estimation of the Lagrangian multiplier as a function of the

buffer fullness, and provided a locally optimal joint motion estimation and mode selection in

[47]. PSNR gains up to 3.5 dB were reported at low bit rates for high-motion QCIF-format

sequences.

Lee et al. presented a fast encoding method for MPEG-2 compliant encoding of inter-

laced video in [40]. They substituted SAD for distortion D and used a single adaptive λ

based on the generated number of bits and/or quality constraint to reduce the calculation

for rate-distortion costs. The proposed algorithm outperformed the TM5 coder by 1.5-2.0

dB, and total encoder computation can be reduced up to 10% of the total computation

of TM5 by employing a fast motion estimation algorithm. However, the computational

11

savings come from the fast motion estimation, and the proposed mode selection method

requires higher computational complexity than TM5 because it needs to perform transform

and quantization for entropy coding.

In Test Model Near-term 8 (TMN8) for H.263 [13], SAD and the number of bits only

for motion and header information are used for D and R, respectively. Although this yields

a performance level within an average of 0.5 dB of that of the rate-distortion optimized

mode selection algorithm, it is computationally very efficient. Yang et al. also proposed a

low-complexity mode selection technique using variance-rate and variance-distortion tables

in [62]. With the table-lookup, the computation for obtaining R and D can be reduced dra-

matically. Combined with the trellis-based mode selection approach, the proposed method

provides better PSNR performance by 0.8 dB for 16Kbps, 0.5 dB for 24 Kbps, and 0.3 dB

for 32 Kbps over TMN8 for QCIF videos of 50 frames each.

As mentioned in Section 2.1, various block shapes are supported in H.264. All modes

associated with the block shapes for luma component are illustrated in Figure 4. There

are two intra-prediction modes, which are denoted as Intra 16x16 and Intra 4x4. The

Intra 16x16 does spatial predictions of a 16x16 luma block and the Intra 4x4 consists of

16 4x4 luma blocks that are separately predicted. There are four spatial prediction modes

in the Intra 16x16. In Intra 4x4, there are nine prediction modes for each 4x4 block. For

inter-frame prediction, each macroblock mode corresponds to a specific partition of the

macroblock. Five candidate modes are available including direct mode. For 8x8 inter-

prediction mode, which is denoted as Inter 8x8, each of the four 8x8 blocks is split further

in four ways. Figure 4(b) shows the five candidate modes for an 8x8 block in B-type frames.

In general, selecting a mode with a large partition size means that a small number of

bits for motion information is required. However, motion estimation may not be accurate

resulting in generating a large number of bits for sending transform coefficients. On the

contrary, selecting a mode with a small partition size may require a small number of bits

needed to signal residual information but produce a large number of bits for motion vectors

and side information.

12

Direct mode

Inter_8x8 Intra_16x16

Inter modes

Intra_4x4

Intra modes

Inter_16x16 Inter_16x8 Inter_8x16

(a) Block shapes for 16x16

Direct mode

Inter modes

Inter_8x8 Inter_8x4 Inter_4x8 Inter_4x4

(b) Block shapes for Inter 8x8

Figure 4: Various block shapes in H.264

2.3 Transform

For highly correlated sources such as natural images, the compaction ability of Discrete

Cosine Transform (DCT) is very close to that of the optimal transform, Karhunen-Loeve

Transform (KLT). Moreover, DCT is data independent, unlike KLT that uses a set of data-

dependent basis vectors. For these reasons, DCT is employed in all the current video coding

standards to de-correlate blocks of original pixels or motion compensated difference pixels

and compact their energy into a few coefficients as possible.

Besides its relatively high de-correlation and energy compaction capabilities, DCT is

efficient and amenable to software and hardware implementations. The most common

algorithm for implementing 8x8 DCT is 8-point DCT transformation of the rows followed

by 8-point DCT transformation of the columns. Theoretically, exact reconstruction of

the original data can be obtained through Inverse DCT (IDCT) operation. However, it

is often not possible because of finite-precision arithmetic. Thus, the standards specify a

minimum level of precision that IDCT errors must meet to avoid IDCT mismatch between

the reconstruction frames at the encoder and decoder.

The MPEG-2 standard allows a frame or field DCT option for each macroblock in a

13

frame picture2. Figure 5 shows residual macroblocks for frame and field DCT types. This

allows computing DCT on a field-by-field basis for specific parts of a frame picture. For

example, field DCT type may be chosen for macroblocks containing high motion, whereas

frame DCT type may be appropriate for macroblocks with little or no motion but containing

high spatial activity.

8

8

Figure 5: Frame DCT type (left) and field DCT type (right) for luma component in the
MPEG-2 standard

In the H.264 standard, 8x8 transform is replaced with 4x4 integer transform that com-

pletely eliminates IDCT mismatch problem [43]. The 4x4 integer transform also has lower

complexity because it allows computation of the forward or inverse transform with just ad-

ditions and a minimal number of bit-shifts, but no multiplications. Figure 6 shows forward

and inverse 4x4 transform.

2.4 Quantization

Transform is followed by coefficient quantization, the stage at which loss of video detail

is traded-off against the video compression ratio. Because human eyes are less sensitive

to reconstruction error related to high spatial frequencies than those related to low fre-

quencies, quick high frequency changes can not often be seen and may be discarded while

slow linear changes in intensity or color are important to the eyes. Thus, the basic idea of

2Interlaced video composed of a sequence of even and odd fields separated by a field period. MPEG-2

defines two picture types, frame picture and field picture. Frame pictures are obtained by interleaving lines

of even and odd fields, and field pictures are simply the even and odd fields treated as separate pictures.

14

2 2

2 2

2 2

2 2

1 1 1 1 1 2 1 1 / 2 / 2

2 1 1 2 1 1 1 2 / 2 / 4 / 2 / 4

1 1 1 1 1 1 1 2 / 2 / 2

1 2 2 1 1 2 1 1 / 2 / 4 / 2 / 4

T

f f f

a ab a ab

ab b ab b
Y C XC E X

a ab a ab

ab b ab b

(a) Forward transform, a = 1/2, b = sqrt(2/5)

2 2

2 2

2 2

2 2

1 1 1 1/ 2 1 1 1 1

1 1/ 2 1 1 1 1/ 2 1/ 2 1

1 1/ 2 1 1 1 1 1 1

1 1 1 1/ 2 1/ 2 1 1 1/ 2

T

i i i

a ab a ab

ab b ab b
X C Y E C Y

a ab a ab

ab b ab b

(b) Inverse transform, a = 1/2, b = sqrt(2/5)

Figure 6: 4x4 transform in H.264. E is a multiplication matrix and symbol ⊗ indicates
scalar multiplication. In actual process, the scalar multiplication is incorporated into quan-
tization and only matrix multiplication is performed in transform.

the quantization is to eliminate as many of the nonzero DCT coefficients corresponding to

high frequency component, resulting in a reduced variance of quantized DCT coefficients

as compared to the variance of the original DCT coefficients as well as a reduction of the

number of non-zero coefficients.

For each DCT coefficient matrix, the DCT coefficients are quantized using a quanti-

zation matrix, which contains the quantization step size for each DCT coefficient. The

quantization matrix is obtained by multiplying a base matrix by a quantization parameter

that typically controls the amount of compression and corresponding reduction in quality of

the compressed video. The base matrix has small step sizes for low frequency components

and large step sizes for high frequency components, which increases compression ratios with

minimal visual effects. Each video coding standard specifies a default base matrix or an

encoder can use a custom matrix specified in the sequence header. As an example, the base

matrices for intra- and inter-modes used in TM5 are shown in Figure 7.

In the H.264 standard, quantization is combined with the normalization of the integer

transform coefficients to avoid divisions at the encoder and to ensure 16-bit arithmetic data

processing [43]. With the quantization scheme, a minimal computational complexity with

no penalty in PSNR performance can be achieved.

15

16 19 228 27 29 3426

16 22 2416 29 34 3727

22 26 2719 34 34 3829

22 26 2722 34 37 4029

26 27 2922 35 40 4832

27 29 3226 40 48 5835

27 29 3426 46 56 6938

29 35 3827 56 69 8346

21 22 2320 26 27 2825

22 23 2421 27 28 3026

23 24 2622 28 30 3127

24 25 2723 30 31 3328

17 18 1916 21 22 2320

18 19 2017 22 23 2421

19 20 2118 23 24 2522

20 21 2219 24 26 2723

(a) (b)

Figure 7: 8x8 quantization matrix for (a) intra-mode and (b) inter-mode used in TM5 for
MPEG-2

2.5 Entropy Coding

Entropy coding reduces the number of bits required to represent the compressed video data

through the use of means such as Variable Length Coding (VLC). The variable length codes

are generated with Huffman codes such that shorter codewords are used to represent more

frequently occurring symbols. In a typical hybrid encoder, the data to be coded by entropy

coder falls into 3 categories: transform coefficients, motion vectors, and side information

such as headers and synchronization marker. Usually, motion vectors are predicted by the

already transmitted motion vectors of the neighboring blocks prior to entropy coding, and

then only motion vector differences are encoded. For the quantized DCT coefficients, they

are arranged into a one-dimension array by scanning them in zig-zag or alternate order prior

to encoding. Figure 8 illustrates two scanning orders for an 8x8 quantized coefficient matrix.

This arrangement places the DC coefficients first and the AC coefficients are ordered from

low to high frequency and the array is coded using a three-dimensional run-length table,

representing the triple, RUN, LEVEL, and LAST. The RUN means the distance between

two nonzero coefficients in the array. The LEVEL is the nonzero value immediately following

a sequence of zeros. The LAST is a flag that indicates whether the current code corresponds

to the last coefficient in the array. This coding method increases the likelihood of grouping

all nonzero coefficients together and facilitates run-length coding of the zero coefficients.

16

(a) (b)

Figure 8: Scanning order for 8x8 block (a) zig-zag scan and (b) alternate scan

In the H.264 standard, Context Adaptive Binary Arithmetic Coding (CABAC) is in-

troduced for higher performance [44]. An arithmetic code is more efficient than a variable

length code for symbol probabilities that are much greater than 50% because it permits a

symbol to be represented with less than one bit. Adaptivity also reduces the inefficiency

of non-stationary symbol statistics caused by mismatch between static codeword length

and actual symbol probabilities that change depending on bit-rate, type of motion, and

other factors. The H.264 standard also introduces Context-adaptive Variable-Length Cod-

ing (CAVLC), which is a lower-complexity alternative to CABAC. Although CAVLC has

lower complexity than CABAC, it is more elaborate and more efficient than the methods

typically used in other prior standards.

2.6 Rate Control

In general, video encoders are designed to operate in Constant Bit-Rate (CBR) mode or

Variable Bit-Rate (VBR) mode. A CBR bit stream is created by adapting quantization

parameters to produce a constant bit-rate. On the other hand, in the VBR mode, the

quantization parameters are nearly static to maintain uniform quality producing a variable

bit-rate. In both cases, the goal of rate control module is to keep the output bit stream

within constrained limits3 while achieving maximally uniform video quality with minimal

visual artifacts such as blocking, jitter, and flickering.

3There exists a maximum bandwidth even in the VBR mode.

17

The optimal solution to the rate control problem requires explicit knowledge of the

video source properties. However, since this knowledge is not available before encoding,

many conventional rate control algorithms use rate-distortion models that estimate the rate

and quality of the output of the video coder. In [58], a theoretical rate-distortion function

for a Gaussian random variable with a squared error distortion model is used to derive

a logarithmic rate-quantization model. The proposed algorithm was reported to achieve

0.5 1.2-dB PSNR improvements over the TM5 rate control algorithm. The computational

complexity of the proposed algorithm was reported to be 25% more than TM5.

In [49], a rate model derived from the entropy of a Laplacian distributed random variable

and a distortion model derived from quantization error of a uniform random variable are

used to solve for the optimal set of quantization parameters. This algorithm was reported

to outperform the previous rate-control algorithms for H.263 video.

He et al. presented a rate-distortion model based on the fraction of zeros among the

quantized DCT coefficients and a rate control method based on these models in [28, 29, 30].

The experimental results of the method was reported to perform better than the TMN8

rate control algorithm both in terms of its buffer regulation performance and the resulting

visual quality. An average of 0.3-dB PSNR improvement over TMN8 was reported for

various video sequences.

Kamaci et al. present rate-distortion models based on Cauchy density approximation

to the DCT coefficient distribution in [35]. Using the model, they developed a frame bit

allocation algorithm that is capable of achieving an average of 0.24-dB PSNR gain compared

to JM 8.4 rate control algorithm and an average of 0.33-dB PSNR gain compared to an

improved TM5-based frame bit-allocation algorithm proposed for H.264 video coder.

18

CHAPTER III

RATE-DISTORTION OPTIMAL MODE SELECTION

As mentioned in Section 2.2, the simple variance-based mode selection method used in

TM5 gives very poor performance at low bit rate in the rate-distortion sense because there

is no consideration of rate. On the other hand, the Lagrangian rate-distortion optimization

technique with actual information on rate and distortion can achieve significant PSNR

improvements. However, calculating Lagrangian costs consisting of the rate and distortion

makes the technique inappropriate for power-limited or computation-limited applications

such as cellular phone or hand-handled devices. Therefore, we propose a low-complexity

model-based mode selection technique, which estimates distortion for a given rate and

chooses a mode that produces minimum distortion. The computational complexity of the

proposed technique is very low like the method in TM5 because the technique requires only

variance and some information on rate for coding motion vectors and headers.

We also present joint coding mode and motion vector selection. In general, rate con-

strained motion estimation is necessary for low bit rate encoding. One of the more widely

used methods is Lagrangian minimization, whose cost function consists of SAD and rate

for motion vectors. For a given Lagrangian multiplier and a coding mode, the motion es-

timation module produces a motion vector that minimizes Lagrangian cost. In our work,

multiple Lagrangian multipliers are used and therefore the motion estimation module gen-

erates multiple motion vectors. Then, we select one of the candidate motion vectors in the

process of mode selection.

3.1 Rate-Distortion Model

Wiegand et al. applied the Lagrangian optimization technique to mode selection in [60].

The constrained problem in Eq. 1 can be converted to an unconstrained one by introducing

19

a Lagrangian multiplier λ, as follows:

min {J(D, R)} , where J = D + λR. (2)

The proposed Lagrangian optimization scheme for coding mode selection requires calcu-

lating rate and distortion, which means DCT, quantization, entropy coding, and all re-

construction processes should be performed to determine an optimal mode. This approach

may not be appropriate for power-limited or computation-limited applications because of its

computational complexity. In this thesis, instead of employing the Lagrangian optimization

technique, a model-based mode selection approach is taken. We consider the rate-distortion

functions of the form

D(R) = ησβe−γR, (3)

where σ denotes the standard deviation of the source and η, β, and γ are unknown param-

eters. This form of rate-distortion function is chosen based on two observations:

• ρ-domain analysis: Based on the assumption that the AC coefficients of a natural

image have a distribution that is best approximated by a generalized Gaussian distri-

bution [39, 63], He et al. proposed two models for rate and distortion as a function

of the fraction of the zeros among the DCT coefficients [28, 30]. The proposed rate

model is simple, linear, and yet accurate:

R = θ (1 − ρ) , (4)

where R is a normalized rate for quantized transform coefficients, θ is a model pa-

rameter, and ρ is a normalized number of zero quantized coefficients. Similarly, for

the distortion, an exponential relationship as D (ρ) = σ2e−α(1−ρ) is suggested, where

σ2 is the source variance and α is an unknown constant. It was also reported that α

depends on the picture type and content. Combining both parametric equations, we

reach the following rate-distortion function:

D (R) = σ2e−γR, (5)

where γ = α
θ
. This simple model was proven to be effective for rate control in [30].

20

• Actual encoding statistics: By encoding various video sequences at different rates, we

obtained actual rate-distortion curves. Based on the actual rate-distortion relations,

we conclude that an exponential form of Eq. 3 is valid if model parameters are accu-

rately estimated. Figure 9 shows the variation of γ as a function of the rate for intra-

and inter-coding, respectively, when using the model of Eq. 3 with η = 1 and β = 2.

(a) (b)

Figure 9: Experimental analysis of change of γ with respect to the rate for (a) intra-coding
and for (b) inter-coding. The experimental values are obtained using a large set of randomly
selected macroblocks.

Information-theoretic analysis also suggests further justification for this model. As men-

tioned above, the distribution of the AC coefficients of a natural image is best approximated

by a generalized Gaussian distribution. For a Gaussian source, the rate-distortion function

is given by [22]

R =
1

2
log2

(

σ2

D

)

, (6)

where distortion, D, is a SSD between the original and the reconstructed image. It imme-

diately follows that the distortion resulting from the quantization of the AC coefficients,

DAC , is given in terms of the rate to encode the AC coefficients, RAC , as

DAC = σ2e−2 ln(2)RAC

. (7)

This equation suggests that for a perfect Gaussian source, γ = 2 ln(2). We use γ as a

coding parameter to control accuracy since the actual AC coefficient distribution is not

21

exactly Gaussian. We consider two methods for controlling the model parameter γ:

• Adaptive estimation: We can estimate the actual γ value for a frame by using the

encoding statistics of previous frames of the same picture type. In this case, γ values

for intra- and inter-coding are estimated using previous intra- and inter-coded mac-

roblocks. Let (Dact,intra, Ract,intra, σ2
act,intra) be the actual distortion, rate, and source

variance of the last intra-coded frame, respectively. Similarly, let (Dact,inter, Ract,inter,

σ2
act,inter) be the actual distortion, rate, and source variance of the last inter-coded

frame, respectively. Then, the estimates of γ are

γintra =
1

Ract,intra
ln

(

σ2
act,intra

Dact,intra

)

,

γinter =
1

Ract,inter
ln

(

σ2
act,inter

Dact,inter

)

. (8)

• Rate-dependent lookup table approach: Our experiments have shown that there is a

strong relation between the coding rate and γ. Thus, instead of estimating γ for each

frame adaptively, a simpler way is to use a lookup table to choose γ for a given frame

bit budget. The values of γ in Figure 9 can be used for this approach.

By using the rate-distortion model in Eq. 3, we can obtain a computationally efficient

method for rate-distortion optimized mode selection. We also include rate-distortion opti-

mal motion vector selection in the process of mode selection.

3.2 Coding Mode Selection in MPEG-2

Consider a group of N macroblocks to be encoded in a frame. Let mi be the coding mode of

the ith macroblock, (i = 1, 2, ..., N), and let MN be the set of the modes of all macroblocks.

Then,

MN = {m1,m2, · · · ,mN} (9)

The problem of finding the rate-distortion optimal set of the modes, M∗

N , for the group of

N macroblocks can be formulated as

M∗

N = arg min
MN

D(MN),

22

subject to

R(MN) ≤ Rtotal, (10)

where D(MN) and R(MN) represent the sum of the distortions and the rates of N mac-

roblocks, respectively. Rtotal is the available total bit budget to encode the set of N mac-

roblocks. The bit budget is shared to encode the DCT coefficients, the motion vector,

and the header information. Solving the constrained minimization problem of Eq. 10 using

trellis-type algorithms will yield the set of rate-distortion optimal modes of the N mac-

roblocks. However, the resulting computational complexity will be very high. To avoid

such high computational workload, we assume that current macroblock mode, mi, is inde-

pendent of any of the other macroblocks. Thus, we can modify the constrained minimization

problem of Eq. 10 as

M∗

N = arg min
MN

D(MN) = arg min
MN

N
∑

i=1

Di(mi) =
N

∑

i=1

arg min
mi

Di(mi),

subject to

N
∑

i=1

Ri(mi) =
N

∑

i=1

Rmv
i (mi) +

N
∑

i=1

Rdct
i (mi) +

N
∑

i=1

Rhdr
i (mi) + Rmisc ≤ Rtotal, (11)

where Di(mi) denotes the distortion of the ith macroblock determined by mi. Similarly,

Ri(mi) represents the rate of the macroblock in the mode mi. Rmv
i (mi), Rdct

i (mi) and

Rhdr
i (mi) denote rates for motion information, DCT coefficients, and header information,

respectively, associated with the ith macroblock when it is coded in mode mi. Rmisc repre-

sents the rate for coding other information that is not related to the macroblocks, e.g., the

sequence/picture/slice headers.

Further simplification is possible if we assume that the target total number of bits for

the ith macroblock, Rtotal
i , is known. With this assumption, the rate constraint simplifies

to

Rmv
i (mi) + Rdct

i (mi) + Rhdr
i (mi) ≤ Rtotal

i , ∀i = 1, ..., N. (12)

Thus, the best coding mode, m∗

i , of each macroblock is obtained by solving the following

constrained minimization problem:

m∗

i = arg min
mi

Di(mi),

23

subject to

Rmv
i (mi) + Rdct

i (mi) + Rhdr
i (mi) ≤ Rtotal

i . (13)

The optimal mode for the ith macroblock, m∗

i , can be determined by explicitly computing

the distortion for each mode by encoding the macroblock. However, computing distortion

requires DCT, quantization, inverse quantization, and inverse DCT that are computation-

ally expensive processes. To alleviate the problem of evaluating the distortion for each

mode, we instead use a rate-distortion model. In general, the overall coding distortion of

a macroblock is composed of the distortions because of the quantization of the DC coeffi-

cients and the AC coefficients. The reason for the separate treatment of the DC and AC

coefficients is that encoding the DC coefficients in an intra-type macroblock is different than

the rest of the DCT coefficients. For an intra-type macroblock, the DC coefficients of the

macroblock are quantized with a fixed step size1 and differentially encoded. Thus, we can

write the macroblock distortion as

Di(mi) = DDC
i (mi) + DAC

i (mi), (14)

where DDC
i (mi) and DAC

i (mi) are the distortions of DC components and AC components,

respectively. Note that the actual value of DDC
i (mi) can easily be calculated without going

through the encoding process. For the distortion of the AC components, we use the rate-

distortion relation presented in Section 3.1:

DAC
i (mi) = σ2

i (mi)e
−γ(mi)R

AC
i (mi). (15)

for a given mode mi. In this equation, γ takes different values for intra- and inter-modes,

and σ2
i (mi) is the variance of the AC coefficients, which depends on the mode mi. We

finalize the rate-distortion formulation by substituting Eq. 15 in Eq. 14 to get

Di(mi) = DDC
i (mi) + σ2

i (mi)e
−γ(mi)(R

total
i −Rmv

i (mi)−Rhdr
i (mi)−RDC

i (mi)), (16)

assuming that RAC
i (mi) = Rtotal

i − Rmv
i (mi) − Rhdr

i (mi) − RDC
i (mi).

1Either 1, 2, or 4 can be selected by the user depending on the DC precision

24

Using this model in the optimization problem formulated in Eq. 13, we get

m∗

i = arg min
mi

{

DDC
i (mi) + σ2

i (mi)e
−γ(mi)[Rtotal

i −Rmv
i (mi)−Rhdr

i (mi)−RDC
i (mi)]

}

. (17)

Equation 17 formulates the rule for choosing the best coding mode for the ith macroblock.

The scheme of this rate-distortion optimal mode selection method is shown in Figure 10

when DDC
i (mi) is ignored. To solve Eq. 17, we need the distortion resulting from DC coef-

ficient2 quantization (DDC
i), total macroblock bits (Rtotal

i), variance (σ2
i), of the prediction

residual, and the number of bits for encoding the motion vector(s), header, and the DC

coefficient. We also need to estimate the model parameters γ(mi) for intra- and inter-coded

macroblocks, respectively.

i
2(m1), Ri

mv(m1) i
2(mL), Ri

mv(mL)i
2(m2), Ri

mv(m2)

Ri
AC(mj) = Ri

total Ri
hdr(mj) Ri

mv(mj) Ri
DC(mj)

Di(mj) = i
2(mj) exp(- (mj) Ri

AC(mj))

Choose

minimum cost

Figure 10: RD optimal macroblock mode selection procedure. L is total number of possible
macroblock modes.

At this point, we assume that motion estimation has already taken place before the

mode selection step so that the motion vectors and the residual are determined already.

Using the VLC tables, we can easily determine the number of bits for the motion vector.

Similarly, the number of bits required to encode the header information can be estimated

through lookup tables. Since the DC coefficient quantization does not depend on the choice

of the quantization parameter, we can also determine the DC coefficient rate and distortion

through simple calculations and lookup tables. The estimation of γ was already discussed

2Only intra-mode has DC coefficients.

25

in Section 3.1. Unfortunately, the total bit budget Rtotal
i is not known. One can estimate

Rtotal
i . However, for the sake of simplicity, we assumed that the frame bit budget is equally

distributed among all the macroblocks. Clearly, this is not a correct assumption. However, it

still provides substantial gains within the context of the proposed mode selection algorithm,

as we demonstrate in Section 3.5.

3.3 Joint Rate-Distortion Optimal Mode Selection and Motion Estima-

tion

In Section 3.2, we assumed that the motion vectors are already determined by the motion

estimation module. However, we can further improve the encoding performance by applying

rate-distortion optimization to motion estimation in TM5. Let Ei be the SAD between the

ith original macroblock and the reference macroblocks. Clearly, Ei depends on the selected

motion vector. Also, let Rmv
i be the rate for the selected motion vector. We can state the

rate-distortion optimal motion estimation as estimating the motion vector that minimizes

Ei, subject to a motion vector rate constraint. This constrained problem can be converted to

an unconstrained problem using a Lagrangian multiplier. Thus, the rate-distortion optimal

motion vector for the ith macroblock is selected so as to minimize the Lagrangian cost

function:

Ji = Ei + λRmv
i , (18)

where λ is the unknown Lagrangian multiplier. λ can be viewed as a factor that determines

the relative importance of the rate and the distortion terms. If λ = 0, then the rate

constraint is ignored. Several techniques for Lagrangian rate-distortion optimal motion

estimation and λ estimation were proposed in [21, 40, 56, 59].

The proposed approach is to use a set of λ values, λ1, λ2, ..., λM , and select motion

vectors that minimize the cost Ji. That is, for each λk, k = 1, 2, ...,M , we can find a motion

vector that minimizes the cost function Ji,k = Ei,k + λkR
mv
i,k , where Rmv

i,k is the number

of motion vector bits required to encode the selected motion vector for ith macroblock.

This process will result in a maximum of M candidate motion estimates. The motion

vector estimate for different λk values can be identical. We can combine the mode selection

26

and motion estimation by using all candidate motion vectors determined for each λk and

optimize the macroblock mode and the motion vectors together by evaluating all possible

cases by extending Eq. 17 as

(m∗

i ,MV ∗

i) =

arg min
mi,MVi

{

DDC
i (mi) + σ2

i (mi,MVi)e
−γ(mi)[Rtotal

i −Rmv
i (mi,MVi)−Rhdr

i (mi)−RDC
i (mi)]

}

, (19)

where MVi and MV ∗

i are a candidate motion vector and the best motion vector for ith

macroblock, respectively. Figure 11 shows the overall procedure for the rate-distortion

optimized joint mode and motion vector selection when DDC
i (mi) is ignored. The procedure

is similar to the rate-distortion optimal mode selection case except that the number of

candidates is increased. Producing a set of motion vectors (one for each λ) is not as costly

an operation as it may appear at first. The main computational load in motion estimation

is the calculation of Ei, which is independent of the λ value. This is made possible by the

simplicity of the rate-distortion models that we use.

i,1
2(m1), Ri,1

mv(m1) i,M
2(mL), Ri,M

mv(mL)i,1
2(mL), Ri,1

mv(mL)

Ri,k
AC(mj) = Ri

total Ri,k
hdr(mj) Ri,k

mv(mj) Ri,k
DC(mj)

Di,k(mj) = i,k
2(mj) exp(- (mj) Ri,k

AC(mj))

Choose

minimum cost

i,k
2(mj), Ri,k

mv(mj)

Figure 11: RD optimal joint macroblock mode selection and motion estimation procedure.
L is total number of possible macroblock modes, M is the number of λ values used for
optimization.

When N is the total number of macroblocks in a frame, e.g., N = 1350 for full D1

video resolution, and M is the number of λ values used in motion estimation, and L be

the total number of possible macroblock modes, the optimal coding mode m∗

i and motion

vector MV ∗

i for the ith macroblock, i = 1, 2, ..., N , are computed as follows:

27

1. Set macroblock index i = 1.

2. For each possible macroblock mode mi, mi = 1, 2, ..., L, repeat steps 2(a)-2(e):

(a) If mi is a mode that requires motion compensation, then perform a motion search.

That is, estimate the best motion vector for each value of λk, k = 1, 2, ..., M , by

minimizing Ji,k(mi) = Ei,k + λkR
mv
i,k (mi). Compute the corresponding number

of motion vector bits Rmv
i,k (mi) ∀k, using the lookup tables. Go to step (c).

(b) If mi does not require any motion compensation (e.g., skip or intra-mode), then

set Rmv
i,k (mi) = 0 ∀k.

(c) Compute the residual variances σ2
i,k(mi) for ∀k.

(d) Compute the header bits, Rhdr
i,k (mi), and the DC bits, RDC

i,k (mi), for ∀k, using

the VLC tables.

(e) Compute DDC
i,k (mi) and estimate Rtotal

i , for ∀k, using the frame bit budget. (For

simplicity, one can take DDC
i,k (mi) = 0 unless the bit-rate is very low.)

3. Compute the distortion Di,k(mi) = DDC
i,k (mi) + σ2

i,k(mi)e
−γ(mi)R

AC
i,k

(mi) for each pos-

sible mode and motion vector (only for MC case).

4. Choose the macroblock mode m∗

i and the motion vector MV ∗

i (for MC mode only)

that yield minimum Di,k(mi):

{m∗

i ,MV ∗

i } = arg min
{mi,MVi,k}

[Di,k(mi)]

5. Set i = i + 1. If i ≤ N go to step 2. Else stop.

3.4 Complexity Analysis on Model-Based Mode Selection

The computational complexity of the encoder is as important as its coding performance.

In this section, we discuss the complexity of the proposed algorithm in Section 3.2. The

proposed rate-distortion optimal mode selection and motion estimation algorithm does not

consider a specific motion search method. The search can be full search, N-step search, or

hierarchical search. The proposed algorithm requires additional computations such as com-

putation of source variance and distortion, and determination of the rate terms. Since the

28

exact computational complexity analysis depends on instruction sets of particular processor,

here, we provide a simple theoretical analysis.

• ρ -domain rate control complexity: As discussed by He et al. in [30], the computa-

tional complexity of ρ-domain rate control is low. The distribution of DCT coefficients

in current frame is needed at the beginning of the rate control. After each macroblock

is coded, the distribution is updated using the coded macroblock statistics. The quan-

tization parameter is determined using a simple rate model and a mapping between

ρ and quantization step size. The model parameters are updated using actual coding

bits and actual ρ. All of these operations require few calculations, and the resulting

computational complexity is similar to that of TM5.

• Calculation of number of bits for motion vectors: In the MPEG-2 standard,

motion vectors are coded differentially. So the number of bits can be easily obtained

from a lookup table if the difference of motion vectors is available. Thus, we can

ignore the computational complexity for this calculation.

• Calculation of variances: We need to compute the macroblock variance for each

candidate mode and motion vector pair. For a 8 × 8 block, σ2 is calculated using

σ2 =
63

∑

i=0

x2
i −

63
∑

i=0
xi

8

2

, (20)

where xi is the pixel value or the pixel difference value for intra-mode and inter-

modes, respectively. To perform this computation, we need 66 multiplications and

127 additions per block for the intra-mode. In the case of a inter-mode, we need an

extra 64 additions to compute the pixel differences, therefore, the total number of

operations per block for one candidate mode is 66 multiplications and 191 additions

for the inter-modes. For a 4:2:0-type macroblock, there are six blocks, thus the number

of operations required per macroblock is 396 multiplications and 762 additions for an

29

intra-mode, and 396 multiplications and 1146 additions for an inter-mode. For a P-

type frame, we consider three inter-modes and one intra-mode, so the total number of

operations per macroblock is 396×4 multiplications and 1146×3+762 additions. For

a B-type frame, we consider six inter-modes and one intra-mode, so the total number

of operations per macroblock is 396× 7 multiplications and 1146× 4 + 762 additions.

If we use multiple λ values, then the number of operations per macroblock required to

compute the variances associated with each mode and each motion vector candidate

will be slightly higher. Finally, for P-type frames, if M number of λ values are used,

there will be a total of 396× (3M +1) multiplications and 3M × 1146+762 additions

per macroblock. Similarly, for B-type frames, there will be a total of 396× (6M + 1)

multiplications and 6M × 1146 + 762 additions per macroblock. In most of software

or hardware implementations, all multiplications can be easily replaced with table

lookup or highly optimized assembly functions.

• Calculation of distortions and choosing a mode: To calculate the distortion

of an inter-mode using Eq. 16, we need two multiplications, four additions and one

exponentiation. If there are M values of λ, the number of candidate modes per

macroblock is 2M + 1 and 6M + 1 for P-type frames and B-type frames, respectively.

Thus, we need a total of 7× (2M +1) and 7× (6M +1) operations per macroblock for

P-type frame and B-type frame, respectively. This number is relatively small when

compared to the number of operations required for computing the variance for each

candidate macroblock mode and motion vector pair.

• Estimation of the model parameter γ: In the case where method 1 is used

for rate-distortion relation, the model parameter γ is estimated using Eq. 8 after

encoding a frame. This requires calculation of the frame distortion and frame variance.

Assuming that only the luminance component is used, we need 256 multiplications

and 511 additions per macroblock to calculate the frame distortion. For the frame

variance, we can re-use the variances that are used in the mode decision process. If

we use method 2, these calculations are avoided since γ is determined using a lookup

30

table. All multiplications also can be replaced with table lookup.

We observe that the majority of the overall computational cost comes from the mac-

roblock variance computation for each candidate mode and motion vector pair. A state-of-

the-art hardware or software processor can easily realize this level of computational cost.

3.5 Experimental Results

To verify the effectiveness of the proposed mode selection and motion estimation algorithm,

we incorporated it into the software TM5-based MPEG-2 encoder that was developed at

The University of California, Berkeley [16]. We then compared its performance with that

of TM5 and TM5 with the ρ-domain rate control algorithm proposed in [30]. In particular,

a comparison with the ρ-domain rate control algorithm is included to demonstrate that (i)

the proposed algorithm can work effectively with different rate control mechanisms and (ii)

we can provide significant gains over one of the most-successful rate-control algorithms.

In the test set, we used five sequences with CCIR-601 parameters (720× 480 pixels and

a frame rate of 30 fps): Football, Flower Garden, Carousel, Susie, and News. In

all experiments, the number of encoded frames was 103. We chose a GOP size of 15. We

considered three bit rates of 2, 4, and 6 Mbps. The search range was selected as 63× 63 for

both P- and B-type frames, and the alternate scan option was turned on for all cases.

Table 3 shows the PSNR performance comparison for (i) TM5, (ii) TM5 with ρ-domain

rate control, and (iii) the proposed mode selection and motion estimation with ρ-domain

rate control algorithm. In the ρ-domain rate control method, the bit-budget for each frame

is allocated using TM5, but the allocation of the frame bit budget to macroblocks is achieved

through a simple, but effective process as explained in [30].

In these tests, we used 10 different λ values for motion estimation, i.e., M = 10. The

results indicate that significant PSNR gains can be obtained with the proposed mode se-

lection and motion estimation algorithm. The modified TM5 algorithm with ρ-domain rate

control achieves an average of 1.05 dB PSNR gain over TM5. The proposed algorithm

achieves an additional average of 1.26 dB PSNR gain. Especially at 2 Mbps, the PSNR im-

provement of the proposed algorithm is quite substantial. The proposed algorithm achieves

31

Table 3: The average PSNR values for (i) TM5, (ii) TM5 with ρ-domain rate control, and
(iii) the proposed mode selection and motion estimation algorithm with ρ-rate control.

Sequence Algorithm 2 Mbps 4 Mbps 6 Mbps

TM5 28.35 33.35 35.44
Carousel TM5+ρ 29.35 (+1.00) 34.72 (+1.37) 37.04 (+1.60)

Proposed algorithm 32.10 (+3.75) 35.55 (+2.20) 37.61 (+2.17)

TM5 26.38 30.17 32.15
Flower Garden TM5+ρ 27.13 (+0.75) 31.28 (+1.11) 33.53(+1.38)

Proposed algorithm 28.96 (+2.58) 32.01 (+1.84) 34.08 (+1.93)

TM5 30.13 35.34 37.61
Football TM5+ρ 30.47 (+0.34) 35.90 (+0.56) 38.27 (+0.66)

Proposed algorithm 33.64 (+3.51) 36.90 (+1.56) 38.65 (+1.04)

TM5 37.09 40.41 41.45
Susie TM5+ρ 37.17 (+0.08) 41.20 (+0.79) 42.39(+0.94)

Proposed algorithm 39.64 (+2.55) 41.64 (+1.23) 42.71 (+1.26)

TM5 33.10 35.94 37.27
News TM5+ρ 35.06 (+1.96) 37.62 (+1.68) 38.76 (+1.49)

Proposed algorithm 36.38 (+3.28) 37.99 (+2.05) 39.07 (+1.80)

averages of 3.13 dB and 2.31 dB gains over TM5 and TM5 with ρ-domain rate control at

2 Mbps, respectively. Among the five sequences, the Carousel and Football sequences

are richer in terms of motion and the PSNR gains for these sequences are higher. Overall,

these results justify that the proposed rate-distortion optimization can provide significant

benefits, especially at low rates.

In Table 4, we present the PSNR values when we used two different methods of γ

estimation, as discussed in Section 3.1. In method 1, γ is estimated using the actual

rate and distortion statistics of the previously encoded frame, whereas in method 2, γ is

determined using a fixed lookup table. The results show that the performances of both

methods are similar. Even though method 1 is slightly more complex, it can adapt to the

sequence content. Method 2 does not provide such adaptation.

We also tested the performance of the proposed algorithm for various numbers of λs.

Increasing the number of λs results in better encoding performance in terms of picture

quality but at the cost of increased computational complexity. Table 5 shows the PSNR

results for three cases. The results show an average of 0.13 dB PSNR loss when the number

32

Table 4: The average PSNR values when the two different γ adaptation method are used.
The encoding parameters are the same as in Table 3.

Sequence γ adaptation method 2 Mbps 4 Mbps 6 Mbps

Carousel Method 1 32.10 35.55 37.61
Method 2 32.26 35.64 37.66

Flower Garden Method 1 28.96 32.01 34.08
Method 2 29.00 32.00 34.07

Football Method 1 33.54 36.90 38.65
Method 2 33.48 36.97 38.69

of λs is decreased from 10 to 2, and another 0.11 dB loss when the number of λ values is

decreased from 2 to 1.

Figures 12, 13, 14, 15, and 16 illustrate the PSNR values at each frame for the Foot-

ball, FlowerGarden, Carousel, Susie, and News, respectively, where the bit rate is

2 Mbps, the GOP size is 15, the search range is 63× 63 for both P- and B-type frames, and

M = 10. In Figures 17, 18, 19, 20 and 21, one of the the reconstructed frames from Foot-

ball, FlowerGarden, Carousel, Susie and News sequences are shown, respectively,

for visual inspection. The proposed algorithm achieves remarkable visual quality improve-

ment. Especially for the Football sequence, the difference in the perceptual quality is

significant. With the proposed algorithm, the motion vector bits are reduced by 50%- 85%.

Finally, Figure 22 shows the resulting motion fields obtained by TM5 and the proposed

algorithm for a frame of Flower Garden. As expected, the proposed algorithm produces

smoother motion field.

33

Table 5: The average PSNR values of the proposed algorithm for different number of λ
values. The encoding parameters are the same as in Table 3 except M

Sequence 2 Mbps 4 Mbps 6 Mbps

M=1 31.42 35.27 37.41
Carousel M=2 31.97 35.45 37.52

M=10 32.10 35.55 37.61

M=1 28.19 31.68 33.83
Flower Garden M=2 28.76 31.85 33.94

M=10 28.96 32.01 34.08

M=1 33.48 36.97 38.69
Football M=2 33.00 36.71 38.52

M=10 33.64 36.90 38.65

M=1 39.28 41.47 42.60
Susie M=2 39.58 41.59 42.67

M=10 39.64 41.64 42.71

M=1 36.12 37.87 38.97
News M=2 36.35 37.96 39.05

M=10 36.38 37.99 39.07

0 10 20 30 40 50 60 70 80 90 100
26

28

30

32

34

36

38

40
PSNR comparison for Football sequence

frame index

P
S

N
R

 (
d
B

)

TM5

TM5+Rho

Proposed

Figure 12: The PSNR value at each frame for Football for (i) TM5, (ii) TM5 with the
ρ-domain rate control, and (iii) the proposed algorithm with the ρ-domain rate control.

34

0 10 20 30 40 50 60 70 80 90 100
24

25

26

27

28

29

30

31
PSNR comparison for Flower sequence

frame index

P
S

N
R

 (
d
B

)

TM5

TM5+Rho

Proposed

Figure 13: The PSNR value at each frame for Flower Garden for (i) TM5, (ii) TM5
with ρ-domain rate control, and (iii) the proposed algorithm with ρ-domain rate control.

0 10 20 30 40 50 60 70 80 90 100
25

26

27

28

29

30

31

32

33

34

35

36
PSNR comparison for Carousel sequence

frame index

P
S

N
R

 (
d
B

)

TM5

TM5+Rho

Proposed

Figure 14: The PSNR value at each frame for Carousel for (i) TM5, (ii) TM5 with
ρ-domain rate control, and (iii) the proposed algorithm with ρ-domain rate control.

35

0 10 20 30 40 50 60 70 80 90 100
32

33

34

35

36

37

38

39

40

41

42

43
PSNR comparison for Susie sequence

frame index

P
S

N
R

 (
d
B

)

TM5

TM5+Rho

Proposed

Figure 15: The PSNR value at each frame for Susie for (i) TM5, (ii) TM5 with ρ-domain
rate control, and (iii) the proposed algorithm with ρ-domain rate control.

0 10 20 30 40 50 60 70 80 90 100
30

31

32

33

34

35

36

37

38

39
PSNR comparison for News sequence

frame index

P
S

N
R

 (
d
B

)

TM5

TM5+Rho

Proposed

Figure 16: The PSNR value at each frame for News for (i) TM5, (ii) TM5 with ρ-domain
rate control, and (iii) the proposed algorithm with ρ-domain rate control.

36

(a)

(b)

(c)

Figure 17: Reconstructed 318th frame of Football when it is coded using (a) TM5,
(b) TM5 with ρ-domain rate control, and (c) the proposed algorithm with ρ-domain rate
control. The frame bit budget is 80112, 76608, and 42315 for (a), (b) and (c) respectively.
The motion vector bits are 69969, 65657, and 13263 for (a), (b) and (c) respectively. The
corresponding PSNR values are 31.9, 32.5, and 34.8 dB, respectively.

37

(a)

(b)

(c)

Figure 18: Reconstructed 320th frame of Flower Garden when it is coded using (a)
TM5, (b) TM5 with ρ-domain rate control, and (c) the proposed algorithm with ρ-domain
rate control. The frame bit budget is 48203, 52963 and 29204 for (a), (b) and (c) respectively.
The motion vector bits are 38696, 37534, and 9509 for (a), (b) and (c) respectively. The
corresponding PSNR values are 25.8, 27.0, and 29.3 dB, respectively.

38

(a)

(b)

(c)

Figure 19: Reconstructed 318th B-type frame of the carousel sequence for (a) TM5, (b)
TM5 with ρ-rate control, and (c) proposed algorithm with ρ-rate control. The frame bit
budget is 68242, 65607, and 43011 for (a), (b) and (c) respectively. The motion vector bits
are 58172, 55554, and 12423 for (a), (b) and (c) respectively. The corresponding PSNR
values are 27.7, 27.3, and 30.2 dB, respectively.

39

(a)

(b)

(c)

Figure 20: Reconstructed 171th frame of Susie when it is coded using (a) TM5, (b) TM5
with ρ-domain rate control, and (c) the proposed algorithm with ρ-domain rate control. The
frame bit budget is 62895, 62511, and 34400 for (a), (b) and (c) respectively. The motion
vector bits are 53100, 52958, and 10725 for (a), (b) and (c) respectively. The corresponding
PSNR values are 34.6, 35.4, and 39.8 dB, respectively.

40

(a)

(b)

(c)

Figure 21: Reconstructed 123th frame of News when it is coded using (a) TM5, (b) TM5
with ρ-domain rate control, and (c) the proposed algorithm with ρ-domain rate control. The
frame bit budget is 61611, 60601, and 32083 for (a), (b) and (c) respectively. The motion
vector bits are 42988, 43042, and 6562 for (a), (b) and (c) respectively. The corresponding
PSNR values are 32.4, 35.1, and 36.3 dB, respectively.

41

(a)

(b)

Figure 22: The motion field of the 303th frame of Flower Garden when it is coded
using (a) TM5 and (b) the proposed method.

42

CHAPTER IV

REAL-TIME VIDEO ENCODER IMPLEMENTATION ON DIGITAL

SIGNAL PROCESSORS

Digital signal processors (DSPs) are widely used for digital audio, image, and video signal

processing such as noise filtering, enhancement, compression/decompression, etc. because

of their flexibility and re-configurability that are necessary for implementing complicated

algorithms. As we discussed in Chapter 2, a digital video encoder consists of various algo-

rithm modules, e.g., motion estimation, coding mode selection, DCT, quantization, entropy

coding, etc. Therefore, a DSP platform can be one of the best solutions for real-time im-

plementation of digital video encoders. However, to make maximum use of the advantages

of DSPs, we need to understand the key features of the processors because the features

essentially determine the architecture of a digital video encoder and the performance of

the encoder. For example, it is almost impossible to implement a real-time video encoder

on a DSP system without understanding special instructions for multiple data operations,

hierarchical memory structure, or Direct Memory Access (DMA) devices provided by most

of state-of-the-art DSPs.

The rest of this chapter is organized as follows. In the Section 4.1, we describe hierarchi-

cal memory structure that is one of the most important concepts in implementing real-time

video encoders on DSP systems. Practical approaches for designing video encoder modules

for MPEG-2 are provided in Section 4.2. Finally, Section 4.3 presents an overall structure

for a real-time MPEG-2 video encoder on a DSP system.

4.1 Hierarchical Memory Structure

Most of state-of-the-art DSPs have a hierarchical memory structure, e.g., two-level internal

cache based memory and external memory shown in Figure 23. Level-1 (L1) memory that

is small but very fast is placed close to the CPU and can be accessed without CPU stalls.

The next lower level memory, Level-2 (L2) memory, is much larger but slightly slower.

43

External memory that is located outside of the CPU is huge but very slow so that access

to this memory causes CPU stalls. Through this type of architecture, the average memory

access time can be closer to the access time of the fastest memory rather than the the

access time of the slowest memory. In this section, we present some important features of

memory structure in TI’s TMS320DM64x/TMS320C64x device and how the features affect

implementation of video encoders on the DSP systems [1, 2, 3].

CPU

600 Mhz

L1 Cache

600 Mhz

L2 Cache

300 Mhz

External memory

~100 Mhz

memory sizespeed, cost

Figure 23: Hierarchical memory structure

4.1.1 Level-1 Memory

L1 memory is divided into program cache (L1P) and data cache (L1D). L1P that is a direct-

mapped cache1 services program fetches from the CPU. To minimize L1P cache miss, it is

important that all the critical kernels including main control code can fit into the cache.

Conventional implementation of a video encoder is based on macroblock-level processing,

where the video encoder can process the next macroblock only after the current macroblock

goes through all the processing modules shown in Figure 2. In this approach, because

the overall program size, i.e. code size, is usually larger than the size of L1P, the code

needs to swap between L1P and L2 cache every macroblock fetching period. This causes

significant L1P cache miss penalty. To avoid the huge cache miss penalty, the encoder

1In a direct-mapped cache, each address in the lower-level memory is mapped to a single location in the

cache. Multiple locations may map to the same location in the cache.

44

system needs to be split into several groups so that each of them can fit into L1P, and

process N macroblocks at a time in each group instead of a single macroblock. Figure 24

illustrates an example encoder structure. In this structure, the encoder is divided into four

loops, first loop is integer-pixel accuracy motion estimation, second loop includes sub-pixel

accuracy motion estimation and mode selection, third loop includes transform, quantization

and reconstruction, and fourth loop has entropy coding and rate control.

Integer pixel accuracy

motion estimation

Sub-pixel accuracy

motion estimation and

Mode selection

Transform, Quantization

and Reconstuction

Entropy coding and

Rate control

N macroblocks

N macroblocks

N macroblocks

N macroblocks

M÷N

macroblock

groups

Figure 24: Sample encoder structure. M is the total number of macroblocks in a frame.

L1D that is a two-way set associative cache2 services data access from the CPU. The size

of a group of macroblocks, i.e., N , is determined by the available size of L1D in Figure 24.

To minimize L1D cache miss, all data for N macroblocks should not be flushed out of L1D

until a loop is finished. For example, in the third loop that includes transform, quantization,

and reconstruction kernels, all required data for N macroblocks such as original image and

prediction image is kept in L1D until the current loop is over. To determine N , it is

necessary to know what kind of data is required and available L1D size for each loop. Using

the larger N will reduce L1D cache miss and also increase the data transfer performance.

2In contrast to a direct-mapped cache, a multi-way set-associative cache selects a place for the data from

a set of locations in the cache. A direct-mapped cache can be considered a single-way set-associative cache.

45

4.1.2 Level-2 Memory

When there is a large difference in memory size and access time between L1 cache and ex-

ternal memory, L2 memory is typically introduced to further reduce the number of accesses

to the external memory. Figure 25 illustrates the hierarchical memory architecture in TI’s

TMS320DM64x/TMS320C64x.

L2 memory

C64x CPU

L2 SRAM

External memory

L2 Cache

L1 Cache

Write

Buffer
L1P L1D

Figure 25: Hierarchical memory structure in TI’s TMS320DM64x/TMS320C64x

In these DSP systems, L2 memory operates basically in the same manner for L1 cache

but it has several different properties:

• It usually has larger capacity and slower. For example, TMS320DM642 has 16 Kbytes

L1P, 16 Kbytes L1D, and 256 Kbytes L2 memory.

• L2 memory space can be split into an addressable internal memory (L2 SRAM) and

cache portion (L2 cache). Five possible cache-SRAM configurations of TMS320DM642

are shown in Figure 26. The L2 cache-SRAM configuration is determined by the

structure of an encoder, i.e. the size of data and code used in the encoder system.

• L2 cache is used to cache external memory addresses only while L1P and L1D can

cache both L2 SRAM and external memory addresses.

One of the most important properties is the configurability of the L2 memory as SRAM

46

64 Kbytes

cache

256 Kbytes

mapped

memory

256 Kbytes

cache

224 Kbytes

mapped

memory

128 Kbytes

mapped

memory

128 Kbytes

cache

224 Kbytes

mapped

memory

32 Kbytes

cache

Figure 26: Cache-SRAM configurations for L2 memory in TMS320DM642

or cache, which allows designers to maximize the efficiency of their systems. For example,

when we know exactly which data is required for the next process, the data can be copied

from external memory to L2 SRAM in parallel to performing the current process by an

enhanced DMA controller that operates independently without imposing extra burden on

the CPU. Thus, after the current process is completed, the next process can be started

without waiting for loading the data from external to L2 memory. Another example is that

when a system needs data from a peripheral, if there is no L2 SRAM, this data has to be

written into external memory. Then, when the CPU access the data, it will be brought into

L2 cache. This setup is very inefficient. However, if part of the L2 memory can be used as

memory-mapped RAM, we can store incoming data directly into L2 SRAM and process the

data, rather than having to move it to external memory, cache it into L2, and then move it

back external memory to send it out to the peripheral.

4.1.3 Enhanced DMA

An Enhanced Direct Memory Access (EDMA) controller is a peripheral that can be setup

to transfer data or program from one place to another without the CPU’s intervention. In

EDMA communication, each data transfer is initiated by a transfer request that contains all

the information required to perform the transfer, e.g., source address, destination address,

transfer priority, element count, etc. Each submitted transfer request is serviced based on

priority. EDMA ensures minimal CPU stalling cycles because the transfers are overlapping

with processing. Figure 27 shows an example for a data transfer scheme between L2 SRAM

and external memory. For the nth macroblck, the first data, DataA(n), is required first to

47

n = 0 M

Load DataA(0)

Load DataB(0)

Load DataA(1)

Load DataB(n+1)

Load DataA(n+2)

Process(n)

Store DataC(n)

Figure 27: Sample data transfer scheme

determine the starting address of the second data, DataB(n). DataB(n), which is required

to process the macroblck, is loaded from the external memory. The third data, DataC(n), is

stored to the external memory while the next macroblock is processed. Usually, ping-pong

memory buffer structure is used in this kind of scheme. For example, one buffer is used

as an active buffer for data processing and the other one is used as a passive buffer for

data loading or writing until processing the data in the active buffer is completed and the

passive buffer is filled or emptied by EDMA. To minimize the waiting time for data transfer,

we need to orchestrate the size of data to be transferred, transfer rate, transfer priority,

processing time, etc.

4.2 Encoder Modules

Here, we propose various techniques for implementing encoder algorithms. In Subsec-

tion 4.2.1, we provide an analysis on memory requirements in a fast motion search scheme,

which is a combination of hierarchical motion estimation and 3-step search. Subsection 4.2.2

presents implementation of our proposed mode selection. In Subsection 4.2.3, we describe

an efficient reference area loading, implementation of interpolation, and SAD calculation

in sub-pixel accuracy motion estimation. Finally, in Subsection 4.2.4, we briefly discuss

miscellaneous implementation issues on transform and quantization.

48

4.2.1 Integer-Pixel Accuracy Motion Estimation

Video compression derives most of its coding efficiency from motion compensated prediction

that removes huge temporal redundancy between frames. However, motion estimation pro-

cess contributes the heaviest computational load in the whole video encoding. Thus, a good

video encoder algorithm should keep a good balance between computational complexity and

coding efficiency.

As described in Section 2.1, motion estimation consists of integer-pixel and sub-pixel

accuracy motion estimation. Usually, first integer-pixel motion estimation is done and then

sub-pixel motion estimation is performed around the estimated integer motion vector. For

integer-pixel motion estimation, a real-world motion estimation generally uses a combination

of fast motion search techniques. For example, a combination of hierarchical search and

N-step search techniques can give good results with affordable computational cost. Here,

memory requirement, which is one of the key factors in designing integer-pixel motion

estimation module, is examined for 3-level hierarchical motion estimation method with 3-

step search technique. All required data in a search window should be available in L2

SRAM to avoid access to external memory. Table 6 shows frame size and block size for

luma component at each level for full D1 video (720x480).

Table 6: Frame size and block size in hierarchical motion estimation for full D1 frame

Level Frame size Block size

3 180*120 = 21600 4x4

2 360*240 = 86400 8x8

1 720*480 = 345600 16x16

As shown in the table, it may not be possible to put the whole reference frames in L2

SRAM. On the other hand, data prefetch on macroblock basis would be very inefficient

because adjacent blocks have large overlapped reference area. Thus, a heuristic solution is

to prefetch the reference area on macroblock group basis. As an example, we need 18x18

reference area at level-3 for a macroblock in 3-step motion search, which is depicted in

Figure 28.

49

2nd

1st

3rd

18 pixels

Figure 28: Three-step motion search at level-3

The required search area3 at each level is shown in Figure 29. The maximum size of

vertical displacement in one direction at level-3 is 7 that means 14 at level-2. Thus, the

maximum vertical displacement at level-2 becomes 14+7 = 21. Similarly, 21 at level-2

means 42 at level-1, and the maximum vertical displacement at level-1 becomes 42+7 = 49.

The amount of data required at each level is shown in Table 7.

Table 7: Memory requirement for macroblock line based prefetch scheme

Level macroblock line size Required memory size ping-pong buffer

3 180x4 = 720 180 * (7+7+4) = 3240 3240*2 = 6480

2 360x8 = 2880 360 * (21+21+8) = 18000 18000*2 = 36000

1 720x16 = 11520 720 * (49+49+16)= 82080 82080*2 = 164160

Even though a ping-pong buffer structure is used, memory requirement for level-3 is

quite small, and it may be possible to put the whole level-3 reference frame into L2 SRAM.

Also, the required memory size at level-2, 36000 bytes, is not very large compared to the size

of L2 memory provided by modern digital media processing purpose DSPs. However, the

required memory size for level-1 motion estimation may not fit into L2 SRAM. In this case,

3The size of horizontal displacement does not need to be considered when reference area for one mac-

roblock line is loaded.

50

7
7
4

7

14

8

14

7

7

42

16

42

7

level-3

level-2

level-1

Figure 29: Required reference area at each level with macroblock line based prefetch

we may use smaller size of macroblock group or avoid using ping-pong buffer structure.

Here, we discuss the memory requirement for the combination of hierarchical motion

search and 3-step search. Depending on the size of available memory or computational

power, different search schemes can be employed at each level. For example, full search

scheme may be used at level-3, and at each lower level, only +/- 1 pixels are searched

around the coarse motion vector determined at higher level.

4.2.2 Macroblock Mode selection

In Section 3.4, we present theoretical analysis on computational complexity of our pro-

posed mode selection method. Here, we address practical issues on calculating the required

information such as variance and distortion for TI’s DSPs.

Most of DSPs provide specialized C-functions, called intrinsics, that are mapped directly

to functions in hardware by compilers [5]. By using the intrinsics, the full benefit of the

hardware can be achieved since the compilers map an intrinsic to an extremely fast sequence

of assembly instructions. As mentioned in Section 3.4, major computational cost comes from

the variance calculation. The variance calculation can be very efficiently implemented by

51

using two intrinsics4, subabs4 and dotpu4, that are highly optimized taking only 1 and

4 cycles, respectively. subabs4 calculates the absolute value of the differences between two

packed 8-bit values, and dotpu4 returns a dot-product between two packed 8-bit values.

When xi is a pixel difference between the original and prediction images, the SSD and

sum of difference in Eq. 20 can be expressed as follows:

•
63
∑

i=0
x2

i =
15
∑

k=0

dotpu4(abs subk, abs subk)

where abs subk = subabs4(origk, predk), and origk and predk are 4-byte (32-bit)

variables that contain kth 4-byte blocks in the original and predicted images, respec-

tively.

•
63
∑

i=0
xi =

15
∑

k=0

dotpu4(origk, 0x01010101) −
15
∑

k=0

dotpu4(predk, 0x01010101)

The remaining calculation for σ2 needs only one bit-shift, one scalar multiplication, and one

subtraction. As mentioned in Section 3.4, a frame distortion, i.e. SSD between original

and reconstructed frames, is required to update γ. Similarly, we can calculate the distortion

by using two intrinsics.

4.2.3 Sub-Pixel Accuracy Motion Estimation

As mentioned in Section 2.1, sub-pixel accuracy motion estimation improves motion pre-

diction accuracy significantly. Here, we discuss several implementation issues such as data

loading from external to internal memory, pixel interpolation, etc.

To ensure an optimal data transfer performance, all data transfers should be 32-bit (4-

byte) aligned. It means that both the starting address and transferring data size have to be

a multiple of 4 bytes. Since a motion vector can point to any pixel position in the reference

frame, the alignment of the reference block is not known. For example, when the reference

block size is 10x10, we have to consider four cases shown in Figure 30. In this example,

the starting address is same for all the four cases, and a 16x10 reference block has to be

transferred with an offset. The offset of the transferred block need to be considered in the

pixel interpolation step.

4Appendix A describes the intrinsics used in our algorithm implementation with illustrative figures.

52

Case 1, offset = 0

Case 2, offset = 1

Case 3, offset = 2

Case 4, offset = 3

actual required width

4-byte boundary

Figure 30: Four cases in loading a reference block

Pixel interpolation5, which is a computationally intensive process, is achieved efficiently

with intrinsics such as avg4, avgu2, and shrmb, and shown in Figures 43, 44, and 45

in Appendix A, respectively. Figure 31 shows an interpolated image. ay,x is an integer pixel

and the interpolated half-pixels are defined as:

• by,x = (ay,x + ay,x+1 + 1) /2

• cy,x = (ay+1,x + ay,x + 1) /2

• dy,x = (ay,x + ay,x+1 + ay+1,x + ay+1,x+1 + 2) /4

The overall procedure for calculating by,x is shown in Figure 32. The first step is to

load 8 pixels of jth row from L2 SRAM to register by using memd8 that loads or stores

unaligned 8-byte data to register. In the second step, we separate the 8-byte pixels into

upper and lower 4-byte pixels, A4H(j) and A4L(j), using hi and lo, and then generate

another 4-byte data using shrmb. shrmb shifts the second register right by one byte and

then the least significant byte of the first register is merged into the most significant byte

position. At the last step, the average values can be obtained by using avgu4. Similarly, we

5Here, we consider the pixel interpolation in the MPEG-2 standard.

53

a1,1 b1,1b1,0

c1,1

c0,1

d1,1

d0,1

d1,0

d0,0

Integer-pixel accuracy motion vector

a0,0 a0,1

a1,0

b0,0

c0,0

b0,1

c1,0

Figure 31: Half-pixel accuracy interpolated reference image

A8(j)

A4L(j)

A4H(j)

aj,0 aj,1 aj,2 aj,3 aj,4 aj,5 aj,6 aj,7

aj,0 aj,1 aj,2 aj,3

aj,4 aj,5 aj,6 aj,7

aj,1 aj,2 aj,3 aj,4

S4(j)

bj,0 bj,1 bj,2 bj,3

_hi(A8(j))

_lo(A8(j))

B4(j)

_shrmb(A4H(j), A4L(j))

_avgu4(A4L(j), S4L(j))

Figure 32: Calculation of by,x

can calculate cy,x using memd8, hi, lo and avgu4. The procedure for the calculation

of cy,x shown in Figure 33. We first load 8 pixels of jth row and 8 pixels of (j + 1)th row,

and then divide them and calculate average values.

The procedure for calculating dy,x is shown in Figure 34. Since we accumulate four

pixel values, 2-byte memory space is required to store the accumulated results. The conver-

sion from four 1-byte values to four 2-byte values can be done by using mpyu4(A4L(j),

0x01010101). And then we can accumulate two 2-byte values using add2 8 times after

dividing 8-byte data into 4-byte data. The accumulated values can be divided using bit-shift

operation, and packl4 converts from four 2-byte values to four 1-byte values.

As depicted in Figure 31, there are nine search positions, a1,1, b1,0, b1,1, c0,1, c1,1,

54

A8(j)

A4L(j) A4H(j)

aj,0 aj,1 aj,2 aj,3 aj,4 aj,5 aj,6 aj,7

aj,0 aj,1 aj,2 aj,3 aj,4 aj,5 aj,6 aj,7

cj,0 cj,1 cj,2 cj,3

_lo(A8(j))

_hi(A8(j))

C4L(j)

_avgu4(A4L(j), A4L(j+1))

_avgu4(A4H(j), A4H(j+1))

A8(j+1)

Aj+1,0Aj+1,1Aj+1,2Aj+1,3Aj+1,4Aj+1,5Aj+1,6Aj+1,7_lo(A8(j+1))

_hi(A8(j+1))

A4L(j+1) A4H(j+1)

Aj+1,0aj+1,1Aj+1,2Aj+1,3 Aj+1,4Aj+1,5Aj+1,6Aj+1,7

cj,4 cj,5 cj,6 cj,7

C4H(j)

Figure 33: Calculation of cy,x

aj,0 aj,1 aj,2 aj,3

aj,1 aj,2 aj,3 aj,4S4(j)

A4L(j)

A4L(j+1)aj+1,0aj+1,1aj+1,2aj+1,3

aj+1,1aj+1,2aj+1,3aj+1,4S4(j+1)

aj,0 aj,1 aj,2 aj,3

aj,4aj,1 aj,2 aj,3

aj+1,0 aj+1,1 aj+1,2 aj+1,3

aj+1,4aj+1,1 aj+1,2 aj+1,3

22 2 2

pj,0 pj,1 pj,2 pj,3

pj,0>>2 pj,1 >>2 pj,2 >>2 pj,3 >>2

dj,0 dj,1 dj,2 dj,3

D4(j)

_add2

pj,i = aj,i+ aj,i+1+aj+1,i+aj+1,i+1+2Use bit-shift

_packl4(P4H(j), P4L(j))

_mpyu4, _lo, _hi

P4L(j) P4H(j)

Figure 34: Calculation of dy,x

55

d0,0, d0,1, d1,0, and d1,1, to be examined. When the interpolated pixels are stored into

separated memory locations, the nine search points are shown in Figure 35. By storing

the interpolated pixels separately, SAD calculation can be efficiently performed by utilizing

fact that there are adjacent multiple search points in b-image, c-image, and d-image. For

example, two SADs associated with the positions, b1,0 and b1,1, can be calculated with single

data load to CPU registers. Let SAD0 and SAD1 be two SAD values for b1,0 and b1,1,

respectively. Then, for an 8x8 block, we have SAD0 =
7

∑

i=0

7
∑

j=0
|bj+1,i − oj,i| and SAD1 =

7
∑

i=0

7
∑

j=0
|bj+1,i+1 − oj,i|, where oj,i is a pixel in the original image block.

a-image b-image

c-image d-image

a1,1 b1,0

c0,1

b1,1

c1,1

d0,0 d0,1

d1,0 d1,1

Figure 35: Separate interpolated b-, c-, and d-images

By using shrmb, subabs4, and dotpu4, SAD0 and SAD1 can be calculated very

efficiently. Figure 36 shows calculation of SAD0 and SAD1 with the intrinsics. First,

we load three 4-byte data in the (j + 1)th row in the b-image, B4(j + 1, 0), B4(j + 1, 4)

and B4(j + 1, 8), into the registers and generate two 1-byte shifted data, B4(j + 1, 1) and

B4(j + 1, 5), using shrmb. And then we can calculate SADs for 8 pixels using subabs4

and dotpu4. With this approach, the number of data loads from L2 SRAM to the registers

can be minimized, i.e. 3x8 4-byte data loads for the b-image and 2x8 4-byte data loads for

the original image. Similarly, efficient implementation of SAD calculations for the c-image

and d-image can be done.

56

B4(j+1,0)

bj+1,0 bj+1,4 bj+1,8

B4(j+1,4) B4(j+1,8)

B4(j+1,1) B4(j+1,5)

bj+1,0bj+1,1bj+1,2bj+1,3 bj+1,4bj+1,5bj+1,6bj+1,7 bj+1,8bj+1,9bj+1,10bj+1,11

bj+1,1bj+1,2bj+1,3bj+1,4 bj+1,5bj+1,6bj+1,7bj+1,8 _shrmb(B4(j+1,4), B4(j+1,0))

_shrmb(B4(j+1,8), B4(j+1,4))

Load to register

(a) Prepare four 4-byte data

B4(j+1,0) B4(j+1,4) B4(j+1,1) B4(j+1,5)

bj+1,0bj+1,1bj+1,2bj+1,3 bj+1,4bj+1,5bj+1,6bj+1,7 bj+1,1bj+1,2bj+1,3bj+1,4 bj+1,5bj+1,6bj+1,7bj+1,8

Use _subabs4 4 times

O4(j,0) O4(j,4)

oj,0 oj,1 oj,2 oj,3 oj,4 oj,5 oj,6 oj,7

t0j,0 toj,1 toj,2 toj,3 toj,4 toj,5 toj,6 toj,7 t1j,0 t1j,1 t1j,2 t1j,3 t1j,4 t1j,5 t1j,6 t1j,7

t0j,0+t0j,1+t0j,2+t0j,3 t0j,4+t0j,5+t0j,6+t0j,7 t1j,0+t1j,1+t1j,2+t1j,3 t1j,4+t1j,5+t1j,6+t1j,7

Use _dotpu4 4 times

SAD0 SAD1

t0j,k = |bj+1,k – oj,k| t1j,k = |bj+1,k+1 – oj,k|

(b) Calculate SADs

Figure 36: SAD calculation for the b-image

57

4.2.4 Others Modules

Many DSP manufactures provide highly optimized assembly source code or library functions

for widely used but computationally intensive image and video processing algorithms such

as convolution, 8x8 DCT, quantization etc. For example, TI provides a set of library

functions that can be directly used for real-time applications where optimal execution speed

is critical [4].

DCT can be implemented with IMG fdct 8x8 and IMG idct 8x8 that perform for-

ward and inverse DCT, respectively. IMG idct 8x8 can perform rounding and saturation

to signed 9-bit quantities as well as inverse DCT assuming the input coefficients are signed

12-bit values. In general, these functions can perform DCT for multiple 8x8 blocks per call,

and usually performing DCT for multiple 8x8 blocks takes less number of cycles compared

to performing DCT for a single 8x8 block.

Quantization can be done efficiently by using IMG quantize. The function quantizes

a list of blocks by multiplying their contents with a second block of values that contains

reciprocals of the quantization items. Because the function does not consider dead-zone,

we may need to modify the quantized coefficients to avoid performance loss. The function

also can perform inverse quantization by using appropriate reciprocals. The reciprocals for

forward and inverse quantization should be calculated at encoder initialization stage and

loaded into internal memory before forward or inverse quantization processes. To calculate

the reciprocals, we need to understand how IMG quantize function works. For the kth

coefficient in an 8x8 coefficient matrix, the C version of the function is as follows:

1 round = q pt ? 1 << (q pt − 1) : 0;

2 quot = coefk * recipk + round

3 levelk = quot >> q pt

where coefk is the coefficient to be quantized, recipk is a reciprocal associated with the

position of the coefficient, and q pt is a accuracy control factor for the reciprocal that has

a range of 0 to 31. For a given quantization parameter (quant param) and an appropriate

58

q pt, the reciprocal for the kth position (recipk) in the forward quantization is calculated by

recipk = (1 << q pt) / (quant matk * quant param), where quant matk is the kth value in

the base quantization matrix. For the inverse quantization, the reciprocal for kth position

is recipk = quant matk * quant param with q pt = 0.

4.3 Overall structure

Designing a video encoder is affected by numerous hardware factors , e.g., speed of a proces-

sor, L1 cache size, L2 memory size, EDMA performance, etc., and application’s requirements

such as input frame size and frame rate. Here, we present a structure for a real-time full

D1 MPEG-2 video encoder that can be implemented on a TI’s TMS320DM642 system.

Figure 37 shows overall encoder structure that contains data transfer information and

process flow6. MB W and MB H are the numbers of macroblocks in a row and column,

respectively. MB S is the total number of macroblocks in a frame, i.e. MB W × MB H.

For example, for NTSC full D1 video, MB W = 45, MB H = 30, and MB S = 1350. N

is a number for a group of macroblocks and the number in the parenthesis for each module

means the number of macroblocks that are processed in the module. For example, the

level-3 integer motion estimation module finds motion vectors for all the macroblocks in a

frame, and each module in the Loop 2 processes N macroblocks per call.

The first module, picture type decision and bit allocation, determines the picture type

(I, P or B) and allocates a number of bits for the current frame. If the current picture type

is I, it performs bit allocation for a Group Of Pictures (GOP). This module also manages

reference frame buffer.

The sub-sampling module generates reduced size frames that are stored in the internal

memory for hierarchical motion estimation. The level-3 motion estimation produces motion

vectors for all the macroblocks and the coarse motion vectors are refined in the level-2

motion estimation module. For the level-3 and level-2 motion estimation, reference areas

for a macroblock line are loaded into L2 SRAM with ping-pong buffer structure as described

in 4.2.1. After finding all motion vectors, the current reduced frames are stored into the

6For I-type frames, integer- and sub-pixel accuracy motion estimation and mode selection are not required.

59

reference frame buffer by using DMA transfer.

sub-sampling

L3 integer ME (MB_S)

L2 integer ME (MB_S)

L1 integer ME (1)

mode selection (1)

half-pixel ME (1)

transformation (N)

quantization (N)

reconstruction (N)

entropy coding (N)

L3 ref.

frame buffer

L2 ref.

frame buffer

L1 ref.

frame buffer

External memory

Bit-stream

buffer

External memory

Internal memory

Predict.

image

Input frame

MB_H

(Loop 3)

MB_W

(Loop 1)

MB_W÷N

(Loop 2)

Internal memory

L2 original

frame

L3 original

frame

Direct data transfer

EDMA data transfer

Process flow

chroma prediction (N)

rate control (N)

Picture type decision,

Bit allocation

Figure 37: MPEG-2 encoder structure

In the level-2 motion estimation module, the best cost for each macroblock and/or the

accumulated cost are stored to detect scene change or motion change in the rate control

module. The rate control module determines the complexity of the current frame by using

the cost information. For example, if the accumulated cost for the current frame is much

larger than that for the previous frame, the rate control module tries to minimize perceptual

60

quality fluctuation by changing the frame type to I or performing appropriate frame bit

allocation.

In the Loop 1, the level-1 motion estimation module produces frame, top field, and

bottom field motion vectors for each reference direction. Before starting level-1 motion

estimation for the first macroblock line, the corresponding reference area has to be loaded

into L2 SRAM, which means the CPU has to wait until loading is done. However, from

the second macroblock line, the reuqired reference area is loaded by EDMA while Loop 2

is processed. In this case, ping-pong buffer structure is not required to store the reference

area.

Figure 38 depicts frame and field prediction in the MPEG-2 standard. In the frame

prediction, both reference area and original macroblock are considered as frame. On the

other hand, in the field prediction, the original macroblock is decomposed into top and

bottom fields, and the best prediction is obtained for each original field. The best prediction

for the original top field can be found in either the reference top or bottom field. Similarly,

the best prediction for the original bottom field can be obtained in the top or bottom field.

However, in practical implementation, it is not necessary to decompose a frame into

two fields. Figure 39 shows how to calculate one SAD cost for frame prediction and four

costs for field prediction for a given search point. OT (j) and OB(j) are the jth rows of

the original top field and bottom field, respectively. Similarly, RT (j) and RB(j) are the

jth rows of the reference top field and bottom field, respectively. Calculating four SADs for

field predictions and one SAD for frame prediction is as follows:

• SAD between original top and reference top (SAD TT) =
7

∑

j=0
sad calc(OT (j), RT (j))

• SAD between original top and reference bottom (SAD TB) =
7

∑

j=0
sad calc(OT (j), RB(j))

• SAD between original bottom and reference top (SAD BT) =
7

∑

j=0
sad calc(OB(j), RT (j))

• SAD between original bottom and reference bottom (SAD BB) =
7

∑

j=0
sad calc(OB(j), RB(j))

• SAD for frame prediction = SAD TT + SAD BB

61

Original macroblock

Reference frame

Best frame prediction

16

16

(a) Frame prediction

8

16

Original macroblockReference frame

Best bottom field

prediction

for top original Best bottom

field prediction

for top field

Best top field

prediction

for top original

Best top field

prediction for

bottom original

(b) Field prediction

Figure 38: Frame and field prediction in the MPEG-2 coding standard

where calc sad(row1, row2) is a function that calculate SAD between two 16-pixel

rows, row1 and row2.

In this approach, when two rows of the reference block, one from top and the other one

from bottom field, are loaded from the internal memory to registers, all the five SADs for

a given search points can be calculated, which minimizes redundant SAD calculations and

data loading time.

After the level-1 motion estimation module generates motion vectors for a macroblock,

the mode selection modules calculates costs for all candidate modes and decides the best

62

Original macroblockReference block for a search point

OT(0)

16

16

OB(0)
OT(1)
OB(1)

OT(7)
OB(7)

RT(0)
RB(0)
RT(1)
RB(1)

RT(7)
RB(7)

16

OB(j)RB(j)

OT(j)RT(j)

1616

Figure 39: Calculation of frame SAD and four field SADs

mode. Decisions for prediction type (frame or field), prediction direction (forward, back-

ward, or bi-direction) are also included in the mode selection module. For the variance

calculation, there is no data transfer between internal and external memory because the

reference area is already in the internal memory.

For the best mode, the sub-pixel accuracy motion estimation module performs upsam-

pling and determines a search position that generates minimum costs as described in 4.2.3.

Depending on the prediction type and prediction direction, the number of calls for up-

sampling and cost calculation functions is different. Table 8 shows the number for each

case. The best luma prediction block7 determined by the sub-pixel accuracy motion esti-

mation module is directly copied into the internal memeory, and used to obtain residual

and reconstruct images in the Loop 2.

The chroma prediction module in the Loop 2 generates prediction and residual blocks

for the chroma components. If a motion vector points to a half pixel location, the module

performs upsampling first, and then calculate residual blocks. Reference area loading with

ping-pong buffer structure can be done by EDMA since the final motion vectors are already

7Integer-pixel motion estimation, mode selection, and sub-pixel motion estimation use only luma

component.

63

Table 8: Number of calls for upsampling and cost calculation functions
Forward Backward Bi-direction

Frame prediction 1 1 2

Field prediction 2 2 4

available.

Before performing forward transform, we need to decide DCT type and re-arrange the

residual image depending on the DCT type. The frame and field correlation coefficients

of the residual image are used in TM5 for the DCT type decision. Implementation of the

correlation coefficient calculation is similar to that of the variance calculation in the mode

selection since it involves only simple calculations such as accumulation and SSD.

Before quantization, the rate control module chooses a quantization parameter for N

macroblocks. Depending on a rate control scheme, the rate control module may be included

in the quantization module and determine a quantization parameter for each macroblock.

In the reconstruction module, inverse quantization, inverse DCT, and some miscella-

neous processes such as addition and clipping are performed. In the MPEG-2 standard,

reconstruction for B-type frames is not required for most of applications because the re-

constructed frame is not used as a reference frame8. After the reconstruction process,

the reconstructed images are stored into the reference frame buffer located in the external

memory using EDMA.

The entropy coding module produces a bit-stream that is written into an external bit-

stream buffer and returns information on the number of bits used to code DCT coefficients,

motion vectors, and other components to the rate control module. In general, the tables for

variable length coding always reside in L2 SRAM to avoid accessing to the external memory.

The complexity of this module varies depending on bit-rate in constant bit-rate environment.

Usually, high bit-rate coding takes more number of cycles because it produces more nonzero

coefficients. However, the bit generation in variable bit-rate environment varies depending

on the contents of input video.

8In the H.264 standard, reconstruction process may be required to perform accurate spatial intra-

prediction.

64

CHAPTER V

CONCLUSION AND FUTURE WORK

5.1 Contributions

In this thesis, we propose a rate-distortion model and apply it successfully to mode selection

problem. The proposed mode selection method has very low computational complexity since

it requires simple statistics of the residual image that can be implemented easily on most

of modern DSP systems. We are also able to improve the encoding performance further by

extending the scheme to motion vector selection when multiple motion vectors are available

in a mode. Our experimental results show that the proposed method can give significant

PSNR and visual quality improvement over TM5 for MPEG-2.

In addition to our theoretical work, we discuss key implementation issues on each en-

coder module including the proposed mode selection method. First, we provide a brief

background on major features of modern DSPs. Second, we present practical solutions to

implementation of encoder modules such as integer-pixel, sub-pixel accuracy motion esti-

mation, and our proposed mode selection method. Finally, we provide an overall structure

for a real-time implementation of MPEG-2 encoder on a TI’s DSP system, where we discuss

overall data and process flows.

5.2 Suggestions for Further Research

Here, we discuss the coding mode selection in H.264 as a future work, and present several

suggestions for computational complexity reduction. Basically, cost calculation process for

the mode selection in H.264 is almost the same as in the previous standards. However, the

total computational complexity for cost calculation increases in proportion to the number of

candidate modes. In the literature, most of the algorithms focus on reducing the number of

candidate block modes using the characteristics of the current macroblock, e.g., homogene-

ity, temporal stationarity, number of zero coefficients etc., to skip cost calculation for less

probable candidate modes [17, 37, 61, 64, 65]. After removing some less probable modes,

65

they apply Lagrangian optimization with actual information on rate and distortion only

to the remaining modes. Clearly, with these approaches, total computational complexity

can be reduced over the reference software. However, the approaches are not guaranteed

to work in real-time environment because they use Lagrangian optimization method with

actual information that is obtained by performing transform, quantization, reconstruction,

and entropy coding. Therefore, we suggest several directions for real-time implementation

of mode selection for future work.

• Using the proposed model-based mode selection method: This approach will reduce

computational complexity significantly over the reference software and could be used

in real-time environment without any further simplification. However, we need to

determine whether performance degradation over the reference software is acceptable

or not.

• Using Lagrangian technique with estimate rate and distortion: The direction of this

approach is different than that of our proposed method. As described in [60], we

could employ Lagrangian optimization with estimated rate and distortion. With this

approach, we need to estimate distortion and rate without performing actual encod-

ing processes. For the distortion estimation, distortion could be calculated in the

transform domain. Because 4x4 integer transform and quantization is much simpler

than 8x8-based DCT and quantization, calculating distortion in the transform domain

would be much simpler in H.264 than in the previous standards. For rate estimation,

exploiting the fact that the number of zero quantized transform coefficients can be

easily obtained in the process of estimating distortion, we could use the information

on the number of zeros to estimate the number of bits required for sending quantized

transform coefficients. For effective and computationally simple rate estimation, Kim

et al. employ the rate model in Eq. 4 explained in Section 3.1 [36]. The actual number

of bits and the estimated number of bits for macroblocks are shown in Figure 40.

• Using our model-based mode selection method to find probable modes and applying

Lagrangian technique with estimate rate and distortion only to the remaining modes:

66

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

actually generated number of bits

e
s
ti
m

a
te

d
 n

u
m

b
e
r

o
f

b
it
s

rate estimation

Figure 40: Estimated rates vs. actual rates

Even if the second approach could give much better performance than the first one,

the second approach has higher computational complexity than the first one. Thus,

we could find a good trade-off between performance and complexity by combining two

methods. First, we could use our proposed mode selection method and remove some

modes that have large costs, and then apply Lagrangian method with estimated rate

and distortion only to the remaining modes.

67

APPENDIX A

INTRINSICS FOR TMS320DM64X/TMS320C64X

In algorithm implementation on DSP systems, the first optimization step that we can

perform on C source code is to use intrinsic operators that correspond to the highly

optimized assembly language instruction(s). Although TI provides various intrinsics for

TMS320DM64x/TMS320C64x [5], here, we describe the intrinsics that are used in our

algorithm implementation.

68

|a3-b3| |a2-b2| |a1-b1| |a0-b0|

a3 a2 a1 a0

b0b1b2b3

A =

B =

Result =

_subabs(A, B)

0 (bits)8162432

Figure 41: subabs4 takes single cycle

a0*b0 + a1*b1 + a2*b2 + a3*b3

A =

B =

Result =

_dotpu4(A, B)

0 (bits)8162432

a3 a2 a1 a0

b0b1b2b3

Figure 42: dotpu4 takes four cycles

A =

B =

Result =

_avgu4(A, B)

0 (bits)8162432

(a3+b3+1)/2(a2+b2+1)/2(a1+b1+1)/2(a0+b0+1)/2

a3 a2 a1 a0

b0b1b2b3

Figure 43: avgu4 takes two cycles

A =

B =

Result =

_avg2(A, B)

0 (bits)1632

(a1+b1+1)/2 (a0+b0+1)/2

a1 a0

b1 b0

Figure 44: avg2 takes two cycles

69

A =

B =

Result =

_shrmb(A, B)

0 (bits)8162432

a0

a3 a2 a1 a0

b0b1b2b3

b1b2b3

Figure 45: shrmb takes single cycle

A =

B =

Result =

_shlmb(A, B)

0 (bits)8162432

a3

a3 a2 a1 a0

b0b1b2b3

b0b1b2

Figure 46: shlmb takes single cycle

A =

B =

Result =

_add2(A, B)

0 (bits)1632

a1+b1 a0+b0

a1 a0

b1 b0

Figure 47: add2 takes single cycle

A =

B =

Result =

_sub2(A, B)

0 (bits)1632

a1-b1 a0-b0

a1 a0

b1 b0

Figure 48: sub2 takes single cycle

70

A =

B =

Result =

_packl4(A, B)

0 (bits)8162432

a2

a3 a2 a1 a0

b0b1b2b3

b0b2a0

Figure 49: packl4 takes single cycle

A =

B =

Result =

_packh4(A, B)

0 (bits)8162432

a3

a3 a2 a1 a0

b0b1b2b3

b1b3a1

Figure 50: packh4 takes single cycle

A =

Result =

_unpklu4(A, B)

0 (bits)8162432

0

a3 a2 a1 a0

a10a1

Figure 51: unpklu4 takes single cycle

A =

Result =

_unpkhu4(A, B)

0 (bits)8162432

0

a3 a2 a1 a0

a20a3

Figure 52: unpkhu4 takes single cycle

71

A =

Result =

_lo(A)

0 (bits)4864 8162432

a3 a2 a1 a0

4056

a7 a6 a5 a4

a3 a2 a1 a0

Figure 53: lo takes single cycle

A =

Result =

_hi(A)

0 (bits)4864 8162432

a3 a2 a1 a0

4056

a7 a6 a5 a4

a7 a6 a5 a4

Figure 54: hi takes single cycle

A =

B =

Result =

_mpyu4(A, B)

a3 a2 a1 a0

b0b1b2b3

4864 4056 0 (bits)8162432

a1 * b1 a0 * b0a3 * b3 a2 * b2

Figure 55: mpyu4 takes four cycles

72

REFERENCES

[1] “TMS320C6000 CPU and instruction set reference guide,” Application Notes, Texas
Instruments.

[2] “TMS320C6000 DSP Enhanced Direct Memory Access (EDMA) controller reference
guide (rev. c),” Application Notes, Texas Instruments.

[3] “TMS320C64x DSP two-level internal memory reference guide,” Application Notes,
Texas Instruments.

[4] “TMS320C64x image/video processing library programmer’s reference,” Application
Notes, Texas Instruments.

[5] “TMS320C64x/C64x+ DSP CPU and instruction set reference guide (rev. c),” Appli-
cation Notes, Texas Instruments.

[6] “Video encoding optimization on TMS320DM64x/C64x,” Application Notes, Texas
Instruments.

[7] “Generalized lagrange multiplier for method for solving problems of optimum allocation
of resources,” Operations Research, vol. 36, pp. 1445–1453, 1988.

[8] “Coded representation of picture and audio information-MPEG-2 test model 5,” ISO-
IEC AVC-491, 1993.

[9] “Video coding for audiovisual services at p×64 kbits,” ITU-T, ITU-T Recommendation
H.261, Mar. 1993.

[10] “Video codec test model, near-term, version 5 (TMN5),” ITU-T Study Group 15, Video
Expert Group, Jan. 1995.

[11] “Video coding for low bit rate communications,” ITU-T, ITU-T Recommendation
H.263, 1995.

[12] “ISO/IEC, reference number ISO/IEC 13818-2,” The MPEG-2 international standard,
1996.

[13] “Video codec test model, near-term, version 8 (TMN8),” ITU-T Study Group 16, Video
Expert Group, June 1997.

[14] “Motion pictures expert group - overview of the MPEG-4 standard,” ISO/IEC
JTC1/SC29/WG11 N2459, 1998.

[15] “Draft ITU-T recommendation and FDIS of joint video spec. (H.264—ISO/IEC 14496-
10 AVC),” JVT of MPEG and VCEG, Doc. JVT-G050R1, May 2003.

[16] “http://bmrc.berkeley.edu/frame/research/mpeg/,” MPEG codec, April 2007.

73

[17] Ahmad, A., Khan, N., Masud, S., and Maud, M., “Selection of variable block sizes
in h.264,” Proc. Int. Conf. Acoust., Speech, Signal Processing, vol. 3, pp. 173–176, May
2004.

[18] Chen, M. and Willson, A., “Rate-distortion optimal motion estimation algorithm
for video coding,” Proc. Int. Conf. Acoust., Speech, Signal Processing, pp. 2096–2099,
1996.

[19] Chen, Y.-K. and Kung, S. Y., “Rate optimization by true motion estimation,” Proc.
IEEE Workshop on Multimedia Signal Processing, Jun. 1997.

[20] Choi, K. T., Chan, S. C., and Ng, T. S., “A new fast motion estimation algorithm
using hexagonal subsampling pattern and multiple candidates search,” ICIP’96, vol. 2,
pp. 497–500, 1996.

[21] Chung, W. C., Kossentini, F., and Smith, M. J. T., “An efficient motion estima-
tion technique based on a rate-distortion criterion,” Proc. Int. Conf. Acoust., Speech,
Signal Processing, vol. 43, pp. 2771–2783, Nov. 1995.

[22] Cover, T. M. and Thomas, J. A., “Elements of information theory,” Wiley, New
York, NY, 1991.

[23] Dekalp, A. M., Digital Video Processing. Prentice Hall, 1995.

[24] Du, C., He, Y., and Zheng, J., “Pphps: A parabolic predictionbased, fast half-pixel
search algorithm for very low bit-rate movingpicture coding,” IEEE Trans. Circuits
and Systems for Video Tech., vol. 6, no. 1, pp. 514–518, 2003.

[25] Gallant, M., Cote, G., and Kossentini, F., “An efficient computation-constrained
block-based motion estimation algorithm for low bit rate video coding,” IEEE Trans.
Image Proc., vol. 8, Dec 1999.

[26] Ghanbari, M., “The cross-search algorithm for motion estimation,” IEEE Trans.
Comm., vol. 38, July 1990.

[27] Girod, B., “Motion-compensating prediction with fractional-peel accuracy,” IEEE
Trans. Comm., vol. 41, no. 4, pp. 604–612, 1993.

[28] He, Z., Kim, Y., and Mitra, S. K., “A novel linear source model and a unified rate
control algorithm for H.263/MPEG-2/MPEG-4,” Proc. Int. Conf. Acoust., Speech,
Signal Processing, Oct 1998.

[29] He, Z., Kim, Y. K., and Mitra, S. K., “Low delay rate control for dct video coding
via ρ-domain source modeling,” IEEE Trans. Circuits Syst. Video Technol., vol. 11,
Aug. 2001.

[30] He, Z. and Mitra, S. K., “A unified rate-distortion analysis framework for transform
coding,” IEEE Trans. on Circuit Syst. for Video Technol., vol. 11, pp. 1221–1236, Dec.
2001.

[31] Hu, S. Y., Chen, M. C., and Willson, A. N., “A fast rate-distortion optimization
algorithm for motion compensated video coding,” IEEE Int. Symp. on Circuits and
Systems, pp. 1349–1352, June 1997.

74

[32] Jain, J. R. and Jain, A. K., “Displacement measurement and its application in
interframe image coding,” IEEE Trans. Comm., vol. 29, Dec 1981.

[33] Jeong, J., “Fast sub-pixel motion estimation having lower complexity,” ICCE. 2003
IEEE International Conference, pp. 174–175, 2003.

[34] Jeong, J. and Ahn, W., “Subpixel-accuracy motion estimation using a model for
motion compensated error,” PCS’93, 1993.

[35] Kamaci, N., Altunbasak, Y., and Mersereau, R. M., “Frame bit allocation for
the h.264/avc video coder via cauchy-density-based rate and distortion models,” IEEE
Trans. Circuits Syst. Video Technol., vol. 15, pp. 994–1006, Aug. 2005.

[36] Kim, H. and Altunbasak, Y., “Low-complexity macroblock mode selection for the
H.264/AVC encoders,” IEEE Int. Conf. on Image Processing, Oct. 2004.

[37] Kim, Y.-H., Yoo, J.-W., Lee, S.-W., Shin, J., Paik, J., and Jung, H.-K., “Adap-
tive mode decision for h.264 encoder,” Electronic Letters, vol. 40, pp. 1172–1173, Sep.
2004.

[38] Koga, T. and Iinuma, K., “Motion compensated interframe coding for video confer-
ence,” Proc. NTC, Nov 1991.

[39] Lam, E. Y. and Goodman, J. W., “A mathematical analysis of the dct coefficient
distributions for images,” IEEE Trans. Image Processing, vol. 9, pp. 1661–1666, Oct.
2000.

[40] Lee, Y. W., Kossentini, F., and Ward, R., “Efficient rd optimized macroblock
coding mode selection for MPEG-2 video encoding,” Proc. Int. Conf. Image Processing,
vol. 6, pp. 168–181, Apr. 1996.

[41] LeGall, D., “MPEG: A video compression standard for multimedia application,”
Commun., ACM, vol. 34, pp. 46–58, Apr. 1991.

[42] Li, X. and Gonzales, C., “A locally quadratic model of the motion estimation error
criterion function and its application to subpixel interpolations,” IEEE Trans. Circuits
and Systems for Video Tech., vol. 6, pp. 118–122, Feb. 1996.

[43] Malvar, H. S., Hallapuro, A., Karczewicz, M., and Kerofsky, L., “Low-
complexity transform and quantization in h.264/avc,” IEEE Trans. Circuits Syst. Video
Technol., vol. 13, pp. 598–603, July 2003.

[44] Marpe, D., Schwarz, H., and Wiegand, T., “Context-based adaptive binary arith-
metic coding in the h.264/avc video compression standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, pp. 620–636, July 2003.

[45] Mukherjee, D. and Mitra, S. K., “Combined mode selection and macroblock quan-
tization step adaptation for the H.263 video encoder,” Proc. Int. Conf. Image Process-
ing, pp. 37–40, Aug. 1997.

[46] Ortega, A. and Ramchandran, K., “Rate-distortion methods for image and video
compression : An overview,” IEEE Signal Processing Magazine, pp. 23–50, Nov. 1998.

75

[47] Peel, C. B., Budge, S. E., Liang, K. M., and Huang, C.-M., “Locally optimal,
buffer-constrained motion estimation and mode selection for video sequences,” Proc.
Int. Conf. Acoust., Speech, Signal Processing, vol. 47, pp. 1718–1734, Jul. 2001.

[48] Ramchandran, K., Ortega, A., and Vetterli, M., “Bit allocation for dependent
quantization with applications to multiresolution and mpeg video coders,” IEEE Trans.
Image Processing, vol. 3, pp. 533–545, Sep. 1994.

[49] Ribas-Corbera, J. and Lei, S., “Rate control in dct video coding for low-delay
communications,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, pp. 172–185,
Feb. 1999.

[50] Richardson, I. E. G., Video Codec Design. John Wiley and Sons, 2002.

[51] Richardson, I. E. G., H.264 and MPEG-4 Video Compression. John Wiley and
Sons, 2003.

[52] Senda, Y., Harasaki, H., and Yano, M., “A simplified motion estimation using an
approximation for the mpeg-2 real-time encoder,” ICASSP’95, vol. 4, pp. 2273–2276,
1995.

[53] Senda, Y., Harasaki, H., and Yano, M., “Theoretical background and improvement
of a simplified half-pel motion estimation,” ICIP’96, vol. 3, pp. 263–266, 1996.

[54] Shen, J. and Chan, W.-Y., “Fast rate-distortion optimisation algorithm for motion-
compensated transform coding of video,” IEE Electronics Letters, vol. 36, pp. 305–306,
Feb. 2000.

[55] Shoham, Y. and Gersho, A., “Efficient bit allocation for an arbitrary set of quan-
tizers,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 36, pp. 1445–1453, Sep.
1988.

[56] Subramanian, P. and Chan, W.-Y., “Reduced-complexity rate-distortion optimiza-
tion of multiresolution motion field and prediction residual,” Proc. Int. Conf. Image
Processing, vol. 2, pp. 799–802, Aug. 1997.

[57] Sun, H., Kwok, W., Chien, M., and Ju, C. H. J., “MPEG coding performance
improvement by jointly optimizing coding mode decisions and rate control,” IEEE
Trans. Circuits Syst. Video Technol., pp. 449–458, Jun. 1997.

[58] Tao, B., Dickinson, B. W., and Peterson, H. A., “Adaptive model-driven bit
allocation for mpeg video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 10,
pp. 147–157, Feb. 2000.

[59] Wiegand, T. and Girod, B., “Lagrange multiplier selection in hybrid video coder
control,” Proc. Int. Conf. Image Processing, pp. 542–545, Oct. 2001.

[60] Wiegand, T., Lightstone, M., Mukherjee, D., Campbell, T. G., and Mitra,

S. K., “Rate-distortion optimized mode selection for very low bit rate video coding
and the emerging H.263 standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 6,
pp. 182–190, Apr. 1996.

76

[61] Wu, D., Wu, S., Lim, K., Pan, F., Li, Z., and Lin, X., “Block inter mode decision
for fast encoding of h.264,” Proc. Int. Conf. Acoust., Speech, Signal Processing, vol. 3,
pp. 181–184, May 2004.

[62] Yang, K. and Jacquin, A., “Real-time implementation of rate-distortion optimized
coding mode selection for h.263 video coders,” Proc. Int. Conf. Image Processing, 1998.

[63] Yavanof, G. S. and Liu, S., “Statistical analysis of the dct coefficients and their
quantization error,” Conf. Rec. 30th Asilomar Conf. Signals, Systems, Computers,
vol. 1, pp. 601–605, 1997.

[64] Yin, P., Tourapis, H. C., Tourapis, A. M., and Boyce, J., “Fast mode deci-
sion and motion estimation for jvt/h.264,” Proc. Int. Conf. Image Processing, vol. 3,
pp. 853–856, Sep. 2003.

[65] Yu, A., “Efficient block-size selection algorithm for inter-frame coding in h.264/mpeg-
4 avc,” Proc. Int. Conf. Acoust., Speech, Signal Processing, vol. 3, pp. 169–172, May
2004.

77

