

Low-Complexity Multiplierless Constant

Rotators Based on Combined Coefficient

Selection and Shift-and-Add Implementation

(CCSSI)

Mario Garrido Gálvez, Fahad Qureshi and Oscar Gustafsson

Linköping University Post Print

N.B.: When citing this work, cite the original article.

©2014 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

Mario Garrido Gálvez, Fahad Qureshi and Oscar Gustafsson, Low-Complexity Multiplierless

Constant Rotators Based on Combined Coefficient Selection and Shift-and-Add

Implementation (CCSSI), 2014, IEEE Transactions on Circuits and Systems Part 1: Regular

Papers, (61), 7, 2002-2012.

http://dx.doi.org/10.1109/TCSI.2014.2304664

Postprint available at: Linköping University Electronic Press

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-109385

http://dx.doi.org/10.1109/TCSI.2014.2304664
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-109385
http://twitter.com/?status=OA Article: Low-Complexity Multiplierless Constant Rotators Based on Combined Coefficient Se... http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-109385 via @LiU_EPress %23LiU

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 1

Low-Complexity Multiplierless Constant Rotators

Based on Combined Coefficient Selection and

Shift-and-Add Implementation (CCSSI)
Mario Garrido, Member, IEEE, Fahad Qureshi, Member, IEEE, and Oscar Gustafsson, Senior Member, IEEE

Abstract—This paper presents a new approach to design
multiplierless constant rotators. The approach is based on a
combined coefficient selection and shift-and-add implementation
(CCSSI) for the design of the rotators. First, complete freedom
is given to the selection of the coefficients, i.e., no constraints to
the coefficients are set in advance and all the alternatives are
taken into account. Second, the shift-and-add implementation
uses advanced single constant multiplication (SCM) and multiple
constant multiplication (MCM) techniques that lead to low-
complexity multiplierless implementations. Third, the design of
the rotators is done by a joint optimization of the coefficient se-
lection and shift-and-add implementation. As a result, the CCSSI
provides an extended design space that offers a larger number
of alternatives with respect to previous works. Furthermore, the
design space is explored in a simple and efficient way.

The proposed approach has wide applications in numerous
hardware scenarios. This includes rotations by single or multiple
angles, rotators in single or multiple branches, and different
scaling of the outputs.

Experimental results for various scenarios are provided. In
all of them, the proposed approach achieves significant improve-
ments with respect to state of the art.

Index Terms—Rotation, complex multiplier, combined coeffi-
cient selection and shift-and-add implementation (CCSSI), adder
minimization, multiple constant multiplication (MCM), shift-and-
add, fast Fourier transform.

I. INTRODUCTION

A
ROTATION is a transformation that describes a circular

movement with respect to a point. Many digital signal

processing algorithms calculate rotations of complex numbers

by given angles with respect to the origin. This is the case

for the fast Fourier transform (FFT) [1]–[7], the fast discrete

cosine transform (DCT) [8], [9] and lattice filters [10], [11].

A rotator is the hardware component used to calculate

rotations. There are two main types of rotators: general rotators

and constant rotators. General rotators can carry out a rotation

by any angle, which is provided as an input to the rotator.

They are usually implemented by a complex multiplier or by

the coordinate rotation digital computer (CORDIC) algorithm.

A complex multiplier typically consists of four real multipliers

and two adders. In this case, the rotation is simply calculated

by multiplying the input of the multiplier by the rotation

coefficient [12]. Conversely, the CORDIC algorithm [13]–[17]

M. Garrido, F. Qureshi and O. Gustafsson are with the Department of
Electrical Engineering, Linköping University, SE-581 83 Linköping, Sweden,
e-mails: mariog@isy.liu.se, fahadq@isy.liu.se, oscarg@isy.liu.se

Copyright c© 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

is based on breaking down the rotation angle into a series of

micro-rotations by specific angles. These micro-rotations are

carried out by means of shifts and additions, which are simple

to implement in hardware. A review of CORDIC techniques

can be found in [16].

Constant rotators calculate rotations by specific angles. They

are mainly used to calculate the twiddle factors in FFT archi-

tectures [1]–[7]. In constant rotators, the a priori knowledge of

the rotation angles allows for optimizing the implementation

of the rotator. CORDIC-based approaches for constant rota-

tors [18]–[23] are based on selecting stages of the conventional

CORDIC [18]–[20] or increasing the amount of micro-rotation

angles [21]–[23]. Multiplier-based approaches for constant

rotators [4]–[7], [24]–[27] base on techniques to optimize real-

valued constant multiplications [4]–[6], trigonometric identi-

ties [7], [24], optimization of the coefficient encoding [25],

[26], and angle generation by a base-3 system [27].

The design of constant rotators bases on two fundamental

elements: the coefficient selection and the shift-and-add im-

plementation. The success of previous approaches is mainly

due to an efficient shift-and-add implementation: On the one

hand, the techniques used in multiplier-based approaches to

implement constant multiplications as shifts and additions are

widely developed [6], [28]–[37]. On the other hand, CORDIC-

based approaches rely on using elementary angles that allow

for an efficient shift-and-add implementation.

However, the coefficient selection has hardly been taken

into account. In multiplier-based approaches the coefficients

are traditionally obtained by rounding the sine and cosine

components of the angle. However, it has been shown that an

addition-aware quantization [37] can provide better coefficient.

Likewise, the CORDIC elementary angles have been used

since the CORDIC algorithm was proposed half a century

ago, without questioning if another selection of angles might

provide better results. Now, there are results that demonstrate

the existence of better angle sets than the CORDIC one for

the FFT rotations [27].

This work overcomes the old paradigm for the design of

rotators where the main focus was put on the shift-and-add

implementation. The new perspective presented in this paper

sets the coefficient selection and the shift-and-add implementa-

tion as equally important elements in the design of the rotators.

This removes the restrictions set by previous approaches to the

coefficient selection, widening the amount of alternatives that

are explored. This enables optimized solutions that cannot be

achieved by using previous approaches.

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS

The main contributions of this work are:

• It presents a new paradigm for the design of constant

rotators that combines the coefficient selection and the

shift-and-add implementation in the design process.

• It provides a simple and efficient method to find opti-

mized rotators.

• It can be applied to solve a variety of problems with dif-

ferent demands, including single constant rotation (SCR)

and multiple constant rotations (MCR).

• Experimental results for different contexts are provided.

In all cases, the proposed approach achieves significant

improvements in area and accuracy with respect to the

current state of the art.

This paper is organized as follows. Section II introduces the

calculation of rotations in fixed-point arithmetic. Section III

reviews previous multiplierless rotators. Section IV presents

the proposed approach. Section V provides experimental re-

sults for the approach in multiple contexts. Finally, Section VI

shows the main conclusions.

II. ROTATIONS IN FIXED-POINT ARITHMETIC

A rotation of a complex number x+ jy by an angle α can

be described as

[

X
Y

]

=

[

cosα − sinα
sinα cosα

] [

x
y

]

, (1)

where X+jY is the result of the rotation. Ideally, the real and

imaginary components of the angle, cosα and sinα, should

be represented with infinite precision. However, in digital

systems, numbers must be represented with a finite number

of bits, which leads to quantization errors. Let C and S be

the coefficients that represent cosα and sinα, respectively.

If C and S use b bits in 2’s complement, then they can be

viewed as integer numbers in the range [−2b−1, 2b−1 − 1],
i.e., C, S ∈ Zb, where

Zb =
{

z ∈ Z : −2b−1 ≤ z ≤ 2b−1 − 1
}

. (2)

According to this, a rotation in a digital system can be

described as

[

XD

YD

]

=

[

C −S
S C

] [

x
y

]

, (3)

where XD + jYD is the result of the rotation and C and S
are obtained from the rotation angle as [12]

C = R · (cosα+ ǫc)
S = R · (sinα+ ǫs),

(4)

where ǫc and ǫs are the relative quantization errors of the

cosine and sine components, respectively, and R is the scaling

factor. The output XD + jYD is also scaled by R.

For constant rotations we can distinguish between a sin-

gle constant rotation (SCR) and multiple constant rotations

(MCR). These cases are explained next.

(a)

(b) (c) (d)

Fig. 1. Hardware layouts. (a) Single branch, single rotation. (b) Single branch,
multiple rotations. (c) Multiple branches, single rotation for each branch. (d)
Multiple branches, multiple rotations for each branch.

A. Single Constant Rotation (SCR)

This case refers to a rotation by a single angle, which

is shown in Fig. 1(a). In this case, the rotation error is

calculated [12] as ǫ =
√

ǫ2c + ǫ2s.

Different optimization problems can be defined for SCR

depending on the scaling required by the rotator. Thus, the

scaling can be fixed, unity or arbitrary depending on the

freedom to choose the scaling factor. In fixed scaling, R is

fixed to a specific value. Unity scaling is a particular case of

fixed scaling in which the rotation has magnitude one or, in

more general terms, R = 2q . This is equivalent to considering

that the binary point is in a different position of the binary

representation. Conversely, arbitrary scaling means that R can

take any value, i.e., no restriction is set to R. For arbitrary

scaling the approximation error is equal to the angular error

only, since R always will take on the optimal value.

B. Multiple Constant Rotations (MCR)

This case refers to multiple angles that must be optimized

together. This joint optimization happens when there is a

dependency in the scaling of the angles. Given the angles

αi, i = 1, . . . ,M , each angle must be approximated by

a complex number Pi = Ci + jSi, where Ci, Si ∈ Zb.

The set of complex numbers Pi, i = 1, . . . ,M , is called a

kernel. The error of a kernel is calculated as the maximum

of the errors of the angles [12], i.e., ǫ = maxi(ǫ(i)) =

maxi

(

√

ǫ2c(i) + ǫ2s(i)
)

, i = 1, . . . ,M .

Different optimization problems for MCR can be defined

depending on the scaling that is required and on the hardware

layout. The scaling for multiple angles is classified based on

the relation among the scaling factors of the angles. Uniform

scaling means that R is the same for all the angles, and non-

uniform scaling means that different angles may have different

scaling factors. Note that in uniform and non-uniform scaling

the scaling factor is not fixed from the beginning. Conversely,

fixed and unity set a fixed scaling factor. In this cases, the

angles can be treated independently and the problem is reduced

to several SCR problems.

Depending on the hardware layout, an MCR problem can

target a single rotator that is reconfigured to calculate multiple

GARRIDO et al.: LOW-COMPLEXITY MULTIPLIERLESS CONSTANT ROTATORS 3

rotations (Fig. 1(b)), or several rotators in parallel that require

the same scaling with one (Fig 1(c)) or several rotations

(Fig. 1(d)) each. The case in Fig. 1(b) is typical in feedback

FFT architectures [2]. The case in Fig 1(c) is typical in fully

parallel FFT architectures and in some DCT architectures [9].

Finally, the case in Fig. 1(d) is typical in feedforward FFT

architectures [1]. Note that these layouts represent the opti-

mization problem that must be solved, but not the final solution

to it, as the rotators will consist of adders and multiplexers

instead of the multipliers and memories shown in Fig. 1.

III. REVIEW OF MULTIPLIERLESS ROTATORS

In the literature, C and S are usually considered as numbers

in the range [−1, 1]. However, as C and S are quantized to

a certain number of bits, we find it more natural to consider

them as integers in Zb, as explained in the previous section. In

this section we use this convention to review previous works.

For general rotations, the CORDIC algorithm [13]–[17]

breaks down the rotation angle into a series of k micro-

rotations by the angles αk = ± tan−1(2−k). For each stage,

k, the micro-rotation only uses two adders and calculates
[

XD

YD

]

=

[

2k −δk
δk 2k

] [

x
y

]

, (5)

where δk ∈ {−1, 1} determines the direction of the rotation,

and the scaling factor of the stage is R(k) =
√
22k + 1.

For constant rotators, the extended elementary angle set

(EEAS) CORDIC [21] considers the elementary angles

αk = tan−1(δk2
−ak + γk2

−bk), where δk, γk ∈ {−1, 0, 1}
and ak, bk ∈ N. Assuming that bk > ak and ck = bk −ak, the

micro-rotation at stage k is defined by
[

XD

YD

]

=

[

2bk −(δk2
ck + γk)

δk2
ck + γk 2bk

] [

x
y

]

, (6)

which requires four adders.

In the mixed-scaling-rotation (MSR) CORDIC [22], [23]

the number of adders per stage is 2 · (Ik + Jk + 1), and each

stage calculates a rotation by

[

XD

YD

]

=

Ik−1
∑

i=0

δki2
aki −

Jk−1
∑

j=0

γki2
bkj

Jk−1
∑

j=0

γki2
bkj

Ik−1
∑

i=0

δki2
aki

[

x
y

]

, (7)

where δki, γki ∈ {−1, 0, 1} and aki, bki ∈ N. Contrary to the

conventional CORDIC, in both EEAS CORDIC and MSR-

CORDIC, the scaling depends on the rotation angle. Thus,

both approaches present solutions to compensate the scaling.

Other approaches for constant rotations [18]–[20] suggest to

select a subset of CORDIC stages to approximate the rotation

angle. This reduces both the rotation error and the number of

micro-rotation stages.

Another alternative is to consider an elementary angle set

that is different to that of the CORDIC. This is done in [27],

where all the rotations are generated by combining a small

set of FFT angles. This set fits the rotation angles of the FFT

better than that of the CORDIC, which results in a reduction in

the rotation error, number of adders and latency of the circuit.

Rotators based on techniques to optimize real constant

multiplications [4]–[6] follow a different approach. In this case

the coefficients C and S are obtained by quantizing cosα and

sinα to a certain number of bits, b. This is usually done by

C = ⌊2b cosα⌉
S = ⌊2b sinα⌉, (8)

where ⌊·⌉ represents a rounding operation, leading to
[

XD

YD

]

=

[

⌊2b cosα⌉ −⌊2b sinα⌉
⌊2b sinα⌉ ⌊2b cosα⌉

] [

x
y

]

. (9)

The multiplication by C and S is implemented as shift-and-

add operations. A typical approach is to use the canonical

signed digit (CSD) representation [6], [28]. This reduces the

number of non-zero digits with respect to the purely binary

representation and, therefore, the number of adders. Further

simplification is achieved by single constant multiplication

(SCM) techniques [30], [31]. They exploit the redundancy in

the multiplication by a single constant. Additional reduction

in complexity and improvements in accuracy can be obtained

by the addition-aware coefficient quantization method [37].

Finally, as the input of a rotator is multiplied by the real

and imaginary parts of the coefficient simultaneously, both

multiplications can be optimized together [36]. This is done

by multiple constant multiplication (MCM) techniques [32]–

[35].

Finally, approaches based on trigonometrical identities [7],

[24] search for expressions that are shared among the different

angles. This results in a simplified rotator that includes a

reduced number of adders, multiplexers and real constant

multiplications. For instance, ∀i ∈ Z, any angle α = i · π/8
can be calculated with real multiplications by only cos(π/8)
and/or sin(π/8) [24]. These real constant multiplications are

implemented by CSD [7] or SCM [24] techniques.

From the previous discussion we can note that previous

approaches restrict the set of coefficients used for the rotations:

According to (5), the CORDIC algorithm only calculates

rotations by the coefficients C + jS = 2k + jδk = 2k ± j.

For the EEAS CORDIC in (6) the coefficients only take values

C+jS = 2bk +j(δk2
ck +γk). The MSR-CORDIC in (7) only

considers values for C and S whose CSD representations have

I and J non-zero terms, respectively. And in multiplier-based

rotators C + jS = ⌊2b cosα⌉+ j⌊2b sinα⌉, according to (9).

Table I compares previous approaches in terms of coefficient

selection and shift-and-add implementation, which defines the

design space covered by the approach, i.e., the amount of

alternative solutions that it explores. Table I also summarizes

the optimization problems that each approach can solve ac-

cording to Section II, and positions the proposed method, to

be elaborated further in the next section.

IV. PROPOSED MULTIPLIERLESS CONSTANT ROTATORS

The proposed approach presents a new perspective to the

design of multiplierless rotators. Contrary to previous ap-

proaches, the proposed approach does not set any restrictions

to C+jS a priori. Instead, the selection of the best coefficients

C + jS is done as a part of the design process, where it is

combined to the shift-and-add implementation (CCSSI).

4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS

TABLE I

COMPARISON OF DIFFERENT APPROACHES TO IMPLEMENT ROTATORS BASED ON SHIFT-AND-ADD OPERATIONS.

DESIGN SPACE OPTIMIZATION PROBLEM

APPROACH Coefficient Selection Shift-and-Add Optimization Design Space Size Scaling Angle Set

General Rotators: angles not known a priori.

Conventional CORDIC [13]–[15] Small High (Direct) Small Uniform General Rotations

Complex Multiplier Small Low Small Unity General Rotations

Constant Rotators: angles known a priori.

Lifting Schemes [29] Small Medium (CSD) Small Unity SCR

EEAS CORDIC [21] Medium High (Direct) Small Unity/Arbitrary SCR

MRS-CORDIC [22], [23] Large Medium (CSD) Medium Unity SCR

CORDIC for Fixed Angles [18]–[20] Medium High (Direct) Medium Unity/Arbitrary SCR

Trigonometric Identities (CSD) [7] Medium Medium (CSD) Medium Unity MCR for FFT

Trigonometric Identities (SCM) [24] Medium High (MCM) Medium Unity MCR for FFT

Base-3 Rotator [27] Medium High (SCM, MCM) Medium Uniform MCR for FFT

Rotators Using CSD [4], [6] Small Medium (CSD) Small Unity MCR

Rotators Using MCM [5] Small High (MCM) Small Unity MCR

CCSSI (Proposed) Maximum (Complete Freedom) High (SCM, MCM) Large Any SCR and MCR

A. Design Process

The proposed approach can solve SCR and MCR problems.

The optimization problem is defined by the angle set, the scal-

ing and the hardware layout. The goal is to obtain coefficients

with the smallest rotation error and the smallest number of

adders.

Once the optimization problem has been defined, the design

method takes as an input the word length of the coefficient

search space, b, the maximum allowed error, ǫmax, and the

number of adders allowed to perform the rotations. In case

of fixed or unity scaling, the radius, Rfixed, is provided. The

computation of the rotation error, ǫ, is done as discussed in

Section II, while the computation of the number of adders

is discussed in Sections IV-B1 and IV-B2. When explaining

the method, we will in parallel consider the design of two

different scenarios: An SCR rotator for the angle α = 38◦

and an MCR rotator for the angles α1 = 14◦ and α2 = 38◦.

In the latter case, both angles shall have the same scaling. The

design examples will be performed using a word length of five

bits, i.e., Z5 = {−16, . . . , 15} according to (2), a maximum

error ǫmax = 5× 10−2, and using at most four adders.

Step 1: First, the complete design space, consisting of all

possible finite word length values is initialized, as illustrated

in Fig. 2(a) for our example. Here, there are 22b−2 different

coefficients to consider for each angle, and (22b−2)M cases

for a kernel of M angles.

Step 2: Select all possible coefficients that differ at most an

angle δ = sin−1(ǫmax) from the required angle(s), i.e.,
∣

∣

∣

∣

tan−1

(

Si

Ci

)

− αi

∣

∣

∣

∣

< δ (10)

This is illustrated in Fig. 2(b). Naturally, for the SCR case,

only the coefficients approximating 38◦ will be kept. After

this step, the number of alternative coefficients for each angle

is reduced to about
tan(δ)

max(sinαi,cosαi)

(

22b−2
)

.

Step 3: If the scaling is fixed, such as for unity scaling,

the search space is reduced further by selecting coefficients

whose scaling factor is close to Rfixed. Any coefficient whose

scaling differs more than Rfixedǫmax from Rfixed is discarded.

This is illustrated in Fig. 3 for the case of unity scaling, i.e.,

Rfixed = 2q . It should be noted that all coefficients within the

0 5 10 15
0

5

10

15

C

S

(a)

0 5 10 15
0

5

10

15

C

S

(b)

0 5 10 15
0

5

10

15

C

S

(c)

0 5 10 15
0

5

10

15

C

S

(d)

Fig. 2. Overview of the proposed method using the design example. (a) Initial
coefficient space and required angles (Step 1). (b) Remaining coefficients after
pruning based on the angle (Step 2). (c) Remaining coefficients after pruning
based on the number of adders (Step 4). (d) Valid coefficients after forming
kernels (Step 5).

2q−1 region will also be present in the 2q region, although

multiplied with a factor of two, which from a shift-and-add

perspective is not significant. The number of coefficients in a

region is about 4R2
fixedǫ

2
max.

Step 4: The number of adders required to implement each

rotation is determined as explained in Section IV-B1. This

can be stored in a table for all pairs of C and S to speed up

the computation of this step. Coefficients which require more

than the allowed number of adders are discarded. The resulting

coefficients for the example are illustrated in Fig. 2(c). To the

best of the authors knowledge there are no known equations on

how many adders are needed on average to realize a coefficient

GARRIDO et al.: LOW-COMPLEXITY MULTIPLIERLESS CONSTANT ROTATORS 5

Fig. 3. Coefficient selection for unity scaling.

TABLE II

Step 5 – SCR: REMAINING COEFFICIENTS FOR α = 38◦ , ACCORDING TO

FIG. 2(C).

α = 38◦ R ǫ Add.

4 + j3 5.00 1.97× 10−2 4
5 + j4 6.40 1.15× 10−2 4
8 + j6 10.00 1.97× 10−2 4
10 + j8 12.81 1.15× 10−2 4

pair as a function of magnitude, which would be required to

estimate the number of remaining coefficients after this step.

Step 5 – SCR: For the SCR case, the algorithm now has

provided a number of candidate coefficients which all are valid

based on the specification. Hence, one can directly evaluate

the coefficients for α = 38◦ in Fig. 2(c) to come up with the

most suitable coefficient. Typically the one with the smallest

rotation error is selected as the number of adders are within

the specification boundaries, but different trade-offs can be

considered. The candidates are listed in Table II. It should

be noted that there exist power of two multiples of the same

coefficient. Hence, for the SCR case it is actually enough to

keep coefficients in which at least one part is odd after Step

2 (Step 3 if the scaling is fixed).

Step 5 – MCR: For the MCR case, combinations which

have approximately the same radius are found. These can be

initially pruned on the fact that no two coefficients whose radii

differ more than twice the maximum error can form a kernel

meeting the specification. For these candidates the maximum

error is determined and those meeting the specification are

kept. For the example, the remaining candidate coefficients

are illustrated in Fig. 2(d). Depending on the hardware layout

constraints, as further discussed in Section IV-B2, further prun-

ing can be done. If not, the final set of candidate coefficients

are obtained. For the example, these are listed in Table III.

Here, it can be noted that some coefficients where both parts

are even are used, and, hence, the same simplification that was

possible for SCR is not possible. Instead, the corresponding

simplification is that in a kernel, at least one of the included

coefficients should have an odd part.

Step 6: Implement the rotator. For SCR the implementation

is straightforward from the shift-and-add realization. This is

TABLE III

Step 5 – MCR: REMAINING KERNELS ACCORDING TO FIG. 2(D).

α1 = 14◦ α2 = 38◦ R ǫ Add.

5 + j 4 + j3 5.10 4.69× 10−2 4
9 + j2 8 + j6 9.59 4.66× 10−2 4
12 + j3 10 + j8 12.61 1.93× 10−2 4

(a) (b)

Fig. 4. Realization of the rotators by 14◦ and 38◦ from the example in
Fig. 2. (a) Rotator by 14◦ using 12+ j3. (b) Rotator by 38◦ using 10+ j8.

Fig. 5. Rotator that can rotate either 14◦ or 38◦ using 4 adders.

illustrated for the α = 38◦ case in Fig. 4(b). For MCR, if

several rotation will be mapped to the same rotator, adder

sharing, as discussed in Section IV-B2, should be applied. In

Fig. 4 the two different realizations for α1 = 14◦ and α2 =
38◦ are shown, while the merged rotator is shown in Fig. 5.

B. Shift-and-Add Implementation

1) Number of Adders for SCR: The shift-and-add imple-

mentation depends on the rotation angle. In general, a rotation

by P = C + jS is calculated according to Fig. 6(a) and the

total number of adders of the shift-and-add implementation is

AR(P) = 2 · AM(C, S) + 2. (11)

where AM(C, S) is the number of adders needed to multiply

a real number by C and S simultaneously.

If the rotation coefficient is real, i.e., P = C, the rotator

is reduced to two real multiplications. This case is shown in

Fig. 6(c), and the number of adders is

AR(P) = 2 · AM(C). (12)

where AM(C) is the number of adders needed to multiply by

a real number C.

Likewise, if the coefficient is a pure imaginary number, i.e.,

P = jS, the rotation has two real constant multiplications as

shown in Fig. 6(b), and the number of adders is

AR(P) = 2 · AM(S). (13)

Finally, if |C| = |S|, which is true for angles α = m ·π/2+
π/4, the structure of the rotator is shown in Fig. 6(d) and the

number of adders is

AR(P) = 2 · AM(C,C) + 2 = 2 · AM(C) + 2. (14)

These special cases require less adders than the general case

in Fig. 6(a). This fact is taken into account in order to make

a better use of the adders and design simpler rotators.

6 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS

(a)

(b)

(c)

(d)

Fig. 6. Structure of the rotator for the cases in Table IV. (a) General case
for which P = C + jS. (b) Rotation by P = jS. (c) Rotation by P = C.
(d) Rotation by P = C + jC.

TABLE IV

ADDER COST OF A ROTATION BY AN ANGLE α.

ANGLE COEFFICIENT ADDER COST

α = m · π P = C 2 · AM(C)
α = m · π + π/2 P = jS 2 · AM(S)

α = m · π/2 + π/4 P = C ± jC 2 · AM(C) + 2
Other angles P = C + jS 2 · AM(C, S) + 2

According to (11)–(14), the number of adders of a rotation

can be obtained directly from the number of adders for a

real constant multiplication by C, S or both of them. The

adder cost of a rotation is summarized in Table IV as a

function of the rotation angle. SCM techniques [30], [31] are

used to calculate the adder cost of multiplications by singles

real constant represented by AM(C) and AM(S), and MCM

techniques [32]–[35] are used for multiplications by two real

constants represented by AM(C, S).
2) Number of Adders for MCR: The layout of the rotators

influences the total number of adders. For a single angle

in Fig. 1(a), the number of adders is obtained as explained

in Section IV-B1. For multiple branches with one angle per

rotator as in Fig 1(c), the total number of adders of the kernel,

AK, is equal to the sum of the adders in all the rotators, i.e.,

AK =
∑

p

AR(Pp), (15)

where Pp represents the rotation coefficient in branch p.

When data flows through a single branch and there are

multiple rotation angles as in Fig. 1(b), only one coefficient

is required at a time. This allows for merging the rotations

and sharing the adders among them by using additional

multiplexers. Thus, the total number of adders of the kernels

is set by the coefficient with the highest adder cost, i.e.,

AK = max
i

{AR(Pi)} , (16)

where Pi represents the coefficients that are merged. Most

rotators admit different implementations, as sometimes addi-

tions and subtractions can be carried out in different orders.

This allows for finding shared terms among the coefficients

that reduce the number of multiplexers. For instance, both

Fig. 4(a) and 4(b) include a 1-bit shift at the input. Therefore,

the circuit in Fig. 5 does not need any multiplexer for the

corresponding path. When the number of angles is large,

the rotator may require more multiplexers to merge them.

However, the amount of multiplexers can be reduced by not

merging all the rotations, at the cost of a larger number of

adders. For instance, the rotator in Fig. 5 has 4 adders and

6 multiplexers. Instead, the same rotator can be implemented

with 8 adders and 2 multiplexers by implementing the circuits

in Figs. 4(a) and 4(b) and multiplexing their outputs. An

intermediate solution with 6 adders and 4 multiplexers is also

possible.

Finally, the case of several branches and several rotations

in each branch (Fig. 1(d)) is a combination of previous ones:

Each rotator requires the maximum number of adders among

the angles that it has to rotate, and the total number of adders

is the sum of the adders of all the rotators, i.e.,

AK =
∑

p

max
i

{AR(Pp,i)} , (17)

where Pp,i is the ith coefficient of the pth branch.

V. EXPERIMENTAL RESULTS

This section presents experimental results of the proposed

approach in several contexts. The experiments use the MCM

algorithms in [32] and [33] to calculate the number of adders,

and the best result among them is selected. For SCM calcula-

tions, the optimum results from [30] have been considered.

The search is done for coefficients that can be represented

with word length up to 20 bits. This provides rotators with

enough accuracy for most applications. If needed, higher

accuracy can be achieved by increasing the maximum word

length used in the search.

A. SCR with Arbitrary Scaling

For SCR with arbitrary scaling, a comparison is done based

on the example in [20]. The work in [20] is based on finding

the optimal sequence of CORDIC rotations. In the example,

rotators for all odd degree angles between 1◦ and 45◦ are

found. Two measures are used for comparison. First, the

number of adders required to obtain an angular error smaller

than 0.04◦ is shown in Fig. 7. As can be seen, the proposed

approach requires six adders for two angles (23◦ and 27◦)

where the approach in [20] only requires four adders. However,

there are seven angles where the approach in [20] requires

eight adders (four CORDIC rotations), where the proposed

approach only requires six adders. Hence, both the maximum

and average number of adders are reduced using the proposed

approach. Second, the maximum angular errors obtained using

a given number of adders are shown in Table V. Clearly,

the proposed approach results in a significantly smaller error,

especially when more adders are allowed.

GARRIDO et al.: LOW-COMPLEXITY MULTIPLIERLESS CONSTANT ROTATORS 7

TABLE VI

ANGLES WITH UNITY SCALING, 10 ADDERS.

MSR-CORDIC [23] PROPOSED

TF P0 P1 P = P0 · P1 ǫ WLE WL P ǫ WLE WL

W 1

128
32 + j511 55 − j4096 2094816 − j102967 9.57 × 10−5 14.85 21 4091 − j201 1.68 × 10−5 17.36 13

W 2

128
256 + j7 2031 − j256 521728 − j51319 1.50 × 10−4 14.20 19 8152 − j803 6.77 × 10−5 15.35 14

W 3

128
129 − j16 126 − j3 16206 − j2403 7.50 × 10−5 15.20 14 259249 − j38432 2.53 × 10−4 13.45 19

W 4

128
4097 − j1024 62 + j3 257086 − j51197 2.25 × 10−4 13.62 18 64287 − j12784 1.58 × 10−4 14.13 17

W 5

128
513 + j2048 −j3973 8136704 − j2038149 6.21 × 10−5 15.47 23 127147 − j31852 3.91 × 10−5 16.14 18

W 6

128
35 56 − j17 1960 − j595 2.59 × 10−4 13.41 11 3920 − j1189 9.09 × 10−5 14.92 13

W 7

128
31 − j4 4097 − j896 123423 − j44164 1.11 × 10−4 14.61 17 964 − j345 1.40 × 10−4 14.30 11

W 8

128
30 − j 511 − j192 15138 − j6271 9.81 × 10−5 14.82 14 7568 − j3135 5.19 × 10−5 15.73 14

W 9

128
16 + j33 4 − j447 14815 − j7020 9.44 × 10−4 11.55 14 7408 − j3503 3.13 × 10−4 13.14 14

W 10

128
15 − j1024 31 + j56 57809 − j30904 2.38 × 10−4 13.54 16 3612 − j1931 9.38 × 10−5 14.88 13

W 11

128
126 − j 56 − j33 7023 − j4214 5.24 × 10−4 12.40 13 28101 − j16856 3.39 × 10−4 13.03 16

W 12

128
257 − j16 55 − j32 13623 − j9104 9.47 × 10−5 14.87 14 54495 − j36414 8.60 × 10−5 15.01 17

W 13

128
8 − j7 384 + j31 3289 − j2440 2.30 × 10−4 13.59 12 6577 − j4880 3.51 × 10−4 12.98 14

W 14

128
2 + j7 -56 − j129 791 − j650 6.64 × 10−4 12.06 10 6334 − j5199 3.10 × 10−4 13.16 14

W 15

128
48 − j 129 − j112 6080 − j5505 1.31 × 10−3 11.07 13 1517 − j1376 3.90 × 10−4 12.82 12

W 16

128
−j193 15 + j15 2895 − j2895 4.52 × 10−4 12.61 12 46341 − j46336 7.55 × 10−5 15.19 17

0 5 10 15 20 25 30 35 40 45
0

5

10

Angle

A
d
d
er

s

Constant CORDIC [20]

Proposed

Fig. 7. Number of adders required to obtain an angular error smaller than
0.04◦ for angles 1◦, 3◦, 5◦, . . . , 45◦.

TABLE V
MAXIMUM ANGULAR ERROR IN DEGREES USING A GIVEN NUMBER OF

ADDERS FOR ANGLES 1◦, 3◦, 5◦, . . . , 45◦ .

Adders Constant CORDIC [20] Proposed

4 1.875 1.31
6 n/a 0.0271
8 0.037 8.54× 10−4

10 n/a 5.37× 10−6

12 ∼ 5× 10−4 5.08× 10−9

B. SCR with Unity Scaling

For SCR with unity scaling, Table VI compares the pro-

posed approach with the MSR-CORDIC [23] for the twiddle

factors W i
128 = cos(2πi/128)−j·sin(2πi/128), i = 1, . . . , 15.

The MSR-CORDIC consists of two stages in series with

coefficients P0 and P1, leading to a rotation by a coefficient

P = P0 ·P1. Conversely, the proposed approach uses a single

stage. In both approaches, the scaling of each angle is very

close to a power of two, 2q , which provides unity scaling. The

rotation error is the distance from the complex coefficient to

2k · W i
128. The error is expressed in terms of effective word

length (WLE), which is defined as the number of bits of the

output that are guaranteed to be accurate, and is calculated as

WLE = − log2
ǫ

2
√
2
= − log2 ǫ+

3

2
. (18)

Finally, the table includes the coefficient word length (WL).

The results of both methods consider rotators that use at

most 10 adders. The results for the MSR-CORDIC are taken

from Table III in [23], and represented as C + jS instead of

numbers in the range [−1, 1]. By comparing the rotation error

in both approaches, the maximum rotation error is 1.31×10−3

for the MSR-CORDIC and 3.90 × 10−4 for the proposed

approach, i.e., the proposed approach reduces the maximum

rotation error by a factor of 3.36. The mean error is also

reduced from 3.46×10−4 in the MSR-CORDIC to 1.73×10−4

in the proposed approach, which is a reduction of 50%.

C. MCR with Uniform Scaling

The FFT calculates rotations by the twiddle factors W i
L =

e−j·2πi/L, i = 0, . . . , L− 1. The number of angles in the set,

L, is usually a power of two and its value depends on the

FFT stage, as well as on the radix and decomposition [1], [4],

[38]. Apart from W4, which only involves trivial rotations [1]

and is very simple to implement, W8, W16 and W32 are the

most common twiddle factors in FFT architectures: Radix-2

FFTs of size N ≥ 32 calculate W8, W16 and W32 rotations,

a 4096-point radix-23 FFT needs W8 rotators at four stages

of the architecture, and a 4096-point radix-24 FFT needs W16

rotators at three stages [1], [38].

The twiddle factors are specific sets of angles generated

by dividing the circumference in L equal parts. This leads to

multiple symmetries in the complex plane. As a result, for an

L-point kernel only M = L/8+1 angles in the range [0, π/4]
need to be considered. The rest of rotations can be calculated

from those in [0, π/4] by interchanging the real and imaginary

components of the input and output data and/or the signs of

the outputs. According to this and following the criterion of

previous works, we present the results and the circuits for

rotations in the range [0, π/4]. However, it is important to

keep in mind that a circuit that computes the whole kernel

in [0, 2π] may require two additional real adders, which are

equivalent to a complex adder.

Generally, a scaling in the rotations of the FFT is permissi-

ble, as long as it is the same for all the data [12]. Therefore,

8 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS

4 6 8 10 12 14 16 18 20
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

R
o

ta
ti

o
n

 e
rr

o
r,

 ε

Coefficient Word Length (Bits)

Proposed, 4 adders

Proposed, 6 adders

Proposed, 8 adders

Proposed, 10 adders

Non−scaled

Upper bound

Lower bound

Fig. 8. Error of the proposed low-complexity rotators for an 8-point kernel
(W8) as a function of the word length and the number of adders.

4 6 8 10 12 14 16 18 20
10

−8

10
−6

10
−4

10
−2

10
0

R
o

ta
ti

o
n

 e
rr

o
r,

 ε

Coefficient Word Length (Bits)

Proposed, 4 adders

Proposed, 6 adders

Proposed, 8 adders

Proposed, 10 adders

Non−scaled

Upper bound

Lower bound

Fig. 9. Error of the proposed low-complexity rotators for a 16-point kernel
(W16) as a function of the word length and the number of adders.

uniform scaling is considered in this experiment. Likewise,

this experiment assumes the layout of a single branch with

multiple rotations shown in Fig. 1(b).

1) Obtaining the Kernels: Figures 8, 9 and 10 show the

proposed results for W8, W16 and W32, respectively. The

figures show the trade-off between rotation error and number

of adders. They include the upper and lower error bounds,

and the error for non-scaled coefficients. The upper bound is

the worst case approximation error corresponding to one half

of the weight of the least significant bit (LSB) for both real

and imaginary parts. This upper bound shows the points for

which the effective word length is equal to the word length

of the coefficients, i.e., WL = WLE . The lower bound is the

minimum error that can be achieved for a given incremental

word length. This lower bound is provided in [12]. Finally,

the error for non-scaled coefficients is the error of the kernels

when the coefficients are simply obtained by rounding the sine

and cosine of the angle to the closest values. The search has

been done for coefficient word lengths up to 20 bits.

The upper and lower bounds and the case of non-scaled

coefficients assume a full complex multiplier without adder

optimization. Therefore, any result below the non-scaled case

improves it in both accuracy and number of adders. For

4 6 8 10 12 14 16 18 20
10

−8

10
−6

10
−4

10
−2

10
0

R
o

ta
ti

o
n

 e
rr

o
r,

 ε

Coefficient Word Length (Bits)

Proposed, 4 adders

Proposed, 6 adders

Proposed, 8 adders

Proposed, 10 adders

Non−scaled

Upper bound

Lower bound

Fig. 10. Error of the proposed low-complexity rotators for a 32-point kernels
(W32) as a function of the word length and the number of adders.

X=543x
x

4

71

5

y

4

71

5

X=384x−384y

Y=384y+384x
Y=543y

(a)

1

Y=577y
Y=408y+408x

X=408x−408y
X=577x

x

9

6

4

3

9

6

4

3

y

1

(b)

Fig. 11. Circuits for the calculation of W8 rotations. (a) Kernel [543, 384+
j384], 4 adders. (b) Kernel [577, 408 + j408], 6 adders.

example, in Fig. 8 a W8 kernels with WL = 14 that uses

non-scaled coefficients achieves an error of 5.34 × 10−5 and

requires four real multipliers and two adders. Conversely, the

proposed approach only needs 6 adders to provide an error of

4.64×10−8, i.e., more than three orders of magnitude smaller.

Table VII summarizes the most relevant results from

Figs. 8, 9 and 10. The first columns of the table show

the coefficients that are used for the angles of the kernel,

whereas the following columns include the parameters of the

kernel: normalized error (ǫ), coefficient word length (WL) and

number of adders. The error is provided both in linear units

and in effective word length, WLE . Those kernels marked

with (⋆) achieve the lowest rotation error for their word length.

The table shows various efficient alternatives to calculate

accurate rotations with few adders. For instance, W8 with

accuracy of 29.35 bits can be calculated with only 6 adders.

For W16 an accuracy of 22.69 bits is achieved with 10 adders.

Compared to a general complex multiplier, this corresponds

to two adders per real multiplier.

GARRIDO et al.: LOW-COMPLEXITY MULTIPLIERLESS CONSTANT ROTATORS 9

TABLE VII

DESIGNED LOW-COMPLEXITY ROTATORS FOR FFT.

COEFFICIENTS PROPERTIES

TF 0 π/16 π/8 3π/16 π/4 ǫ WLE WL Add.

W8

7 - - - 5 + j5 5.05 × 10−3⋆ 9.13 4 4

17 - - - 12 + j12 8.67 × 10−4⋆ 11.67 6 4

543 - - - 384 + j384 5.34 × 10−5 15.69 11 4

577 - - - 408 + j408 7.51 × 10−7⋆ 21.84 11 6

6149 - - - 4348 + j4348 4.64 × 10−8 25.86 14 6

196587 - - - 139008 + j139008 4.14 × 10−9 29.35 19 6

19601 - - - 13860 + j13860 1.30 × 10−9⋆ 31.02 16 8

208885 - - - 147704 + j147704 8.02 × 10−11 35.04 19 8

275807 - - - 195025 + j195025 6.57 × 10−12⋆ 38.65 20 10

W16

85 - 80 + j32 - 60 + j60 1.25 × 10−2 7.82 8 4

623 - 576 + j238 - 441 + j441 8.70 × 10−4 11.67 11 6

669 - 618 + j256 - 473 + j473 5.86 × 10−5 ⋆ 15.56 11 8

8027 - 7416 + j3072 - 5676 + j5676 2.21 × 10−5 16.97 14 8

21059 - 19456 + j8059 - 14891 + j14891 2.67 × 10−6 20.01 16 10

349093 - 322520 + j133592 - 246846 + j246846 4.19 × 10−7 22.69 20 10

513764 - 474656 + j196609 - 363286 + j363286 8.51 × 10−8 24.98 20 12

W32

75 72 + j16 72 + j32 64 + j40 56 + j56 4.08 × 10−2 6.12 8 4

173 170 + j34 160 + j66 144 + j96 122 + j122 2.52 × 10−3 10.13 9 6

209 205 + j41 193 + j80 174 + j116 148 + j148 1.06 × 10−3 ⋆ 11.39 9 8

1159 1137 + j226 1071 + j444 964 + j644 820 + j820 3.02 × 10−4 13.19 12 8

88600 86912 + j17280 81856 + j33919 73680 + j49248 62660 + j62660 1.79 × 10−4 13.95 18 8

21197 20790 + j4136 19584 + j8112 17624 + j11776 14988 + j14988 3.55 × 10−5 16.28 16 10

142009 139280 + j27704 131199 + j54344 118076 + j78896 100415 + j100415 3.55 × 10−6 19.60 19 12

⋆: Kernels labeled with (⋆) reach the minimum achievable error for their word length.

6

7

5

131

7

4

16

6

7

5

131

7

4

3

X=322520x−133592y
X=246846x−246846y

X=349093x

16

3

3

3

Y=349093y
Y=322520y+133592x
Y=246846x+246846y

y

2

4

x

2

4

Fig. 12. Circuit for the calculation of W16 rotations. Kernel [349093,
322520 + j133592, 246846 + j246846], 10 adders.

2) Shift-and-Add Implementation: Figures 11 and 12 show

the hardware circuits for some kernels in Table VII. They

consists of adders, multiplexers and shifters. In all the im-

plementations the rotation angle is selected using the control

signals of the multiplexers. The different output configurations

are shown by the symbols �, © and △. For the FFT the

control signals can be generated directly from the bits of a

counter [14]. This removes the necessity of a memory to store

the rotation coefficients.

Figure 11 shows two circuits for W8, i.e., it considers the

angles α1 = 0 and α2 = π/4. Figure 11(a) shows the kernel

[543, 384+ j384]. This circuit requires 4 adders and achieves

an accuracy of 15.69 bits, as shown in Table VII. Depending

on the configuration of the multiplexers, the circuit multiplies

the input signal either by 543 or by 384+j384. These multipli-

cations are carried out by taking into account the shift-and-add

representations of the numbers, i.e., 543A = 25 ·(24A+A)−A
and 384A = 27 · (21A+A).

Figure 11(b) shows another option for W8. In this case, the

circuit considers the kernel [577, 408 + j408]. This circuit

requires two adders more than that in Fig. 11(a). This reduces

the rotation error to 7.51 × 10−7, i.e., approximately two

orders of magnitude or, equivalently, six correct fractional

bits. As a result, both circuits in Figure 11 are efficient

implementations for W8, and provide a trade-off between

accuracy and hardware resources.

Finally, Fig. 12 shows an example for W16. This ker-

nel consists of the coefficients [349093, 322520 + j133592,

246846 + j246846]. The kernel achieves a precision of 22.69

correct bits by using 10 adders, as shown in Table VII.

3) Comparison: Figures 13 and 14 compare the proposed

rotators from Table VII with other multiplierless rotators for

W16 and W32 in the literature. The previous approaches

include rotators based on MCM [5]1, Booth encoding [25],

trigonometric identities [7], [24], base-3 rotators [27], MSR-

CORDIC [23]2 and non-redundant CORDIC [13]. The number

of adders in the figures are for rotations in the range [0, π/4].
As said before, two more half adders are needed to calculate

rotations in [0, 2π].
Figure 13 shows the results for W16. Except for the

CORDIC algorithm, which is a general rotator, all the ap-

proaches are constant rotators that offer ad-hoc solutions for

W16, leading to more accurate results. Among them, the

proposed approach achieves less error and requires less adders

1For the results presented here, the algorithm in [33] is used, which
generally gives fewer adders compared to the algorithm used originally [5].

2The W16 and W32 kernels are obtained by combining the W i

128
rotations

in Table VI: W16 corresponds to i = 0, 8, 16 and W32 corresponds to i =
0, 4, 8, 12, 16.

10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS

0 5 10 15 20 25 30
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R
o
ta

ti
o
n
 e

rr
o
r,

 ε

Adder cost

MCM−based [5]

R. Booth [25]

Trig. Id. [7]

Trig. Id. [24]

Base−3 [27]

CSD−based [4]

MSR−CORDIC [23]

CORDIC [13]

Proposed (Table V)

Fig. 13. Error versus number of adders of different W16 rotators.

0 5 10 15 20 25 30 35
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R
o
ta

ti
o
n
 e

rr
o
r,

 ε

Adder cost

MCM−based [5]

R. Booth [25]

Trig. Id. [24]

Base−3 [27]

MSR−CORDIC [23]

CORDIC [13]

Proposed (Table V)

Fig. 14. Error versus number of adders of different W32 rotators.

than previous approaches. Quantitatively, it reduces the error

more than one order of magnitude in kernels of 6 and 8

adders and more than three orders of magnitude for 10 adders.

Furthermore, in order to meet the same precision as the

proposed 10-adder kernel, previous approaches need at least

18 adders, i.e, almost twice the number of adders. For W32

rotators in Fig. 14, the proposed approach also outperforms

previous ones with significant reductions in adders and error.

For the evaluation of the total hardware cost, Table VIII

includes the number of 2-input multiplexers used in the

rotators. The table considers rotators for which WLE ≥ 16 or,

otherwise, the best cases provided. The hardware cost is calcu-

lated considering that the area of a multiplexer is one third of

the area of an adder [39], i.e., HW Cost = Adders + Mux/3.

The latency of the circuits is calculated as the number of

adders in the critical path. The proposed rotators are taken

from Table VII. The proposed 8-adder rotator has the lower

latency and hardware cost among all the approaches. The

proposed 10-adder rotator achieves the highest accuracy with

low hardware cost and low latency.

TABLE VIII

COMPARISON OF W16 ROTATORS FOR WLE ≥ 16 BITS OR BEST

RESULTS PROVIDED.

Approach Mux. Add. HW Cost Lat. Error WLE

Base-3 [27] 16 16 21.33 8 5.02e-7 21.58

CSD-based [4] 14 30 34.67 5 1.31e-4 14.31

Trig. Id. [24] 8 16 18.67 12 4.94e-6 19.12

MSR-CORDIC [23] 14 10 14.67 4 2.73e-4 13.33

R. Booth [25] 28 22 31.33 4 1.62e-5 17.41

MCM-based [5] 8 18 20.67 4 1.62e-5 17.41

Proposed, 8 adders 16 8 13.33 4 2.21e-5 16.97

Proposed, 10 adders 18 10 16 5 4.19e-7 22.69

(Fig. 12)

VI. CONCLUSION

This paper presents a new approach to design low-

complexity multiplierless constant rotators, based on combined

coefficient selection and shift-and-add implementation. This

combination increases the number of alternatives in the design,

which widens the design space with respect to previous works.

The proposed approach applies to many hardware scenarios

where rotations are carried out. These scenarios include rota-

tions by a single angle or multiple angles, rotators in a single or

multiple branches, and uniform, non-uniform or unity scaling.

Experimental results for different contexts are provided. In

all cases, significant reductions in complexity and improve-

ments in accuracy are observed with respect to state of the

art.

VII. ACKNOWLEDGMENT

The authors would like to thank Dr. Martin Kumm and

Dr. Saied Hemati for their valuable suggestions about the

presentation of this work.

REFERENCES

[1] M. Garrido, J. Grajal, M. A. Sánchez, and O. Gustafsson, “Pipelined
radix-2k feedforward FFT architectures,” IEEE Trans. VLSI Syst.,
vol. 21, no. 1, pp. 23–32, Jan. 2013.

[2] S. He and M. Torkelson, “Design and implementation of a 1024-point
pipeline FFT processor,” in Proc. IEEE Custom Integrated Circuits

Conf., May 1998, pp. 131–134.

[3] S.-N. Tang, J.-W. Tsai, and T.-Y. Chang, “A 2.4-GS/s FFT processor
for OFDM-based WPAN applications,” IEEE Trans. Circuits Syst. II,
vol. 57, no. 6, pp. 451–455, Jun. 2010.

[4] C.-H. Yang, T.-H. Yu, and D. Markovic, “Power and area minimization
of reconfigurable FFT processors: A 3GPP-LTE example,” IEEE J.

Solid-State Circuits, vol. 47, no. 3, pp. 757–768, Mar. 2012.

[5] W. Han, A. T. Erdogan, T. Arslan, and M. Hasan, “High-performance
low-power FFT cores,” ETRI J., vol. 30, no. 3, pp. 451–460, Jun. 2008.

[6] H. Liu and H. Lee, “A high performance four-parallel 128/64-point
radix-24 FFT/IFFT processor for MIMO-OFDM systems,” in Proc.

IEEE Asia-Pacific Conf. Circuits Syst., Nov. 2008, pp. 834–837.

[7] J.-Y. Oh and M.-S. Lim, “New radix-2 to the 4th power pipeline FFT
processor,” IEICE Trans. Electron., vol. E88-C, no. 8, pp. 1740–1746,
Aug. 2005.

[8] C. Loeffler, A. Ligtenberg, and G. Moschytz, “Practical fast 1-D DCT
algorithms with 11 multiplications,” in Proc. IEEE Int. Conf. Acoust.

Speech Signal Process., vol. 2, May 1989, pp. 988–991.

[9] Z. Wu, J. Sha, Z. Wang, L. Li, and M. Gao, “An improved scaled DCT
architecture,” IEEE Trans. Consum. Electron., vol. 55, no. 2, pp. 685–
689, May 2009.

[10] A. Gray, Jr. and J. Markel, “Digital lattice and ladder filter synthesis,”
IEEE Trans. Audio Electroacoust., vol. 21, no. 6, pp. 491–500, Jun.
1973.

GARRIDO et al.: LOW-COMPLEXITY MULTIPLIERLESS CONSTANT ROTATORS 11

[11] P. P. Vaidyanathan, “Passive cascaded-lattice structures for low-
sensitivity FIR filter design, with applications to filter banks,” IEEE

Trans. Circuits Syst., vol. 33, no. 11, pp. 1045–1064, Nov. 1986.
[12] M. Garrido, O. Gustafsson, and J. Grajal, “Accurate rotations based on

coefficient scaling,” IEEE Trans. Circuits Syst. II, vol. 58, no. 10, pp.
662–666, Oct. 2011.

[13] J. E. Volder, “The CORDIC trigonometric computing technique,” IRE

Trans. Electronic Computing, vol. EC-8, pp. 330–334, Sep. 1959.
[14] M. Garrido and J. Grajal, “Efficient memoryless CORDIC for FFT

computation,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,
vol. 2, Apr. 2007, pp. 113–116.

[15] R. Andraka, “A survey of CORDIC algorithms for FPGA based comput-
ers,” in Proc. ACM/SIGDA Int. Symp. FPGAs, Feb. 1998, pp. 191–200.

[16] P. K. Meher, J. Valls, T.-B. Juang, K. Sridharan, and K. Maharatna, “50
years of CORDIC: Algorithms, architectures, and applications,” IEEE

Trans. Circuits Syst. I, vol. 56, no. 9, pp. 1893–1907, Sep. 2009.
[17] C.-Y. Chen and C.-Y. Lin, “High-resolution architecture for CORDIC

algorithm realization,” in Proc. Int. Conf. Comm. Circuits Syst., vol. 1,
Jun. 2006, pp. 579–582.

[18] Y. Hu and S. Naganathan, “An angle recoding method for CORDIC
algorithm implementation,” IEEE Trans. Comput., vol. 42, no. 1, pp.
99–102, Jan. 1993.

[19] C.-S. Wu and A.-Y. Wu, “Modified vector rotational CORDIC (MVR-
CORDIC) algorithm and architecture,” Circuits and Systems II: Analog

and Digital Signal Processing, IEEE Transactions on, vol. 48, no. 6, pp.
548–561, Jun. 2001.

[20] P. K. Meher and S. Y. Park, “CORDIC designs for fixed angle of
rotation,” IEEE Trans. VLSI Syst., vol. 21, no. 2, pp. 217–228, Feb.
2013.

[21] C.-S. Wu, A.-Y. Wu, and C.-H. Lin, “A high-performance/low-latency
vector rotational CORDIC architecture based on extended elementary
angle set and trellis-based searching schemes,” IEEE Trans. Circuits

Syst. II, vol. 50, no. 9, pp. 589–601, Sep. 2003.
[22] C.-H. Lin and A.-Y. Wu, “Mixed-scaling-rotation CORDIC (MSR-

CORDIC) algorithm and architecture for high-performance vector ro-
tational DSP applications,” IEEE Trans. Circuits Syst. I, vol. 52, no. 11,
pp. 2385–2396, Nov. 2005.

[23] S. Y. Park and Y. J. Yu, “Fixed-point analysis and parameter selections of
MSR-CORDIC with applications to FFT designs,” IEEE Trans. Signal

Process., vol. 60, no. 12, pp. 6245–6256, Dec. 2012.
[24] F. Qureshi and O. Gustafsson, “Low-complexity constant multiplication

based on trigonometric identities with applications to FFTs,” IEICE

Trans. Fundamentals, vol. E94-A, no. 11, pp. 324–326, Nov. 2011.
[25] Y.-E. Kim, K.-J. Cho, and J.-G. Chung, “Low power small area modified

Booth multiplier design for predetermined coefficients,” IEICE Trans.

Fundamentals, vol. E90-A, no. 3, pp. 694–697, Mar. 2007.
[26] V. Karkala, J. Wanstrath, T. Lacour, and S. P. Khatri, “Efficient arithmetic

sum-of-product (SOP) based multiple constant multiplication (MCM) for
FFT,” in Proc. IEEE/ACM Int. Comput.-Aided Design Conf., Nov. 2010,
pp. 735–738.

[27] P. Källström, M. Garrido, and O. Gustafsson, “Low-complexity rotators
for the FFT using base-3 signed stages,” in Proc. IEEE Asia-Pacific

Conf. Circuits Syst., Dec. 2012, pp. 519–522.
[28] J. Jedwab and C. Mitchell, “Minimum weight modified signed-digit

representations and fast exponentiation,” Electron. Lett., vol. 25, no. 17,
pp. 1171–1172, Aug. 1989.

[29] S. C. Chan and P. M. Yiu, “An efficient multiplierless approximation
of the fast Fourier transform using sum-of-powers-of-two (SOPOT)
coefficients,” IEEE Signal Process. Lett., vol. 9, no. 10, pp. 322–325,
Oct. 2002.

[30] O. Gustafsson, A. G. Dempster, K. Johansson, M. D. Macleod, and
L. Wanhammar, “Simplified design of constant coefficient multipliers,”
Circuits Syst. Signal Process., vol. 25, no. 4, pp. 225–251, Apr. 2006.

[31] J. Thong and N. Nicolici, “Time-efficient single constant multiplication
based on overlapping digit patterns,” IEEE Trans. VLSI Syst., vol. 17,
no. 9, pp. 1353–1357, Sep. 2009.

[32] A. G. Dempster and M. D. Macleod, “Multiplication by two integers
using the minimum number of adders,” in Proc. IEEE Int. Symp. Circuits

Syst., vol. 2, May 2005, pp. 1814–1817.
[33] O. Gustafsson, “A difference based adder graph heuristic for multiple

constant multiplication problems,” in Proc. IEEE Int. Symp. Circuits

Syst., May 2007, pp. 1097–1100.
[34] Y. Voronenko and M. Püschel, “Multiplierless multiple constant multi-

plication,” ACM Trans. Algorithms, vol. 3, pp. 1–39, May 2007.
[35] L. Aksoy, E. Günes, and P. Flores, “Search algorithms for the multiple

constant multiplications problem: Exact and approximate,” Micropro-

cess. Microsyst., vol. 34, no. 5, pp. 151–162, Aug. 2010.

[36] M. D. Macleod, “Multiplierless implementation of rotators and FFTs,”
EURASIP J. Appl. Signal Process., vol. 2005, no. 17, pp. 2903–2910,
2005.

[37] O. Gustafsson and F. Qureshi, “Addition aware quantization for low
complexity and high precision constant multiplication,” IEEE Signal

Process. Lett., vol. 17, no. 2, pp. 173–176, Feb. 2010.
[38] F. Qureshi and O. Gustafsson, “Generation of all radix-2 fast Fourier

transform algorithms using binary trees,” in Proc. Europ. Conf. Circuit

Theory Design, Aug. 2011, pp. 677–680.
[39] M. Janssen, F. Catthoor, and H. De Man, “A specification invariant

technique for regularity improvement between flow-graph clusters,” in
Proc. European Design Test Conf., 1996, pp. 138–143.

Mario Garrido received the M.S. degree in electri-
cal engineering and the Ph.D. degree from the Tech-
nical University of Madrid (UPM), Madrid, Spain,
in 2004 and 2009, respectively. In 2010 he moved to
Sweden to work as a postdoctoral researcher at the
Department of Electrical Engineering at Linköping
University. Since 2012 he is Associate Professor at
the same department.

His research focuses on optimized hardware de-
sign for signal processing applications. This includes
the design of hardware architectures for the calcu-

lation of transforms, such as the fast Fourier transform (FFT), circuits for
data management, the CORDIC algorithm, and circuits to calculate statistical
and mathematical operations. His research covers high-performance circuits
for real-time computation, as well as designs for low area and low power
consumption.

Fahad Qureshi was born in 1978. He received
the M.Sc. from NED University of Engineering
and Technology in Karachi, Pakistan. In 2012 he
received his Ph.D. from the Division of Electronics
Systems at Linköping University, Sweden.

Qureshi’s research interest is design and imple-
mentation of high performance resource flexible
FFTs.

Oscar Gustafsson (S’98–M’03–SM’10) received
the M.Sc., Ph.D., and Docent degrees from
Linköping University, Linköping, Sweden, in 1998,
2003, and 2008, respectively.

He is currently an Associate Professor and Head
of the Electronics Systems Division, Department of
Electrical Engineering, Linköping University. His
research interests include design and implementation
of DSP algorithms and arithmetic circuits. He has
authored and coauthored over 140 papers in interna-
tional journals and conferences on these topics.

Dr. Gustafsson is a member of the VLSI Systems and Applications and
the Digital Signal Processing technical committees of the IEEE Circuits
and Systems Society. Currently, he serves as an Associate Editor for the
IEEE Transactions on Circuits and Systems Part II: Express Briefs and
Integration, the VLSI Journal. He has served and serves in various positions
for conferences such as ISCAS, PATMOS, PrimeAsia, Asilomar, Norchip,
ECCTD, and ICECS.

	Low - TP
	lowadder

