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Abstract—In this paper, we consider a general cooperative wire-
less sensor network (WSN) with multiple hops and the problem
of channel estimation. Two matrix-based set-membership (SM)
algorithms are developed for the estimation of complex matrix
channel parameters. The main goal is to significantly reduce the
computational complexity, compared with existing channel esti-
mators, and extend the lifetime of the WSN by reducing its power
consumption. The first proposed algorithm is the SM normalized
least mean squares (SM-NLMS) algorithm. The second is the SM
recursive least squares (RLS) algorithm called BEACON. Then,
we present and incorporate an error bound function into the two
channel estimation methods, which can automatically adjust the
error bound with the update of the channel estimates. Steady-state
analysis in the output mean-square error (MSE) is presented,
and closed-form formulas for the excess MSE and the probability
of update in each recursion are provided. Computer simulations
show good performance of our proposed algorithms in terms of
convergence speed, steady-state mean square error, and bit error
rate (BER) and demonstrate reduced complexity and robustness
against time-varying environments and different signal-to-noise
ratio (SNR) values.

Index Terms—Channel estimation, cooperation, data selection,
set membership (SM), time-varying bounds (TVBs), wireless sen-
sor networks (WSNs).

I. INTRODUCTION

R ECENTLY, there has been increasing research interest in

wireless sensor networks (WSNs) because their unique

features allow a wide range of applications in the areas of

the military, the environment, health, and home [1]. They

are usually composed of a large number of densely deployed

sensing devices, which can transmit their data to the desired

user through multihop relays [2]. Low complexity and high

energy efficiency are the most important design characteristics

of communication protocols [3] and physical-layer techniques

employed for WSNs. The performance and capacity of WSNs

can be significantly enhanced through exploitation of spatial di-

versity with cooperation between the nodes [2]. In a cooperative

WSN, nodes relay signals to each other to propagate redundant

copies of the same signals to the destination nodes. Among the
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existing relaying schemes, the amplify-and-forward (AF) and

the decode-and-forward are the most popular approaches [4].

Due to limitations in sensor node power, computational capac-

ity, and memory [1], some power-constrained relay strategies

[5], [6] and power allocation methods [7] have been proposed

for WSNs to obtain the best possible signal-to-noise ratio

(SNR) or best possible quality of service at the destinations.

Most of these ideas are based on the assumption of perfect

synchronization and available channel state information (CSI)

at each node [1]. Therefore, more accurate estimates of the CSI

will bring about better performance in WSNs.

The normalized least mean squares (NLMS) estimation

method is appropriate for WSNs due to its simplicity. However,

the main problem of the NLMS is that the tradeoff between

convergence speed and steady-state performance is achieved

through the introduction of a step size [8]. It is not possible

to achieve the best solution on these two aspects using a

conventional NLMS estimation method. Channel estimation

with the NLMS algorithm can be improved by introducing the

set-membership filtering (SMF) framework [9], which modifies

the objective function of the NLMS algorithm. It specifies an

error bound on the magnitude of the estimation error, which

can make the step size adaptive. Therefore, the SM-NLMS

channel estimation method can achieve good convergence and

tracking performance for each update. An SM-NLMS channel

estimation algorithm for cooperative WSNs is proposed in [10].

Compared with the NLMS channel estimation method, the

recursive least squares (RLS) channel estimator can provide

better performance in terms of convergence speed and steady

state [8]. However, it is not suitable for WSNs due to its high

computational complexity [8]. To overcome this shortcoming,

the SMF framework can also be introduced to devise a com-

putationally efficient version of the conventional RLS channel

estimation method, which is called BEACON channel estima-

tion [11]. It can be considered as a constrained optimization

problem where the objective function is the least squares (LS)

cost function and the constraint is a bound on the magnitude of

the estimation error. As a result, an adaptive forgetting factor

can be derived to achieve the optimal performance for each

update. Most importantly, the set-membership (SM) algorithms

possess a feature that allows updating for only a small fraction

of time, which is expressed as the update rate (UR). Therefore,

the UR of the two SM channel estimation algorithms decreases

due to the data-selective update, which can significantly reduce

the computational complexity and extend the lifetime of the

WSN by reducing its power consumption.
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The biggest issue for the SM channel estimation is the appro-
priate selection of the error bound, because it has a critical effect
on the estimation performance. For SM-NLMS channel esti-
mation, the extreme settings of the bound, i.e., overbounding
(the error bound being too large) and underbounding (the error
bound being too small), will result in performance degradation
[12], [13]. In practice, the bound depends on environmental
parameters such as the SNR. It is very difficult to accurately
determine the optimal error bound because there is usually
insufficient knowledge about the underlying system. For the
BEACON channel estimation, the value of the error bound can
be varied to trade off achievable performance against computa-
tional complexity [11]. A higher error bound would result in
lower UR but worse performance. For WSNs, the aim is to
quickly achieve an acceptable CSI with low power consump-
tion. Therefore, the bound for BEACON channel estimation
should be adjusted to ensure good estimation performance,
lower computational complexity, and low UR. In addition, the
required error bound may be time variant due to changing
environmental conditions.

In this paper, we develop two matrix-based SM algorithms
for channel estimation in cooperative WSNs using the AF
cooperation protocol. The major novelty in these algorithms
presented here is that they are matrix-based SM channel estima-
tion algorithms, as opposed to vector-based SM techniques for
filtering applications [14]–[16]. Therefore, we specify a bound
on the norm of the estimation error vector, instead of the mag-
nitude of the scalar estimation error. Then, a novel error bound
function is introduced to automatically change the error bound
to obtain optimal performance with the proposed SM channel
estimation. Furthermore, we propose analytical expressions of
the steady-state output excess mean-square error (MSE) of
the two SM channel estimation methods. Further novelty in
this analysis is that we employ the chi-square distribution to
describe the probability of the update for estimating the channel
matrix, as opposed to the Gaussian distribution for estimating
the filter vector [17]–[19]. A key contribution of this paper is
the consideration of techniques to reduce the complexity of the
channel estimation for WSNs.

This paper is organized as follows: Section II describes the
general cooperative WSN system model and its constrained
form. Section III introduces two conventional channel estima-
tion methods for reference. Section IV proposes two channel
estimation methods using the SMF framework and presents
an error bound function, which automatically tunes the er-
ror bound. Section V contains the analysis of the steady-
state output excess MSE and the computational complexity.
Section VI presents and discusses the simulation results,
whereas Section VII provides some concluding remarks.

II. COOPERATIVE WIRELESS SENSOR NETWORK

SYSTEM MODEL

Consider a general m-hop WSN with multiple parallel relay

nodes for each hop, as shown in Fig. 1. The WSN consists

of Ns sources, Nd destinations, and Nr relays, which are

separated into m − 1 groups: Nr(1), Nr(2), . . . , Nr(m−1). All

these nodes are assumed to be within communication range. We

will concentrate on a time-division scheme with perfect syn-

Fig. 1. m-hop cooperative WSN with Ns sources, Nd destinations, and Nr

relays.

Fig. 2. Block diagram of the cooperative WSN system with transmission
constraints.

chronization, for which all signals are transmitted and received

in separate time slots. The sources first broadcast the Ns × 1
signal vector s to the destinations and all groups of relays.

We consider an AF cooperation protocol in this paper. Each

group of relays receives the signal from the sources and the

previous groups of relays and amplifies and rebroadcasts them

to the next groups of relays and the destinations. In practice, we

need to consider the constraints on the transmission policy. For

example, each transmitting node would transmit during only

one phase. In our WSN system, we assume that each group of

relays directly transmits the signal to the nearest group of relays

and the destinations. We can use a block diagram to indicate the

cooperative WSN system with these transmission constraints,

as shown in Fig. 2.

Let Hs,r(i) denote the Nr(i) × Ns channel matrix between

the sources and the ith group of relays, Hr(i),d denote the

Nd × Nr(i) channel matrix between the ith group of relays

and destinations, and Hr(i−1),r(i) denote the Nr(i) × Nr(i−1)

channel matrix between two groups of relays. The received

signal at the ith group of relays (xi) and destinations (d) for

each phase can be expressed as given here.

Phase 1

x1 =Hs,r(1)s + vr(1) (1)

d1 =Hs,ds + v1
d. (2)
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Phase 2

x2 =Hr(1),r(2)A1x1 + vr(2) (3)

d2 =Hr(1),dA1x1 + v2
d

... (4)

Phase i (i = 2, 3, . . . , m − 1)

xi =Hr(i−1),r(i)Ai−1xi−1 + vr(i) (5)

di =Hr(i−1),dAi−1xi−1 + vi
d

... (6)

Phase m

dm = Hr(m−1),dAm−1xm−1 + vm
d . (7)

Here, v is a zero-mean circularly symmetric complex additive

white Gaussian noise vector with covariance matrix σ2I. Ai is

a diagonal matrix whose elements represent the amplification

coefficient of each relay of the ith group. Vectors di and vi
d

denote the received signal and noise at the destination nodes

during the ith phase, respectively. At the destination nodes, the

received signal can be expressed as

d = HdAy + vd (8)

where
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Here, we use dashed lines to separate vectors d, vd, and y

to distinguish between transmissions to the destinations in m
different time slots. Matrix Hd consists of all the channels be-

tween each group of relays and destinations. Matrix A consists

of the amplification coefficients of all relays.

Fig. 3. Structure of the packet transmitted from source nodes and relay nodes.

Fig. 4. Structure of the decision-directed channel estimation at the
destination.

In our transmission scheme, all the data packets transmitted

from the source nodes and relay nodes contain two parts: a

preamble part with training sequence symbols and another part

with data symbols (see Fig. 3). The source nodes transmit

packets, and the relay nodes retransmit those packets that

contain the identical training sequence symbols, which are

known at the destination nodes. Therefore, we can make use of

them for channel estimation at the destination nodes. Moreover,

decision-directed channel estimation is exploited in our system

by a scheme detailed in Fig. 4. We consider a minimum

MSE (MMSE) detector whose formula can be expressed as

WMMSE(n) = [H(n)HH(n) + (σ2
n/σ2

s)I]−1H(n) [8], where

H(n) is the estimated channel coefficient at time instant n,

which can be received from the channel estimator. In addition,

the block marked with a Q[·] represents a decision device.

After the training sequence, the channel estimation algorithm

is switched to decision-directed mode [20], and the detected

data symbols are fed to the channel estimator. It can continue to

estimate and track the channel. Therefore, the channel variation

can be tracked after the training phase, and this can yield

better results. Furthermore, this decision-directed approach can

reduce the length of the training sequence, which increases the

bandwidth efficiency of the WSNs.

III. CONVENTIONAL LEAST SQUARES AND MINIMUM

MEAN SQUARE ERROR CHANNEL ESTIMATION

Consider a channel estimation problem where the output

error is defined as

e = r − Hs (12)

where s (N × 1) is the training sequence symbol vector,

H (M × N) is the estimated channel matrix, and r (M × 1)
is the received signal vector at the destination. Conventional

channel estimation schemes seek to find channel matrix H by

minimizing a cost function that is a suitable objective function

of the output error vector e.
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A. LS Channel Estimator

The LS channel estimation minimizes the weighted sum

of the squared norm of the error vector ‖e‖2, which can be

described as

HLS(n) = arg min
H(n)

n
∑

l=1

λn−l ‖r(l) − H(n)s(l)‖2
(13)

where λ denotes the forgetting factor. Computing the gradient

of the argument and equating it to a zero matrix, we obtain the

LS channel estimator as given by [21]

HLS(n) =

[

n
∑

l=1

λn−lr(l)sH(l)

][

n
∑

l=1

λn−ls(l)sH(l)

]−1

(14)

where (·)H and (·)−1 denote the complex-conjugate (Hermitian)

transpose and the inverse, respectively. The LS estimator has

a cubic cost with the number of parameters. A complexity

reduction is possible by using a recursive procedure that yields

the RLS algorithm with quadratic cost.

B. MMSE Channel Estimator

The MMSE channel estimation minimizes the expected value

of the squared norm of the error vector ‖e‖2, which can be

described as

HMMSE = arg min
H

E
[

‖r − Hs‖2
]

. (15)

After some derivation, the MMSE channel estimator is given

by [21]

HMMSE =R
(

SHE[HHH]S+Mσ2
nI
)−1

SHE[HHH] (16)

where S and R are the training sequence symbol matrix and

received symbol matrix, respectively, during a training period.

The MMSE channel estimator requires full a priori knowledge

of the channel correlation matrix and the noise variance σ2
n and

a cubic cost with the number of parameters.

IV. SET-MEMBERSHIP CHANNEL ESTIMATION

In contrast with the two conventional channel estimation

methods introduced in Section III, SM channel estimation

specifies an upper bound γ on the norm of the estimation error

vector over a model space of interest, which is denoted as S,

comprising all possible received signal pairs (s, r). The SM

criterion corresponds to finding H that satisfies

‖e(H)‖2 ≤ γ2 ∀(s, r) ∈ S. (17)

The set of all possible H that satisfy (17) is referred to as the

feasibility set and can be expressed as

Θ =
⋂

(s,r)∈S

{

H ∈ CM×N : ‖r − Hs‖ ≤ γ
}

. (18)

At time instant n, the constraint set Cn is defined as the set of all

H(n) that satisfy (17) for the received signal pairs (s(n), r(n))

Cn =
{

H(n) ∈ CM×N : ‖r(n) − H(n)s(n)‖ ≤ γ
}

. (19)

The idea behind the SM channel estimation is that, if the

estimated channel at a time instant lies outside the constraint set

Cn, the estimated channel at the next time instant will lie on the

closest boundary of Cn. Otherwise, there is no need to compute,

and the power consumption can be significantly reduced. This

SM approach makes the estimator adapt only in the direction

that is necessary.

A. Proposed SM-NLMS Channel Estimation

The basic update in the LMS channel estimation can be

written as

H(n + 1) = H(n) + µ(n)e(n)sH(n) (20)

where e(n) = r(n) − H(n)s(n) denotes the a priori error

vector at time instant n, and µ(n) is the time-dependent step

size. Then, we can get a posterior error vector

g(n) = r(n) − H(n + 1)s(n). (21)

By substituting (20) into (21), we have

g(n) = r(n) −
(

H(n) + µ(n)e(n)sH(n)
)

s(n)

= (r(n) − H(n)s(n)) − µ(n)e(n)sH(n)s(n)

= e(n) − µ(n)e(n)sH(n)s(n). (22)

The constraint set is described as

‖g(n)‖ =
∥

∥e(n) − µ(n)e(n)sH(n)s(n)
∥

∥ ≤ γ. (23)

If ‖e(n)‖ > γ, then the previous solution lies outside the con-

straint set. We can choose the constraint value ‖g(n)‖ equal to

γ, so that the new solution lies on the closest boundary of the

constraint set. Therefore

‖g(n)‖ = ‖e(n)‖
∣

∣1 − µ(n)sH(n)s(n)
∣

∣ = γ. (24)

Hence, the step size at the nth iteration µ(n) can be ex-

pressed as

µ(n) =
1

sH(n)s(n)

(

1 −
γ

‖e(n)‖

)

. (25)

Finally, we can write the update equation as

H(n + 1) = H(n) + µ(n)e(n)sH(n) (26)

where

µ(n) =

{

1
sH(n)s(n)

(

1 − γ
‖e(n)‖

)

, if ‖e(n)‖ > γ

0, otherwise.
(27)

Equation (27) shows that the estimated channel matrix updates

with a specified step size only when the norm of the estimation

error vector is larger than a fixed error bound, which we set.

Otherwise, the step sizes are zeros, which means that there is

no update at these time instants.
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B. Proposed BEACON Channel Estimation

The proposed BEACON channel estimation method can be

considered as the following optimization problem:

minimize

n−1
∑

l=1

λ(n)n−l ‖r(l) − H(n)s(l)‖2

subject to ‖r(n) − H(n)s(n)‖2 = γ2. (28)

To solve this constrained optimization problem, we can modify

the LS cost function using the method of Lagrange multipliers,

which yields the following Lagrangian function:

L =

n−1
∑

l=1

λ(n)n−l ‖r(l) − H(n)s(l)‖2

+λ(n)
[

‖r(n) − H(n)s(n)‖2 − γ2
]

(29)

where λ(n) plays the role of both the Lagrange multiplier

and the forgetting factor of the LS cost function. By setting

the gradient of L with respect to H(n) equal to zero, after

some mathematical manipulations (see Appendix A), we get

the desired recursive equation for updating the channel matrix

H(n), i.e.,

H(n) = H(n − 1) + λ(n)ǫ(n)k(n) (30)

where ǫ(n) = r(n) − H(n − 1)s(n) denotes the prediction er-

ror vector at time instant n, and the recursive equation for

updating the gain vector k(n) is

k(n) =
sH(n)P(n − 1)

1 + λ(n)sH(n)P(n − 1)s(n)
(31)

where

P(n) = P(n − 1) − λ(n)P(n − 1)s(n)k(n). (32)

The error vector is

e(n) = r(n) − H(n)s(n). (33)

By substituting (30) into (33), we have

e(n) = r(n) − [H(n − 1) + λ(n)ǫ(n)k(n)] s(n)

= r(n) − H(n − 1)s(n) − λ(n)ǫ(n)k(n)s(n)

= ǫ(n) − λ(n)ǫ(n)
sH(n)P(n − 1)s(n)

1 + λ(n)sH(n)P(n − 1)s(n)

= ǫ(n) − λ(n)ǫ(n)
G(n)

1 + λ(n)G(n)

= ǫ(n)

[

1 −
λ(n)G(n)

1 + λ(n)G(n)

]

= ǫ(n)
1

1 + λ(n)G(n)
(34)

where G(n) = sH(n)P(n − 1)s(n). The constraint set is de-

scribed as

‖e(n)‖ =

∥

∥

∥

∥

ǫ(n)
1

1 + λ(n)G(n)

∥

∥

∥

∥

≤ γ. (35)

TABLE I
SUMMARY OF THE BEACON CHANNEL ESTIMATION ALGORITHM

If ‖ǫ(n)‖ > γ, then the previous solution lies outside the con-

straint set. We can choose the constraint value ‖e(n)‖ equal to

γ, so that the new solution lies on the closest boundary of the

constraint set. Therefore

‖e(n)‖ = ‖ǫ(n)‖
1

|1 + λ(n)G(n)|
= γ. (36)

Hence, the optimal forgetting factor at the nth iteration can be

expressed as

λ(n) =
1

G(n)

(

‖ǫ(n)‖

γ
− 1

)

. (37)

Table I shows a summary of the BEACON channel estimation

algorithm, which will be used for the simulations.

C. Time-Varying Bound

To obtain the optimal error bound at each time instant, in this

section, we introduce an error bound function that can auto-

matically adjust the error bound with the update of the channel

estimate. A similar bound for the SM filtering techniques has

been described in [9]. For channel estimation, the bound is

heuristic and employs the CSI parameter matrix and the noise

variance that should be related with the estimates of interest. It

can be expressed as

γ(n + 1) = (1 − β)γ(n) + β

√

α ‖H(n)‖2 σ2 (38)

where β is the forgetting factor, α is the tuning parameter,

and σ2 is the variance of the noise, which is assumed to be

known at the destinations. This time-varying bound (TVB) is

recursive, so that it can be used to avoid too high or low values

of ‖H(n)‖2.

V. ANALYSIS OF THE PROPOSED ALGORITHMS

A. Steady-State Output MSE Analysis

In this section, we investigate the output MSE in the

SM-NLMS and the BEACON channel estimation. The received

signal at time instant n is given by

r(n) = H0s(n) + n(n) (39)

where H0 (M × N) is the channel matrix needed to be esti-

mated, and n(n) is measurement noise that is assumed here
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to be Gaussian with zero mean and variance σ2
n. Defining the

channel estimation error matrix as

∆H(n) = H0 − H(n) (40)

we can express the output error vector as

e(n) = r(n) − H(n)s(n)

= r(n) − [H0 − ∆H(n)] s(n)

= r(n) − H0s(n) + ∆H(n)s(n)

=n(n) + ∆H(n)s(n). (41)

Therefore, the output MSE expression can be derived as

J(n)= E
[

‖e(n)‖2
]

= E
{

[n(n)+s(n)∆H(n)]H [n(n)+∆H(n)s(n)]
}

= E
[

‖n(n)‖2
]

+E
[

sH(n)∆HH(n)∆H(n)s(n)
]

= Mσ2
n+tr

{

E
[

sH(n)∆HH(n)∆H(n)s(n)
]}

(42)

where tr(·) denotes the trace of a matrix. The property of the

matrix trace tr(XY) = tr(YX) will be used in the following

derivation. From (42), we can define the output excess MSE as

Jex(n) = tr
{

E
[

sH(n)∆HH(n)∆H(n)s(n)
]}

= tr
{

E
[

s(n)sH(n)∆HH(n)∆H(n)
]}

. (43)

1) For the SM-NLMS: The update equations for the SM-

NLMS channel estimation are given by (26) and (27). In (27),

sH(n)s(n) is equal to Nσ2
s , where σ2

s is the variance of the

pilot signal. By substituting (27) into (26), we can achieve an

alternative update equation

H(n+1)=H(n)+
1

Nσ2
s

(

1−
γ

‖e0(n)‖

)

e(n)sH(n) (44)

where

‖e0(n)‖ =

{

‖e(n)‖ , if ‖e(n)‖ > γ
γ, otherwise.

(45)

As a consequence, the update equation of the channel estima-

tion error can be expressed as

∆H(n + 1) =∆H(n) −
1

Nσ2
s

(

1 −
γ

‖e0(n)‖

)

e(n)sH(n)

= ∆H(n) −
1

Nσ2
s

e(n)sH(n)

+
γ

Nσ2
s

e(n)

‖e0(n)‖
sH(n). (46)

Then, we can use (46) to derive the update equation of the

output excess MSE in (43) (see Appendix B)

Jex(n + 1) = Mσ2
n + 2γE

[

1

‖e0(n)‖

]

Jex(n)

− 2γE

[

‖e(n)‖2

‖e0(n)‖

]

+ γ2E

[

‖e(n)‖2

‖e0(n)‖2

]

. (47)

From (45), the three expected values in (47) can be ex-

pressed as

E

[

1

‖e0(n)‖

]

= E

[

1

‖e(n)‖

∣

∣

∣

∣

‖e(n)‖>γ

]

Pup+
1

γ
(1−Pup)

(48)

E

[

‖e(n)‖2

‖e0(n)‖

]

= E[‖e(n)‖| ‖e(n)‖>γ]Pup

+
1

γ
E
[

‖e(n)‖2
∣

∣

∣
‖e(n)‖≤γ

]

(1−Pup)

(49)

E

[

‖e(n)‖2

‖e0(n)‖2

]

= Pup+
1

γ2
E
[

‖e(n)‖2
∣

∣

∣
‖e(n)‖≤γ

]

(1−Pup)

(50)

where E[·|·] denotes the conditional expected value, and Pup

stands for the probability of update in each recursion. Let

X1 = E

[

1

‖e(n)‖

∣

∣

∣

∣

‖e(n)‖ > γ

]

(51)

Y1 = E [‖e(n)‖| ‖e(n)‖ > γ] (52)

Z1 = E
[

‖e(n)‖2
∣

∣

∣
‖e(n)‖ ≤ γ

]

. (53)

Equation (47) becomes

Jex(n + 1) =Mσ2
n + [2γX1Pup + 2(1 − Pup)] Jex(n)

− 2γY1Pup − 2Z1(1 − Pup) + γ2Pup

+ Z1(1 − Pup)

= (2γX1Pup + 2 − 2Pup)Jex(n) − 2γY1Pup

− Z1(1 − Pup) + Mσ2
n + γ2Pup. (54)

During the steady state, Jex(n + 1) → Jex(n). Therefore, the

steady-state output excess MSE expression of the SM-NLMS

channel estimation is

Jex(n) =
2γY1Pup + Z1(1 − Pup) − Mσ2

n − γ2Pup

2γX1Pup − 2Pup + 1
. (55)

2) For the BEACON: According to Table I, we can get

the update equation of the channel estimation error for the

BEACON channel estimation, which is very similar to (46), i.e.,

∆H(n) = ∆H(n − 1) −
ǫ(n)sH(n)P(n − 1)

G(n)

+ γ
ǫ(n)

‖ǫ0(n)‖

sH(n)P(n − 1)

G(n)
(56)

where

‖ǫ0(n)‖ =

{

‖ǫ(n)‖ , if ‖ǫ(n)‖ > γ
γ, otherwise.

(57)

Following the same steps described for the SM-NLMS channel

estimation in the Appendix, we find that the steady-state output
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TABLE II
COMPUTATIONAL COMPLEXITY PER UPDATE

excess MSE expression of the BEACON channel estimation has

the same style as (55), i.e.,

Jex(n)=
2γY2Pup+Z2(1−Pup)−Mσ2

n−γ2Pup

2γX2Pup−2Pup+1
(58)

where

X2 = E

[

1

‖ǫ(n)‖

∣

∣

∣

∣

‖ǫ(n)‖ > γ

]

(59)

Y2 = E [‖ǫ(n)‖| ‖ǫ(n)‖ > γ] (60)

Z2 = E
[

‖ǫ(n)‖2
∣

∣

∣
‖ǫ(n)‖ ≤ γ

]

. (61)

3) Probability of Update Pup: From (27), we can get the

relation about the probability of update of the SM-NLMS

channel estimation

Pup = Pr {‖e(n)‖ > γ} = Pr
{

‖e(n)‖2 > γ2
}

. (62)

Similarly, for the BEACON channel estimation, we just need to

use ǫ(n), instead of e(n). It is easy to see that Pup depends on

the distribution of ‖e(n)‖2. For the estimated channel matrix

H0 with size M × N

‖e(n)‖2 =

M
∑

i=1

(

R
2 [ei(n)] + I

2 [ei(n)]
)

=
σ2

n

2

M
∑

i=1

(

R
2 [ei(n)]

σ2
n/2

+
I

2 [ei(n)]

σ2
n/2

)

. (63)

During the steady state, assuming ∆H(n) → 0, the linear

relationship between e(n), ∆H(n), and n(n) in (41) shows that

the distribution of e(n) is typically Gaussian, unless a jamming

or other interference signal with another distribution is present.

Therefore, we can get that the elements of the error vector e(n)
have the same distribution with the elements of the noise vector

n(n). Recalling that R[ni(n)] and I[ni(n)] ∼ N (0, σ2
n/2), we

can express the distribution of (63) by a chi-square random

variable with 2M degree of freedom as follows:

‖e(n)‖2 ∼
σ2

n

2
X 2

2M . (64)

Therefore, (62) becomes

Pup = Pr

{

M
∑

i=1

(

R
2 [ei(n)]

σ2
n/2

+
I

2 [ei(n)]

σ2
n/2

)

> γ2 2

σ2
n

}

= 1 − Pr

{

M
∑

i=1

(

R
2 [ei(n)]

σ2
n/2

+
I

2 [ei(n)]

σ2
n/2

)

≤ γ2 2

σ2
n

}

= 1 − F

(

γ2 2

σ2
n

; 2M

)

(65)

where F (·) is the chi-square cumulative distribution function

[22] defined by

F (x; l) =
ΓL(l/2, x/2)

Γ(l/2)
. (66)

In (66), ΓL(s, x) is the lower incomplete Gamma function

ΓL(s, x) =

x
∫

0

ts−1e−tdt (67)

and Γ(x) is the gamma function

Γ(x) =

∞
∫

0

tx−1e−tdt. (68)

By substituting (67) and (68) into (66), we can finally obtain

F (x; l) =

∫ x

2

0 t
l

2
−1e−tdt

∫∞
0 t

l

2
−1e−tdt

(69)

where l denotes the number of degrees of freedom.

B. Computational Complexity Analysis

Table II lists the computational complexity per update in

terms of the number of multiplications, additions, and divisions

for the SM-NLMS and BEACON algorithms and their com-

peting algorithms. The size of the estimated channel matrix is

M × N . For our cooperative WSN system model, when Hd is

chosen as the estimated channel, we can get

M =mNd (70)

N =Nr + Ns. (71)

Because the multiplication dominates the computational com-

plexity of the algorithms, to compare the computational com-

plexity of our proposed algorithms with their competition

algorithms, the number of multiplications versus the size of

the channel matrix performance for each update is shown in

Fig. 5. For the purpose of illustration, we set M to be equal to

N . It can be seen that our proposed SM-NLMS and BEACON

channel estimation algorithms have a significant complexity

reduction compared with the conventional NLMS and RLS

channel estimation algorithms. Obviously, a lower Pup will

cause lower computational complexity. Furthermore, assuming

that the linear MMSE detectors are used in the destination

nodes, which require cubic complexity, we can come to the con-

clusion that the power used for our proposed channel estimation

is only a small fraction of the power budget of these nodes.
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Fig. 5. Number of multiplications versus the size of the channel matrix.

VI. SIMULATIONS

In this section, we numerically study the performance of

our two proposed SM estimation methods, as well as the

design of the optimal error bound. We consider a three-hop

(m = 3) WSN. The number of sources (Ns), two groups of

relays (Nr(1), Nr(2)), and destinations (Nd) are 2, 4, 4, and

3, respectively. We consider an AF cooperation protocol, and

the amplification coefficient of each relay is set to 1 for the

purpose of simplification. We choose Hd as our estimated

channel because it is the most significant and most complex

channel among all channels of the WSN system. The quasi-

static fading channel (block-fading channel) is considered in

our simulations whose elements are Rayleigh random variables

(with zero mean and unit variance) and assumed to be invariant

during the transmission of each packet. In addition, to test

our proposed channel estimation algorithms in a time-varying

environment, we consider a typical fading channel for wire-

less communications systems, i.e., a Rayleigh fading channel

that is modeled according to Clarke’s Model [23]. According

to the transmission scheme introduced in Section II, during

each phase, the sources and each group of relays transmit

the quadrature-phase-shift-keying modulated packets with np

symbols, among which, nt are training symbols, and nd are

data symbols (note that np = nt + nd). np, nt, and nd will

be specified in the succeeding simulations. The noise at the

destination nodes is modeled as circularly symmetric complex

Gaussian random variables with zero mean. The SNR is fixed

at 10 dB.

A. MSE Performance

Figs. 6 and 7 show the channel matrix MSE performance

of our proposed SM-NLMS and BEACON channel estimation

methods for the quasi-static fading channel and compare them

with the conventional NLMS and RLS channel estimation

algorithms. For the SM-NLMS estimator, we transmit packets

with 1000 (np) symbols, among which 100 (nt) are training

symbols and 900 (nd) are data symbols. We choose five fixed

error bounds (γ) ranging from 0.3 to 1.1. It can be seen that

Fig. 6. MSE performance of the SM-NLMS channel estimation of Hd for
quasi-static fading channel, compared with the NLMS channel estimation.
np = 1000, nt = 100, and nd = 900.

Fig. 7. MSE performance of the BEACON channel estimation of Hd

for quasi-static fading channel, compared with the RLS channel estimation.
np = 2000, nt = 100, and nd = 1900.

increasing the error bound makes the UR decrease. It means

that the update is selective, which can reduce the computational

complexity and power consumption. In the case of an error

bound equal to 1.1, the UR can dramatically fall to 0.0868. The

optimal error bound appears between 0.7 and 0.9. In that situ-

ation, the SM-NLMS channel estimation achieves the fastest

convergence speed and lowest steady states. Otherwise, the

performance degrades due to overbounding or underbounding.

For the BEACON estimator, we transmit packets with 2000

(np) symbols, among which, 100 (nt) are training symbols,

and 1900 (nd) are data symbols. We choose four fixed error

bounds ranging from 0.6 to 0.9. In addition, the MMSE channel

estimator, which requires full a priori knowledge of the channel

correlation matrix and the noise variance, is used here for

reference. It can be seen that a higher value of γ results in

worse MSE performance but a lower UR. In the case of an error

bound equal to 0.6, the BEACON algorithm outperforms the

conventional RLS algorithm (with a forgetting factor of 0.998)
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Fig. 8. MSE performance of the SM-NLMS channel estimation with a TVB
for quasi-static fading channel. np = 1000, nt = 100, and nd = 900.

Fig. 9. MSE performance of the BEACON channel estimation with a TVB
for quasi-static fading channel. np = 2000, nt = 100, and nd = 1900.

in terms of convergence speed and steady state with a slightly

reduced UR (0.9128). When the error bound is increased to

0.8, although its convergence speed is slower than RLS channel

estimation, the final MSE is comparable with a much lower UR

(0.4356). Figs. 8 and 9 show the performance when we apply

the TVB into the SM-NLMS and BEACON channel estimation.

For the SM-NLMS estimator, we set α to 1.5 and β to 0.01. The

curve of our proposed algorithm lies on the optimal position

that is very close to the curve of the SM-NLMS with fixed error

bound 0.8. In addition, its UR further decreases, which is our

expectation. For the BEACON estimator, we set α to 3 and

β to 0.001. Our proposed algorithm can achieve very similar

performance to the conventional RLS channel estimation with

a substantial reduction in the UR. Therefore, the computational

complexity is significantly reduced. The MSE versus SNR per-

formance of the SM-NLMS and BEACON channel estimation

methods are displayed with fixed error bounds and the proposed

time-varying error bounds in Figs. 10 and 11. In the cases

Fig. 10. SM-NLMS channel estimation MSEs versus SNR for both the fixed
bound and TVB for quasi-static fading channel. np = 1000, nt = 100, and
nd = 900.

Fig. 11. BEACON channel estimation MSEs versus SNR for both the fixed
bound and TVB for quasi-static fading channel. np = 2000, nt = 100, and
nd = 1900.

of fixed error bounds, the MSE is lower bounded at different

values for different error bounds. For the SM-NLMS estimator,

a higher SNR needs a specified lower error bound to achieve

the optimal MSE performance. When the time-varying error

bound is applied, the MSE remains very close to the optimal

values for all SNRs. For the BEACON estimator, when the

SNR is larger than a specified value, its MSE will become

worse. However, when the time-varying error bound is applied,

it can be observed that the MSE keeps on decreasing alone

with the increase in the SNR. We can notice from Fig. 11 that,

when the SNR is low, setting fixed bounds can achieve better

performance than setting TVB. Therefore, it would be possible

to devise a “hybrid” BEACON channel estimation that switches

between fixed bound and TVB, depending on the SNR. These

two figures show the robustness to the SNR variation of

our proposed algorithms for the quasi-static fading channel.

To test our proposed channel estimation algorithms in a time-

varying environment, we consider a typical fading channel for



WANG et al.: LOW-COMPLEXITY SM CHANNEL ESTIMATION FOR COOPERATIVE WSNs 2603

Fig. 12. MSE performance of the SM-NLMS channel estimation for Rayleigh fading channels, compared with the NLMS channel estimation. np = 500,
nt = 50, and nd = 450.

Fig. 13. MSE performance of the BEACON channel estimation for Rayleigh fading channels, compared with the RLS channel estimation. np = 500, nt = 50,
and nd = 450.

wireless systems, i.e., a Rayleigh fading channel, which is

modeled according to Clarke’s Model [23]. Figs. 12 and 13

show the MSE performance of our proposed channel estimation

algorithms for the time-varying fading channel and three dif-

ferent fading rates (normalized Doppler frequency fdT , where

T is the symbol duration) are used in the simulations: 10−5,

5 × 10−5, and 10−4. Because of the requirements of low power

consumption and the fact that a fast convergence speed of the

proposed algorithms might help in reducing the need for long

training sequences for the WSNs, we focus on the performance

of packets with 500 (np) symbols, among which, 50 (nt)
are training symbols, and 450 (nd) are data symbols. For the

SM-NLMS estimator, our proposed algorithm can achieve bet-

ter performance than the conventional NLMS algorithms for all

the three fading rates. Along with the increase in fading rate,

the advantage becomes less pronounced, and the UR becomes

higher. For the BEACON estimator, our proposed algorithm

can achieve very similar performance to the conventional RLS

algorithms for all three fading rates. (Note that, for the conven-

tional RLS algorithms, when increasing the fading rate, we have
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Fig. 14. (a) MSE performance versus fdT and (b) UR versus fdT of
SM-NLMS and BEACON channel estimation for Rayleigh fading channels.

to lower the forgetting factor to get the optimal performance.)

Along with the increase in fading rate, the UR becomes higher.

To show the performance tendency for higher fdT , we extend

its range up to 5 × 10−3. The performance curves are shown in

Fig. 14, which includes the MSE performance versus fdT and

UR versus fdT of SM-NLMS and BEACON channel estima-

tion for Rayleigh fading channels. (Note that the MSE values

we used in this figure are chosen from the MSE when receiving

500 symbols.) This figure indicates that the performance of our

proposed algorithms is comparable with the existing NLMS and

RLS algorithms, even for the fast fading channels. Therefore,

we can conclude that our proposed channel estimation algo-

rithms can work well for the time-varying fading channel and

for a wide range of values of fdT .

B. BER Performance

The MSE performance is very useful in giving designers

an idea of how well channel estimators perform, whereas

bit error rate (BER) performance is meaningful in practice.

Therefore, in this section, we focus on the BER performance of

our proposed algorithms. We consider a simulation where the

data packets transmitted at the sources nodes have 1000 (np)
symbols and trained with 100 (nt) symbols. Linear MMSE

detectors are used in the destination nodes. We choose Hd

as our estimated channel, and other channels are assumed to

be known. Quasi-static fading channels and Rayleigh fading

channels are considered. In addition, for the Rayleigh fading

channel, the SNR is fixed at 5 dB. It can be seen from

Fig. 15 that our two proposed SM channel estimation algo-

rithms with TVB can achieve a similar BER performance to

their competing algorithms, regardless of whether they are

in a Quasi-static fading channel or a Rayleigh fading chan-

nel with a wide range values of fading rate. In addition,

the BEACON channel estimator has lower BER than the

SM-NLMS channel estimator due to the higher computational

complexity and the use of second-order statistics.

Fig. 15. (a) BER performance versus SNR for quasi-static fading channel and
(b) BER performance versus fdT (SNR = 5 dB) for Rayleigh fading channels.
np = 1000, nt = 100, and nd = 900.

Fig. 16. Analysis of the probability of update Pup.

C. Verification of the Analysis

In this section, experiments were conducted to validate our

analysis of the SM-NLMS and BEACON algorithms. The

basic idea is to evaluate the formulas derived in Section V by

comparing the analytical results with that obtained by computer

simulations. From (70) and (71), the two variables M and N
used in Section V can be obtained, i.e., M = 9, and N = 10.

First, the analysis of the probability of update is verified using

(65). It can be seen from Fig. 16 that the Pup in simulations

of the SM-NLMS and BEACON channel estimation is close

to and lower bounded by the Pup from our analysis. The gap

between the analytical curve and the simulations of two SM

channel estimation is due to the approximation made in the

analysis. In Section V, we assume that the channel matrix error

∆H approaches zero during the steady state. However, for the

SM algorithms, it is not accurate because the bound set for the

output estimation error would enlarge ∆H. During the steady

state, the SM-NLMS channel estimation has a larger ∆H than
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Fig. 17. Steady-state excess MSE analysis for the SM-NLMS channel
estimation.

Fig. 18. Steady-state excess MSE analysis for the BEACON channel
estimation.

the BEACON channel estimation, which therefore causes a

larger gap between the analytical curve and the simulation.

After that, we continue to verify the analysis of the steady-

state output excess MSE using (55) and (58). Because it is

difficult to obtain the full-analytical expressions of the condi-

tional expected values X1, Y1, Z1, X2, Y2, and Z2, a semi-

analytical method is used here. It means that the data from

the simulations is used to calculate these conditional expected

values in (55) and (58). To lower the effect of the difference

between the analytical Pup and the simulation Pup of the

SM-NLMS channel estimation, 1.1σ2
n is chosen approximately

to take the place of σ2
n in (65), which would produce a more

accurate ∆H and Pup for the SM-NLMS channel estimation.

Figs. 17 and 18 show the steady-state output excess MSE versus

γ2/(mNdσ
2
n) of the two channel estimation algorithms. From

the figures, it can be seen that the semi-analytical curves can

match the simulation curves well. Therefore, it can be stated

that our analysis is able to predict accurately the output steady-

state excess MSE for different choices of bound γ.

VII. CONCLUSION

Two SM channel estimation methods have been proposed
based on TVB for cooperative WSNs. It has been shown that
our proposed methods can achieve better or similar perfor-
mance to conventional NLMS and RLS channel estimation,
offering reduced computational complexity. Analyses of the
steady-state MSE and computational complexity have been
presented for the two channel estimation and closed-form ex-
pressions of the excess MSE, and the probability of update
has been provided. Furthermore, the incorporation of the TVB
function makes it robust to changes in the environment. These
features are desirable for WSNs and bring about a significant
reduction in energy consumption. Possible extensions to this
work may include other advanced parameter estimation [24],
[25] and nonlinear detection and iterative processing algorithms
[26], [27].

APPENDIX A

DERIVATION OF THE PROPOSED BEACON CHANNEL

ESTIMATION ALGORITHM

By setting the gradient of L in (29) with respect to H(n)
equal to zero, we have

∂L

∂H(n)
= 2

n−1
∑

l=1

λ(n)n−l [r(l) − H(n)s(l)]
[

−sH(l)
]

+ 2λ(n) [‖r(n) − H(n)s(n)]
[

−sH(n)
]

= 0. (72)

Then, we can get

H(n) =

[

n−1
∑

l=1

λ(n)n−lr(l)sH(l) + λ(n)r(n)sH(n)

]

·

[

n−1
∑

l=1

λ(n)n−ls(l)sH(l) + λ(n)s(n)sH(n)

]−1

. (73)

Let

φ(n) =

n−1
∑

l=1

λ(n)n−ls(l)sH(l) + λ(n)s(n)sH(n) (74)

Z(n) =

n−1
∑

l=1

λ(n)n−lr(l)sH(l) + λ(n)r(n)sH(n). (75)

Equation (73) becomes

H(n) = Z(n)φ−1(n). (76)

Isolating the term corresponding to l = n − 1 from the rest of

the summation on the right-hand side of (74), we may write

φ(n) =

[

n−2
∑

l=1

λ(n)n−ls(l)sH(l) + λ(n)s(n − 1)sH(n − 1)

]

+ λ(n)s(n)sH(n). (77)

The expression inside the brackets on the right-hand side of (77)

is equal to φ(n − 1), assuming the forgetting factor of the cost
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function is close to 1. Hence, we have the following recursion

for updating the value of φ(n):

φ(n) = φ(n − 1) + λ(n)s(n)sH(n). (78)

Similarly, we may use (75) to derive the following recursion for

updating Z(n):

Z(n) = Z(n − 1) + λ(n)r(n)sH(n). (79)

Then, using the matrix inversion lemma [8], we obtain the

following recursive equation for the inverse of φ(n):

φ−1(n) = φ−1(n − 1)

−
λ(n)φ−1(n − 1)s(n)sH(n)λ(n)φ−1(n − 1)

1 + λ(n)sH(n)φ−1(n − 1)s(n)
. (80)

For convenience of computation, let

P(n) = φ−1(n) (81)

k(n) =
sH(n)P(n − 1)

1 + λ(n)sH(n)P(n − 1)s(n)
. (82)

Therefore, we may rewrite (76) and (80) as

H(n) =Z(n)P(n) (83)

P(n) =P(n − 1) − λ(n)P(n − 1)s(n)k(n). (84)

Then, we substitute (79) and (84) into (83) to obtain a recursive

equation for updating the channel matrix H(n), i.e.,

H(n) = H(n − 1) − λ(n)H(n − 1)s(n)k(n)

+ λ(n)r(n)sH(n)P(n). (85)

By rearranging (82), we can get

k(n) = sH(n)P(n − 1) − λ(n)sH(n)P(n − 1)s(n)k(n)

= sH(n) [P(n − 1) − λ(n)P(n − 1)s(n)k(n)]

= sH(n)P(n). (86)

Using (86), we get the desired recursive equation for updating

the channel matrix H(n), i.e.,

H(n)=H(n−1)−λ(n)H(n−1)s(n)k(n)+λ(n)r(n)k(n)

=H(n−1)+λ(n) [r(n)−H(n−1)s(n)]k(n)

=H(n−1)+λ(n)ǫ(n)k(n) (87)

where ǫ(n) = r(n) − H(n − 1)s(n) denotes the prediction er-

ror vector at time instant n.

APPENDIX B

ANALYSIS OF THE PROPOSED SM-NLMS CHANNEL

ESTIMATION ALGORITHM

From (46), the update equation of the channel estimation

error is

∆H(n+1)=∆H(n)−
1

Nσ2
s

e(n)sH(n)+
γ

Nσ2
s

e(n)

‖e0(n)‖
sH(n).

(88)

Let

A = ∆H(n) −
1

Nσ2
s

e(n)sH(n) (89)

B =
γ

Nσ2
s

e(n)

‖e0(n)‖
sH(n). (90)

Equation (88) becomes

∆H(n + 1) = A + B. (91)

From (43), we can get the output excess MSE at time instant

n + 1, i.e.,

Jex(n + 1) = tr
{

E
[

s(n + 1)sH(n + 1)

·∆HH(n + 1)∆H(n + 1)
]}

= tr
{

E
[

s(n)sH(n)∆HH(n + 1)∆H(n + 1)
]}

= ψ1 + ψ2 + ψ3 + ψ4. (92)

Then, we separately analyze each term

ψ1 = tr
{

E
[

s(n)sH(n)AHA
]}

=ρ1+ρ2 (93)

ρ1 = Jex(n)−2Nσ2
s

1

Nσ2
s

Jex(n)+N2σ4
s

1

N2σ4
s

Jex(n)=0

(94)

ρ2 = N2σ4
sMσ2

n

1

N2σ4
s

=Mσ2
n (95)

ψ2 = tr
{

E
[

s(n)sH(n)AHB
]}

= tr

{

E

[

s(n)sH(n)∆HH(n)
γ

Nσ2
s

e(n)

‖e0(n)‖
sH(n)

]}

− tr

{

E

[

s(n)sH(n)
γ

N2σ4
s

s(n)
eH(n)e(n)

‖e0(n)‖
sH(n)

]}

= γtr

{

E

[

sH(n)∆HH(n)
e(n)

‖e0(n)‖

]}

−γE

[

‖e(n)‖2

‖e0(n)‖

]

= γtr

{

E

[

sH(n)∆HH(n)
n(n)+∆H(n)s(n)

‖e0(n)‖

]}

− γE

[

‖e(n)‖2

‖e0(n)‖

]

= γtr

{

E

[

sH(n)∆HH(n)
∆H(n)s(n)

‖e0(n)‖

]}

−γE

[

‖e(n)‖2

‖e0(n)‖

]

= γE

[

1

‖e0(n)‖

]

Jex(n)−γE

[

‖e(n)‖2

‖e0(n)‖

]

(96)

ψ3 = tr
{

E
[

s(n)sH(n)BHA
]}

=ψ2 (97)

ψ4 = tr
{

E
[

s(n)sH(n)BHB
]}

= tr

{

E

[

s(n)sH(n)
γ2

N2σ4
s

s(n)
eH(n)e(n)

‖e0(n)‖2 sH(n)

]}

= γ2E

[

‖e(n)‖2

‖e0(n)‖2

]

. (98)

Finally, we can obtain the update equation of the output excess

MSE, i.e.,

Jex(n + 1) = Mσ2
n + 2γE

[

1

‖e0(n)‖

]

Jex(n)

− 2γE

[

‖e(n)‖2

‖e0(n)‖

]

+ γ2E

[

‖e(n)‖2

‖e0(n)‖2

]

. (99)
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