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Abstract—Compressive sensing (CS) techniques have been pro-
posed for wideband spectrum sensing applications to achieve sub-
Nyquist-rate sampling. The complexity of CS recovery algorithm
and the detection performance against noise are two of the main
challenges of the implementation of compressive spectrum sensing
(CSS). Greedy algorithms have been of particular interest in CSS
due to low complexity. We firstly propose a novel spectrum sparsity
estimation scheme directly from sub-Nyquist measurements, with
which the computational effort of greedy pursuit algorithms can be
saved and recovery performance improved. Besides, the spectrum
sparsity estimates also enable hard detection of channel occu-
pancy where threshold adaption for energy detection is avoided.
Moreover, with the detected dimension of signal subspace, we
propose to implement joint-block-sparse multiple-measurement-
vector (MMV) model of CSS whose dimension can be reduced to
minimum and meanwhile a large portion of noise is removed. The
proposed MMV model with noise and dimension reduction further
improves the detection performance and also keeps the complexity
low. Finally, we generalize the hard thresholding pursuit (HTP)
algorithm to recover joint-block-sparse signals. In simulations, the
detection performance and complexity of the proposed CSS scheme
show striking superiority against multiple benchmarking schemes.

Index Terms—Compressive spectrum sensing, hard thresholding
pursuit, spectrum sparsity, subspace decomposition, hard
detection.

I. INTRODUCTION

T
HE rapid evolution of wireless communications has de-

manded increasingly large data rate and service coverage,

and the spectrum scarcity appears to be a major challenge

of wireless communication applications. Spectrum sensing is

the essential and proactive way to acquire the ambient spec-

trum availability information, which enables dynamic spectrum

access (DSA) demanded by unlicensed secondary users (SUs)

to the spectrum, while guaranteeing the quality of service of

licensed primary users (PUs) [1]. While Nyquist-rate sampling

is required in the conventional spectrum sensing, compres-

sive sensing (CS) techniques have been proposed in wideband
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spectrum sensing to achieve sub-Nyquist-rate sampling, which

alleviates the hardware and power constraints of the conven-

tional Nyquist-rate processing [2]–[6]. Cooperative spectrum

sensing, which requires data fusion and centralized decision-

making, has been proposed to mitigate the deteriorated detection

performance in deep fading channel environments utilizing the

SU’s diversity of power spectrum [6]–[9]. A real-world practice

of DSA in UK is TV white-space (TVWS) where the allocated

spectrum of 470 − 790MHz has been largely vacated by the

massive introduction of digital terrestrial TV (DTTV) [10]–[12].

TVWS featuring wide bandwidth and sparse spectrum usage

by PUs is particularly suitable for the implementation of CSS

techniques [13]. With the evolution of communication system

towards the fifth- generation, recent proposals are present that

cellular services at millimeter-wave (mmWave) bands, with mul-

tiple operators potentially servicing overlapping small areas and

coexisiting with other crucial wireless services, could employ

a spectrum sharing and DSA model [14]. Real-time spectrum

sensing for such mmWave DSA applications, where the band-

width can span multiple gigahertz, poses larger challenges on the

sampling rate, and sub-Nyquist techniques could be promising

candidates.

Considering the demand of DSA applications, rapid spectrum

reconstruction and robust spectrum availability detection are

desired in compressive spectrum sensing (CSS). Optimization

methods in CSS have been discussed in literature, including

convex l1 optimization [4], [5], non-convex lv (0 < v < 1) opti-

mization [15], and sparse Bayesian learning [16], [17]. However,

the complexity of CS recovery algorithms, especially these

optimization methods, has been one of the major bottlenecks

of the implementation of CSS applications. Among these al-

gorithms, greedy algorithms, especially the Hard Threshold-

ing Pursuit (HTP) [18] and its derivations, have drawn great

attentions due to their lower computational cost compared to

these optimization-based sparse recovery schemes [19]. Most

greedy algorithms for sparse recovery require the sparsity of the

signal to be recovered as a priori input information. Inputting

an excessively large sparsity tends to lead to unnecessary free

dimensions of the signal space, which does not help detect the

support of the desired signal and makes the recovery fidelity

worse. However, in practice, valid estimates of sparsity in a

dynamic scenario are difficult to obtain, hence the a priori

known upper bound of sparsity based on long-time observations

or the maximum allowed value of sparsity is often input to

these algorithms to ensure reliable spectrum reconstruction.
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Another simple solution is to directly use the channel sparsity

information from the geo-location database. However, such in-

formation could be inaccurate as geo-location database relies on

propagation model and is designed to give conservative channel

availability to protect PUs [12], [20]. Some spectrum sparsity es-

timation solutions have also seen in literature [21], [22]. In these

works, prior to the actual spectrum sensing step, the spectrum

sparsity is estimated by multiple exhaustive pilots of recovery

implementations, which makes it inefficient. In [23], a novel

metric for sparsity is proposed for noisy signals, and estimation

is performed directly from compressive measurements. How-

ever, the measurements are required to be sampled by various

measurement matrices of a special formation. Moreover, the

sparsity information in [21]–[23] is proposed to be applied to

convex-optimization and adaptively optimize the compression

ratio, which is fundamentally different from how the sparsity

estimation is proposed to be used in this paper.

Robust detection of spectrum availability is also a crucial

procedure in CSS. The simple yet commonly adopted method is

Neyman-Pearson (NP) energy detection (ED) on each channel’s

spectrum energy, which determines the channel occupancy in a

soft decision manner by setting a proper threshold [24]. Some

work in CSS proposes cyclostationary feature extraction on the

recovered spectrum and then perform ED [17], [25]. Some prior

information on the noise statistics is essential to optimal thresh-

old setting. Practical noise estimation and threshold setting

schemes for conventional non-compressive spectrum sensing

have been proposed in literature [26], [27]. However, it is discov-

ered in [28] that the statistic model of the channel energy based

on the recovered spectrum differs from that of the conventional

model, and parameters of the proposed statistical models have to

be learned from multiple recovered spectrum samples in order

to set the proper threshold. The proposed parameter learning

scheme also has the realistic shortcoming that the estimation

requires time-consuming recovery operations.

To address the sparsity estimation issue, we propose a novel

sparsity estimation directly from time-domain sub-Nyquist sam-

ples. The proposed sparsity estimation is achieved by the sub-

space analysis of the auto-correlation matrix of sub-Nyquist

samples. In the area of array processing, a similar problem

is source enumeration. The full-row-rank “measurement ma-

trix” in the CSS context is an analogy of the full-column-rank

“array steering matrix,” and the spectrum sparsity is actually

equivalent to the number of sources in array processing. Source

numeration problem has been being studied for decades, with

some information theoretic criteria (ITC) proposed [29], [30]

to select the optimal number of principle and noise subspace

dimensions in the sense of information distance through eigen-

decomposition, including Akaike’s information criterion [31]

and minimum description length (MDL) [32] (or equivalently

Bayesian Information Criterion (BIC) in Bayesian formula-

tion [33]). BIC has drawn particular interests due to its better

asymptotic performances [34]. We choose to use a enhanced

BIC strategy to achieve the spectrum sparsity estimation. A pio-

neering subspace-aided sparsity estimation strategy has been re-

cently outlined in [6]. However, the specific estimation methods

applied, estimation performance or the advantages of spectrum

sparsity estimates have not been discussed.

Since the proposed spectrum sparsity estimation requires mul-

tiple samples of sub-Nyquist measurement vectors, we further

propose to use multiple-measurement-vector (MMV) model for

joint-block-sparse signals for CS directly instead of single-

measurement-vector (SMV) model. Based on the subspace de-

composition of the sparsity estimation scheme, it is natural to

reduce the dimensionality of the MMV model to its minimum

by removing the noise subspace, which effectively achieves

denoising from the measurements. Finally, we extend the HTP

algorithm for recovering joint-block-sparse signals, which em-

pirically gives better detection performance than l1 optimization

and orthogonal matching pursuit (OMP) counterparts while

keeping the complexity low.

The merits of the proposed spectrum sparsity estimation

scheme and the implementation of dimension-reduced MMV

model are summarized as follows:
� The estimation of spectrum sparsity is directly from com-

pressed measurements, which does not require recovery

operations;
� A valid estimate of spectrum sparsity aids the greedy

pursuit algorithm to reduce the complexity and enhance

the recovery performance;
� Dimension reduction of the MMV model further im-

proves the recovery performance and reduces recovery

complexity.
� With a valid estimate of spectrum sparsity, hard detection

(HD) of channel occupancy can be achieved without the

need of dictating or adapting the threshold.

The rest of this paper is structured as follows. In Section II,

system and signal models of CSS are presented. In Section III,

the proposed spectrum sparsity and active channel number

estimation scheme are detailed. In Section IV, the dimension

reduction of the MMV model and noise removal is introduced.

Then, performances of various commonly-used greedy algo-

rithms are discussed and the HTP algorithm is generalized for

joint-block-sparse signals. Monte-Carlo simulation results and

further comments are given in Section V.

II. SYSTEM AND SIGNAL MODELS

A. System Model

Consider a cognitive radio system with primary users (PUs)

being imaginary transceiver stations that transmits orthogonal

frequency division multiplexing (OFDM) signals within C fre-

quency channels which have equal bandwidth of B. In the

upper half in Fig. 1, the model diagram of an OFDM-based

radio transmitter is illustrated. The baseband signal from the

cth transmitter is to be upconverted by F0 + (c− 1)B to the

cth channel of the interested wideband spectrum, of which the

frequency range is [F0, F0 + CB]. The OFDM system of each

PU transmitter is assumed to have the symbol rate of Fs, hence

the minimum frequency spacing of OFDM sub-carriers is Fs.

Then, the number of sub-carriers for each PU transmitter is

determined by B/Fs, which is assumed to be an integer. An
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Fig. 1. The proposed system architecture: PU transmitters and a sensing node.

Fig. 2. A conceptual illustration of the interested TVWS wideband spectrum.

illustration of wideband OFDM spectrum with the parameters

specified above is given in Fig. 2.

B. Signal Model

Here, we construct the model of the signal to be sensed. Firstly,

with accordance to the PU transmitter diagram in Fig. 1, we write

the continuous time-domain signal of OFDM transmitters within

one symbol duration as

so(t) =

C
∑

c=1

B
Fs
∑

d=1

(ac,d + jbc,d)e
j2π[(d−1)Fs+(c−1)B]t, (1)

where 0 ≤ t < (1/Fs). ac,d and bc,d represents the dth data

symbol from the cth PU, of in-phase and quadrate component

respectively. Practical implementations of OFDM are digital via

inverse DFT (IDFT) of B/Fs points, and for a wideband system

compromisingC channel the Nyquist frequency is fNYQ = CB.

The discrete time-domain signal (sososo)CB
Fs

×1 is equivalent to the

continuous version (1) sampled at Nyquist frequency fNYQ, that

is

sososo =

[

so(0) so

(

1

CB

)

· · · so
(

CB
Fs

− 1

CB

)]T

=GGGγγγ. (2)

where GGGCB
Fs

×CB
Fs

is effectively a CB
Fs

-point IDFT matrix.

γγγ = [γγγT
1 γγγT

2 · · · γγγT
C ]

T , where data symbol blocks (γγγc) B
Fs

×1

(c = 1, 2, . . . , C) are presented by

γγγc =
[

ac,1 + jbc,1 ac,2 + jbc,2 · · · ac,B/Fs
+ jbc, B

Fs

]T

. (3)

In order to express the sparse channel occupation, we formally

model that for some 1 ≤ c ≤ C,γγγc are vectors with independent

zero-mean complex random entries, which represents occupied

channels; and for other γγγc’s, γγγc = 000 which models the vacant

channels. The frequency representation (i.e. the DFT) of sososo is

effectively γγγ =GGG−1sososo =GGG−1GGGγγγ. On the receiver’s end, the

received frequency-domain signal through a general multipath

channel is γ̂γγ = [γ̂γγ1, γ̂γγ2, . . . , γ̂γγC ], where

γ̂γγc = Lc

[

1√
Kc + 1

+

√
Kc√

K + 1
· hhhc

]

◦ γγγc, 1 ≤ c ≤ C. (4)

◦ denotes element-wise product. Lc’s are the path loss from the

transmitter occupying the cth channel and the receiver. hhhc’s are

multipath channel gain where hhhc ∼ CN (000, III). Kc is the power

ratio between multipath and line-of-sight components. Denote

the time-domain representation of the received signal by ŝososo :=
GGG−1γ̂γγ.

Consider a simple single-node non-cooperative CSS sce-

nario. Denote the Nyquist-rate time-domain signal as ssstN×1 =
[st[0] st[1] . . . st[N − 1]]T and its frequency-domain represen-

tation sssf = FFFssst = [sf [0] sf [1] . . . sf [N − 1]]T where FFFN×N

stands for the N -point discrete Fourier transform (DFT) matrix.

The signal sssf with sparsity, denoted by δ(sssf ) := ||sssf ||0, can

be recovered from a M -element sub-Nyquist-rate measurement

vector yyyM×1 where M < N , with the product of AAA and F−1F−1F−1

meeting restricted isotropic property [19]. The sub-Nyquist-rate

sampling can be characterized by a linear system

yyy = AAAssst + bbb = AAAFFF−1sssf + bbb, (5)

where AAAM×N is the sampling matrix with structured random

entries corresponding to analog-to-information converter (AIC)

settings [35], and bbbM×1 ∼ CN (000M×1, σ
2IIIM ) is a vector of in-

dependent and identically distributed (i.i.d.) complex additive

white Gaussian noise over measurements. Recovering a sparse

sssf from the SMV model with additive noise (5) is a typical

problem in the CS area. Denote the recovered signal as sssrf . SNR

is formally defined by

SNR := ||AstAstAst||22/(Mσ2). (6)

Consider that the practically large number of points CB
Fs

of

the spectrum at receiver γ̂γγ makes it unnecessary and adds to the

complexity for CS. Here, we consider the decimated version of

the spectrum as the sparse spectrum to be recovered sssf in (5),

writing

sf [n] := γ̂

[

n · CB

FsN

]

, n = 0, 1, . . . , N − 1, (7)

where it is assumed N is chosen to make B
FsN

an integer.

It is straightforward from (7) that δ(sssf ) non-zeros entries in

sssf are independent zero-mean complex random variables. The

Nyquist-rate time-domain samplesssst in the CS model (5) is then
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Fig. 3. A visualization of the joint-block-sparse matrix SSSf .

related to ŝososo by

st[n] =
1√
N

N−1
∑

i=0

sf [i] · ej2π in
N

=
1√
N

N−1
∑

i=0

⎡

⎣

CB
Fs

−1
∑

m=0

ŝo[m] · e−j2π
m(i· CB

FsN )Fs

CB

⎤

⎦ ej2π in
N

=
1√
N

CB
Fs

−1
∑

m=0

ŝo[m]

[

N−1
∑

i=0

e−j2π
i(m−n)

N

]

=
√
N

CB
NFs

−1
∑

m=0

ŝo[mN + n], n = 0, 1, . . . , N − 1.

(8)

III. SPECTRUM SPARSITY ESTIMATION BASED ON

SUBSPACE DECOMPOSITION

SupposeP samples of measurement vectors are obtained from

sub-Nyquist sampling, expressed by

YYY =
[

yyy(1) yyy(2) · · · yyy(P )
]

= AAAFFF−1
[

sss
(1)
f sss

(2)
f · · · sss(P )

f

]

+
[

bbb(1) bbb(2) · · · bbb(P )
]

= AAAFFF−1SSSf +BBB = YYY s +BBB.

(9)

The underdetermined system (9) consists a MMV model in CS

literature, where the spectrum support can be determined after

recovering the joint row-sparse matrix (SSSf )N×P . It is hereby

assumed that the channel occupancy remains the same in the

period of sample acquisitionP/Fs, henceSSSf is joint row-sparse.

Apart from the joint row-sparse property of SSSf , it also features

a block-sparse property due to the channel structure, where

every single (NC × P )-element block responsible to the same

channel have the same sparsity pattern - occupied or vacant.

We refer the sparsity pattern of SSSf as “joint-block-sparse” as

exemplified in Fig. 3 and the term “channel” and “block” are

used interchangeably in the remaining of this paper.

Examine the auto-correlation matrix of sub-Nyquist rate mea-

surement vectors,

RRRy = AAAFFF−1RRRsf (FFF−1)HAAAH + σ2IIIM , (10)

where RRRy = E [yyyyyyH ] = limP→∞
1
P

∑P
p=1 yyy

(p) (yyy(p))
H

and

RRRsf = E[sssfsss
H
f ] = limP→∞

1
P

∑P
p=1 sss

(p)
f (sss

(p)
f )

H
. With finite

sample size P , one can only have the estimation of auto-

correlation matricesRRRy andRRRsf denoted by R̂RRy and R̂RRsf , where

it holds

R̂RRy = AAAFFF−1R̂RRsf (FFF−1)HAAAH +
1

P
BBBBBBH

=
1

P
YYY sYYY

H
s +

1

P
BBBBBBH ,

(11)

where R̂RRy = 1
P

∑P
p=1 yyy

(p)(yyy(p))
H

= 1
P Y YY YY Y H , and R̂RRsf =

1
P

∑P
p=1 sss

(p)
f (sss

(p)
f )

H
= 1

P SfSfSfSfSfSf
H . In Proposition 1 that follows,

we present the property on the rank of R̂RRsf and R̂RRy under

noise-free conditions, based on which the sparsity of spectrum

is proposed to be estimated.

Lemma 1: Given ααα(1),ααα(2), . . . ,ααα(s) ∈ C
r is a series of

arbitrary vectors and s < r, a random vector ααα(s+1) ∈ C
r

whose entries are independent and follow an absolutely con-

tinuous distribution makes dim{ααα(1),ααα(2), . . . ,ααα(s),ααα(s+1)} =
dim{ααα(1),ααα(2), . . . ,ααα(s)}+ 1 with the probability of 1.

Proof: Denote the subspace dimension dim{ααα(1),
ααα(2), . . . ,ααα(s)} = v, and naturally we have v ≤ s < r.

Consider the case that ααα(s+1) falls in the subspace

span{ααα(1),ααα(2), . . . ,ααα(s)}, where the probability equals to

the integral of the probability density function that is absolutely

continuous in space C
r on a v-dimension hyperplane, which

has the measure of 0. Hence, with the probability of 1,

ααα(s+1) is linear-independent with {ααα(1),ααα(2), . . . ,ααα(s)}, which

completes the proof. �

Proposition 1: Given σ2 = 0, and that random vector sssf has

the sparsity of δ(sssf ), if P ≥ δ(sssf ), it holds with probability of

1 that rank(R̂RRsf ) = δ(sssf ). Furthermore, if AFAFAF−1 has full rank

and M ≥ δ(sssf ), it holds with probability of 1 that rank(R̂RRy) =

rank(R̂RRsf ) = δ(sssf ).

Proof: Given arbitrary sss
(1)
f , from Lemma 1, it holds

that dim{sss(1)
f sss

(2)
f } = 2 with probability of 1. For 2 ≤ s ≤

δ(sssf )− 1, assuming dim{sss(1)
f · · ·sss(s)f } = s, again from

Lemma 1, it holds that dim{sss(1)
f · · · sss(s+1)

f } = s+ 1.

Consequently, we have first δ(sssf ) samples satisfying

dim{sss(1)
f sss

(2)
f · · · , sss(δ(sssf ))f } = rank[sss

(1)
f sss

(2)
f · · · , sss(δ(sssf ))f ] =

δ(sssf ). Then, with P − δ(sssf ) more samples as columns,

we naturally have rank(SSSf ) ≥ δ(sssf ). On the other hand,

consider the sparsity of sss
(p)
f ’s, it also holds rank(SSSf ) ≤ δ(sssf ).

From both inequalities, we have rank(SSSf ) = δ(sssf ). From

R̂RRsf = 1
PSfSfSfSfSfSf

H , we have rank(R̂RRsf ) = rank(SSSf ) = δ(sssf ).
Furthermore, consider YYY = AAAFFF−1SSSf , we have rank(YYY ) =

min{rank(AFAFAF−1), δ(sssf )} = δ(sssf ). Finally, we reach

rank(R̂RRy) = rank( 1
P Y YY YY Y H) = rank(YYY ) = δ(sssf ). �

Proposition 1 indicates that the sparsity δ(sssf ) can be revealed

by the rank of the estimated autocorrelation of the measurements

RyRyRy under the conditions that 1) P ≥ δ(sssf ), 2) M ≥ δ(sssf )
and that 3) AF−1AF−1AF−1 has full rank. Since CS theory requires the

product of sampling matrixAAA and sparsifying matrixF−1F−1F−1 to be
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nearly orthogonal [19], and the number of measurements to meet

M > O(δ(sssf ) logN) [36], condition 2) and 3) can be naturally

met in most practices of CS. Therefore, one need guarantee

that the number of measurement vector samples is larger than

the maximum sparsity of the spectrum in order to employ the

proposed sparsity estimation scheme.

Perform eigendecomposition ofAAAFFF−1R̂RRsf (FFF−1)HAAAH which

has the rank of δ(sssf ) from Proposition 1 and yields δ(sssf )

eigenvalues. With the presence of noise, R̂RRy is presented by

R̂RRy =

δ(sssf )
∑

i=1

λivvvivvv
H
i +

1

P
BBBBBBH , (12)

where λ1, . . . , λδ(sssf ) denote the eigenvalues in the signal’s

subspace spanned by corresponding eigenvectorsvvv1, . . . , vvvδ(sssf ).
With relatively large signal-to-noise ratio (SNR), the eigenvalue

profile asymptotically converges with the increasing number of

samples P to such that the dominant eigenvalues correspond

to signal power and that small and equal perturbing eigen-

values λδ(sssf )+1 = · · · = λM = σ2 represent the noise power.

In practice, we use the eigendecomposition of estimated auto-

correlation matrix R̂RRy

R̂RRy =

M
∑

i=1

λ̂iv̂vviv̂vv
H
i , (13)

where λ̂1 ≥ · · · ≥ λ̂M and v̂vv1, . . . , v̂vvM denote the descending-

ordered eigenvalues and corresponding eigenvectors of the es-

timated auto-correlation matrix. Then, the sparsity can be ob-

tained by differentiating two groups of eigenvalues by their

amplitudes.

A. A Bayesian-Information-Criteria-Based Estimator

In practical estimation-based eigendecomposition (13), only

limited number of samples can be used for estimation and SNR

can be low, hence, the noise subspace eigenvalues are not identi-

cal and can be difficult to be discriminated from signal subspace

eigenvalues. The above-described sparsity estimation problem

is an analogy to the source enumeration which is a fundamental

problem in array processing. A recently-proposed algorithm

based on information theoretic criteria (ITC) for estimating the

dimensionality of signal subspace is the enhanced Bayesian

Information Criterion (BICe) [37] which defines the ITC metric

as

BICe(k) = − 2 log f(YYY |λ̂1, . . . , λ̂M ; k)

− 2 log f(λ̂1, . . . , λ̂M ; k) + Ck logP, (14)

k = 1, . . . ,M , where f(·) denotes probability density function

and Ck = k(2M − k) [29] is the number of free parameters

related to k. Then the estimation ko of δ(sssf ) is determined by

ko = argmin
k

BICe(k). (15)

Additionally, note sssf and bbb are independent and both zero-mean

random vectors, we approximately regard yyy as a zero-mean

Gaussian random vector as a result of central limit theorem.

Hence, the posterior probability of P independent observations

YYY , given the estimated eigenvalues parameterized by k, is

expressed by the multivariate Gaussian model [38]

f(YYY |λ̂1, . . . , λ̂M ; k) =

∏P
p=1 exp tr

(

(

yyy(p)
)H · R̂RRy · yyy(p)

)

πM ·∏k
i=1 λ̂i · (σ̂2)M−k

=
1

πM ·∏k
i=1 λ̂i · (σ̂2)M−k

,

(16)

where λ̂1, . . . , λ̂k and σ̂2 :=
∑M

i=k+1 λ̂i/(M − k) are

maximum-likelihood (ML) estimates for λ1, . . . , λk and

σ2, respectively.

The joint probability density f(λ̂1, . . . , λ̂M ; k) is pro-

posed [37] to be approximated by the product of the probability

density of signal subspace eigenvalues and the probability den-

sity of noise subspace eigenvalues, using the ML estimates to

approximate true values in conditions, that is

f(λ̂1, . . . , λ̂M ; k) = f(λ̂1, . . . , λ̂k|λ1 = λ̂1, . . . , λk = λ̂k)

· f(λ̂k+1, . . . , λ̂M |σ2 = σ̂2). (17)

The probability densities f(λ̂1, . . . , λ̂k|λ1, . . . , λk) and

f(λ̂k+1, . . . , λ̂M |σ2) are derived in [38] and [34] respectively.

By relating (16) and (17) into (14), after terms irrelevant to k
being removed, the optimization of BICe can be rearranged as

the following

ko = argmin
k

BICe(k)

= argmin
k

{2(M − k)(P +M − k) log σ̂2

− 2P

M
∑

i=k+1

log λ̂i + 2

k
∑

i=1

log λ̂i + 2

M−k
∑

i=1

log Γ(i)

+ P
M
∑

i=k+1

(

λ̂i − σ̂2

σ̂2

)2

− 4

M
∑

i=k+1

M
∑

j=i+1

log |λ̂i − λ̂j |

+ (4Mk − 2 k2 − k) logP},

(18)

where Γ(·) denotes the real Gamma function.

B. Initial Performance Analysis

As a generalization of the original BIC detector, the BICe-

based detector is reported to inherit asymptotic consistency

property [37] that both the overestimation and underestima-

tion probability converge to zero with P increasing to infinity,

regardless the SNR. Furthermore, overestimation probability

converges much more rapidly, and is reportedly small enough

empirically and analytically [39] to be neglected.

The eigenvalue profiles of varying SNR and P are firstly

shown in Fig. 4(a) and (b) respectively. With decreasing SNR,

it is a natural result that the increasing eigenvalues from noise

subspace lead to more difficulty in discriminating the signal sub-

space eigenvalues from the eigenvalue profile. With decreasing

P , the number of noise subspace eigenvalues are also harder to be

determined as the noise subspace eigenvalues tend to be more

inconsistent in the eigenvalue profile. Moreover, we illustrate
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Fig. 4. Descending-ordered eigenvalue profiles: (a) with varying SNR from
−9 dB to 9 dB and P = 5120; (b) with varying P and SNR = 0 dB.

Fig. 5. Enhanced BIC metric against sparsity values k: (a) with varying SNR

from −9 dB to 9 dB and P = 5120; (b) with varying P and SNR = 0 dB.

the BICe metric against 1 ≤ k ≤ M with changing SNR and P
in Fig. 5(a) and (b). With SNR and P above certain level, the

proposed BICe-based detection method can accurately detect the

sparsity of spectrum ko = rank(RRRsf ) = δ(sssf ). However, with

either further decreasing SNR or P , the k values corresponding

to minimum BICe metrics tend to be underestimated, that is

ko < δ(sssf ). Additionally, in Fig. 5, overestimation is never

spotted with finite times of simulations and the smallest eligible

P = M = 512. In this sense, we can reasonably matchP = 512

to the qualitative description “large sample size” in terms of

negligible overestimation probability.

C. Estimation of Active Channel Number

As the sparse presentation SSSf is a joint-block-sparse ma-

trix, having estimated the sparsity of the spectrum, one finally

needs the estimated active channel number as the number of

blocks to be detected in the recovery algorithm. We hereby

propose the estimation of active channel number based on the

constraint that the dimension of signal subspace only can be

multiples of the number of spectrum bins of each channel, which

is δ(sssf ) = l ·N/C with the actual number of occupied channels

0 ≤ l ≤ C being some integer. Hence, with negligible overes-

timation probability, we estimate the active channel number lo

from the detected sparsity of spectrum by

lo :=

⌈

ko · C
N

⌉

. (19)

This ceiling operation in active channel number detection ef-

fectively enhances the its robustness against low SNR and

P in which cases the spectrum sparsity are possibly under-

estimated, by amending the underestimated spectrum sparsity

δ(sssf )−N/C < ko < δ(sssf ) as the case where the number of

active channel is correctly detected. With the estimated active

channel number lo, one can get the compensated version of

spectrum sparsity as

kc :=
N · lo
C

=
N ·
⌈

ko·C
N

⌉

C
. (20)

IV. LOW-COMPLEXITY CSS SCHEME WITH ESTIMATED

ACTIVE CHANNEL NUMBER

A. Noise and Dimension Reduction Based on Subspace

Decomposition

The introduction of MMV model (9) can potentially improve

the detection performance as the model includes multiple sam-

ples of random measurement vectors compared to SMV case

(5). From the evaluations in Section III-C, the proposed channel

sparsity estimation may require a large number of measurement

vectors P to achieve satisfactory performance. To enable quick

spectrum sensing updates and rapid spectrum access, one could

use a smaller number of measurement vectors, i.e. P
′
< P to

form the following MMV model

YYY
′
= AAAFFF−1SSS

′
f +BBB

′
= YYY

′
s +BBB

′
, (21)

where YYY
′
= [yyy(1)yyy(2) · · ·yyy(P

′
)], SSS

′
f = [sfsfsf

(1)sfsfsf
(2) · · ·sfsfsf (P

′
)],

and BBB
′
= [bbb(1) bbb(2) · · · bbb(P

′
)]. The sample acquisition period

for (21) is then P
′
/Fs.

However, noting that the sparse recovery’s complexity via an

MMV model goes linearly with the number of measurement

vectors P
′
[6], sparse recovery via an MMV model (21) with a

large P
′

becomes impractical. Besides that the subspace-aided

approach in Section V provides the estimate of spectrum spar-

sity, we hereby note that by a similar subspace decomposi-

tion operation one can also reduce an great portion of noise

from the measurements and also the dimension of CS recovery

problem. Similar to (13), we have the estimated autocorrelation

of YYY
′
, which writes R̂RR

′

y := 1

P ′
∑P

′

p=1 yyy
(p)(yyy(p))

H
= 1

P ′ YYY
′
Y

′
Y

′
Y

′H ,

and perform eigendecomposition of R̂RR
′

y . With the compensated

sparsity estimate kc, one can separate the subspace of R̂RR
′

y into

signal and noise subspace

R̂RR
′

y =
kc
∑

i=1

λ
′
ivvv

′
ivvv

′H
i +

rank R̂RR
′
y

∑

i=kc+1

λ
′
ivvv

′
ivvv

′H
i

= VVV sΛΛΛsVVV
H
s + VVV nΛΛΛnVVV

H
n ,

(22)

where λ
′
i’s are descending-ordered eigenvalues and vvv

′
i are

corresponding eigenvectors, for 1 ≤ i ≤ rank R̂RR
′

y; ΛΛΛs =

diag(λ̂1, λ̂2, . . . , λ̂kc) and ΛΛΛn = diag (λ̂kc+1, λ̂kc+2, . . . ,
λ̂

rank R̂RR
′
y

). The components in noise subspace can be easily

identified and removed after kc is obtained. In order to preserve
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the estimated dimension of signal subspace, i.e. kc, it is required

that rank R̂RR
′

y ≥ kc. On the other hand, from the dimension of

R̂RR
′

y itself, its rank satisfies rank R̂RR
′

y = min{M,P
′}. Hence, it

is necessary that the number of measurement vectors for sparse

recovery to meet P
′ ≥ kc.

Then, the support of spectrum is proposed to be directly

determined by the components in signal subspace VVV sλλλsVVV
H
s ,

that is

VVV s(ΛΛΛs)
1
2 = AAAFFF−1SSSv +BBBv, (23)

where (SSSv)N×kc is the signal to be recovered by CS algorithm,

and BBBv denotes the perturbing term due to noise residue in the

signal subspace. It is noted that the dimension of the joint-block-

sparse matrixSSSv in (23) instead ofSSS
′
f (21) can be greatly reduced

from N × P
′

to N × kc. The relationship between the sparse

signal of the two MMV models, SSSv and SSS
′
f in (23) and (21)

respectively, is expressed by

supp(SSSv) ⊆ supp(SSS
′
f ) = supp(SSSf ), (24)

where the equality holds when the spectrum sparsity is correctly

estimated, i.e. kc = δ(sssf ). With underestimated spectrum spar-

sity whenSNR andP are small, the model (23) can still be used

with possibly worse detecting performance as the support ofSSSv

is a subset ofSSSf . The rationale of (24) is provided in Proposition

2 and Corollary 1 below.1

Proposition 2: For arbitrary matrices MMM ∈ C
a×b and NNN ∈

C
a×c, if MMMMMMH =NNNNNNH , then span(MMM) = span(NNN).
Proof: ∀xxx ∈ C

b s.t.MMMHxxx = 000, one has MMMMMMHxxx = 000,

which means null(MMMH) ⊆ null(MMMMMMH). Similarly, ∀xxx ∈
C

b s.t.MMMMMMHxxx = 000, the quadratic form satisfiesxxxHMMMMMMHxxx =
000, then MMMHxxx = 000, which is equivalent to null(MMMMMMH) ⊆
null(MMMH). Thus, it holds that null(MMMMMMH) = null(MMMH).
For matrix NNN , again, we have null(NNNNNNH) = null(NNNH)
and it follows that null(MMMH) = null(NNNH) = null(NNNNNNH) =
null(MMMMMMH). Finally, from rank-nullity theorem, it holds that

span(MMM) = null(MMMH)⊥ = span(NNN) = null(NNNH)⊥, which

completes the proof. �

Corollary 1: If the MMV model (21) is transformed to (23)

by zeroing the noise subspace in (22), and the dimensionality of

signal subspace is not overestimated, i.e. kc ≤ δ(sssf ), then (24)

is met. Equality in (24) is guaranteed if kc = δ(sssf ).
Proof: Consider the case BBBv = 000, and it is noted that

VVV sλλλsVVV
H
s = YYY

′
sYYY

′
s
H

when kc = δ(sssf ). From Proposition 2 one

has span(VVV s(ΛΛΛs)
1
2 ) = span(YYY s). Since columns of the two ma-

trices span the same kc-dimension subspace in C
M , they can

be linked via a unique linear transform characterized by full-

(column-)rank matrix LLLP×kc , that is VVV s(ΛΛΛs)
1
2 = YYY sLLL. There

exists a matrix SSSv = SfLSfLSfL that satisfies VVV s(ΛΛΛs)
1
2 = AAASSSv =

YYY sLLL = AAASSSfLLL. And such SSSv apparently has the same support

as SSSf (i.e. equality in (24)) with row sparsity of δ(sssf ).
For underestimated dimensionality of signal subspace kc <

δ(sssf ), the detected signal subspace has reduced dimensionality

1The support of a joint-sparse matrix supp(·) is defined as the set of the indices
of the rows whose 0-norm are non-zero.

compared to that of YYY s, that is span(VVV s(ΛΛΛs)
1
2 ) ⊂ span(YYY s).

Then, the relationships VVV s(ΛΛΛs)
1
2 = YYY sLLL and SSSv = SSSfLLL hold

where there exists a matrix LLLP×δ(sssf ) with the rank of kc.

Similarly, this leads to supp(SSSv) ⊆ supp(SSSf ). �

B. Evaluations on Greedy Algorithms

Here we consider four algorithms frequently referred to in

literature, namely Orthogonal Matching Pursuit (OMP), Com-

pressive Sampling Matching Pursuit (CoSaMP) [40], Subspace

Pursuit (SP) [41], and Hard Thresholding Pursuit (HTP) [18], all

of which also require estimated sparsity as input. For simplicity,

we focus on the basic SMV model (5) for the purpose of

comparing these algorithms and kc is a natural choice of input

sparsity estimate of sssf . It is noted that the complexity of these

algorithms is dominated by the correlation multiplication step

with the complexity ofO(NM), and the least-square estimation

step as it refers to the computation of the pseudo-inverse of a

M × kc column-full-rank matrix - an O((kc)2M) operation.2

Without the knowledge of the signal sparsity, a safe practice

is inputting an overestimated or the maximum allowed value

as estimated sparsity in order to reduce the residue as much

as possible. The difference between OMP and these three al-

gorithms is that the OMP cumulatively detects the support

in the desired signal, while CoSaMP, SP and HTP updates a

certain number of supports batch by batch until a satisfactory

support is detected upon convergence. For OMP, the maximum

allowed input of sparsity estimate is M with which a unique

solution is marginally guaranteed in least-square estimation step.

The complexity reduction due to a valid estimated sparsity is

apparent - the explicit number of iterations is reduced from

M to kc.

In other three algorithms, pruning operation is essential to up-

date the most responsible supports in each iteration. Specifically,

CoSaMP has the pruning procedure where kc most prominent

supports out of 3 kc remain in each iteration. This pruning pro-

cedure dictates the maximum allowed input kc = M/3, which

implies sparsity can not be too much overestimated. Similarly,

SP proposes to prune kc out of 2 kc supports and then recal-

culates the least-squares in each iteration. In terms of HTP, the

pruning process selects the kc most relevant supports out of M .

The complexity reduction comes from two aspects - one is the

reduced dimensionality of the least-square estimation problem

in each iteration from O(M 3) to O((kc)2M), and another is

the reduced average number of iterations as a valid estimate of

sparsity aids to find the correct subspace dimension of the signal

to be recovered.

In addition to the benefits of reduced complexity, the esti-

mated sparsity information also aids to reliably recover the signal

and find the correct signal support. Informally, for general greedy

algorithms, inputting an overestimated signal’s sparsity results

in excessive free dimensions in the least-squares step, hence

it leads to more inclusion of falsely-detected non-zero entries

caused by noise perturbations in inaccurate measurements.

2In this paper, the pseudo-inverse of a a× b matrix (b < a) is considered to
be implemented by the SVD-based algorithm, which gives the complexity of
O(ab2).
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Fig. 6. NMSEs of four greedy algorithms on the SMV model (5) against
different input sparsity estimateskc. Parameters are set asN = 1280,M = 512,
SNR = 6dB and δ(sssf ) = 64.

For direct empirical results, experiments are conducted for the

SMV spectrum recovery problem (5) using the four interested

greedy algorithms in order to compare their performance on

recovery fidelity and running time. To provide fairness, we use

the same stopping criteria for CoSaMP, SP and HTP - that the

detected support is the same in two consequent iterations, or the

algorithm reaches the maximum number of iterations of 100.

These improvements on recovery fidelity illustrated in Fig. 6

is evaluated by normalized minimum-squared error (NMSE),

defined by

NMSE =
||sssrf − sssf ||22

||sssf ||22
. (25)

In Fig. 6 it is observed that all four algorithms shows

the best recovery fidelity near accurate estimate of sparsity

kc = δ(sssf ) = 64. For HTP, with the input sparsity estimate

approaching M , the pruning is less effective and the recovery

performance degrades with M more severely compared with

OMP. It worth noting that when inputting the sparsity estimate

asM , the HTP algorithm degenerates to a single correlation step

(which has only 2 iterations) and the recovery performance is the

worst in terms of NMSE. However, with a valid sparsity estimate,

the HTP algorithm offers the lowest NMSE, which is consistent

with both the theoretical superiority [18, Th. 3.8] over other three

algorithms. For time complexity of these algorithms, as shown

in Fig. 7(a)(b), one can see that CoSaMP is sensitive to the input

sparsity. Specifically, the detected support tends not to converge

with overestimated input sparsity (reaching maximum iteration

number of 100). Additional stopping criteria, which terminates

the iteration when the residue is less than a predefined tolerance,

may be desired to stop the algorithm prior of reaching the maxi-

mum number of iteration. However, the tolerance of the residue

is related to the noise level, which requires prior knowledge of

the signal. On the other hand, HTP still converges with small

numbers of iterations. The good convergence performance of

HTP and SP leads to the considerate less recovery time of both

when compared with CoSaMP. Specially, OMP does not require

termination upon convergence by running an explicit number of

iterations which equals to kc, and the running time also largely

exceeds that of HTP and SP.

Fig. 7. (a) Average number of iterations of CoSaMP, SP and HTP on the SMV
model (5) against different input sparsity estimates kc (maximum number of
iteration is 100); (b) Average running time per recovery of four greedy algorithms
on the SMV model (5) against different input sparsity estimates kc.

Algorithm 1: Joint-block-sparse Hard Thresholding Pursuit

(JB-HTP).

Require: AAA, VVV s(ΛΛΛs)
1
2 , lo, maxIter.

Ensure: SSSr
v , Ω.

1: Initialize SSS
(i+1)
v ← 000, Ω(0) ← ∅, Ωold ← ∅, i ← 0.

2: while (Ω(i) �= Ωold and i < maxIter) or i = 0 do

3: Ω(i+1) ← {indices of lo largest || · ||F block entries

of SSS
(i)
v + (AAAFFF−1)H [VVV s(ΛΛΛs)

1
2 −AAAFFF−1SSS

(i)
v ]};

4: Ωold ← Ω(i);

5: i ← i+ 1;

6: (SSS
(i)
v )

BLK,Ω(i) ← 000;

7: (SSS
(i)
v )BLK,Ω(i) ← [(AAAFFF−1)BLK,Ω(i) ]†VVV s(ΛΛΛs)

1
2 ;

8: end while

9: Ω ← Ω(i);

10: SSSr
v ← SSS

(i)
v ;

C. HTP-Based Blind Block Support Detection

From both theoretical guarantees and empirical results above

and in [18], we find the HTP algorithm interesting which has su-

periority in both recovery fidelity and convergence with inaccu-

rate sparsity input. Consequently, we exploit the basic SMV form

of HTP and revise it for solving the joint-block-sparse MMV

model (23), namely JB-HTP. Having obtained the estimated

active channel number lo from subspace-decomposition-based

spectrum sparsity estimation, we propose to use lo as the input to

the proposed algorithm. The routines of the proposed algorithm

are illustrated in Algorithm 1. To clarify the notations in the step

4, (·)BLK,Ω(i+1) stands for the sub-matrix whose rows/columns

are indexed by the block entries in the setΩ(i+1), and (·)† denotes

pseudo-inverse. In the step 3 in the proposed algorithm, the

Frobenius-norm is calculated for each block, which writes
∥

∥

∥

∥

(

SSS(i+1)
v + (AAAFFF−1)H

[

VVV s(ΛΛΛs)
1
2 −AAAFFF−1SSS(i+1)

v

])

BLK,{c}

∥

∥

∥

∥

F

(26)

for c = 0, 1, . . . , C − 1.

Having finished the recovery of joint-block-sparse matrix

SSSv , one can perform ED based on the recovered matrix SSSr
v to
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Algorithm 2: Low-complexity Blind CSS with Spectrum

Sparsity Estimation.

Require: M,N,P,AAA,YYY ,C,maxIter.

Ensure: Ω
1: Construct R̂RRy from P snapshots and perform EVD to

obtain λ̂1, . . . , λ̂M and v̂vv1, . . . , v̂vvM as in (13);

2: Calculate BICe for k = 1, · · · M and find ko

corresponding the minimum BICe as in (18);

3: Compensate for underestimation and obtain lo and kc

as in (19) and (20) respectively;

4: Construct VVV s and ΛΛΛs as in (22);

5: Recover the spectrum and detect incumbent blocks by

{SSSr
v,Ω} ← JB-HTP(AAA,VVV s(ΛΛΛs)

1
2 , lo,maxIter);

determine the channel occupancy. However, ED refers to setting

an optimal threshold in the sense of detection probability, which

requires extra knowledge of statistics of SSSv . Due to the nature

of greedy pursuit, it is proposed to utilize the byproduct of

the recovery algorithm - the detected block support Ω as the

spectrum occupancy decision, which forms a HD scheme.

If the reconstructed spectrum (SSS
′
f

r
)N×P ′ analogous to the

original joint-block-sparse spectrumSSS
′
f in the MMV model (21)

is desired, it can be obtained by an additional single projection

step
(

SSS
′
f

r
)

BLK,Ω
← 000

(

SSS
′
f

r
)

BLK,Ω
←
[

(

AAAFFF−1
)

BLK,Ω

]†
YYY

′
s.

(27)

To summarize this section, detailed procedures of the pro-

posed low-complexity blind CSS with spectrum sparsity esti-

mation are given in Algorithm 2 and a complete overview of the

proposed CSS system architecture is given in Fig. 1.

D. Theoretical Guarantees and Time Complexity of JB-HTP

Here, we exhibit two conclusions of JB-HTP we are inter-

ested in - firstly the exact recovery and convergence guarantee

with accurate measurements of joint-block-sparse signals, and

secondly the guarantee of the order of iteration times.

Proposition 3: If the 3 kcth-order restricted isotropic

constant3 of the measurement matrix ΦΦΦ := AFAFAF−1 ∈ C
M×N

satisfies σΦΦΦ,3kc < 1/
√

3, for any joint-block-sparse matrix

SSSv ∈ C
N×kc

with row sparsity of kc, the solutionSSS
(i)
v in the ith

iteration of JB-HTP based on the MMV model (23) converges

exactly to SSSv.

See Appendix A for proof of Proposition 3.

Proposition 4: If the 3 kcth-order restricted isotropic con-

stant of the measurement matrixΦΦΦ := AFAFAF−1 ∈ C
M×N satisfies

σΦΦΦ,3kc < 1/
√

3, for any joint-block-sparse matrixSSSv ∈ C
N×kc

with row sparsity of kc and block sparsity of l, the average

number of iterations required by the JB-HTP algorithm based

on the MMV model (23) is at most O(log l) +O(1).

3Defined in Lemma 2 in Appendix A.

Fig. 8. Estimated sparsity ko and estimated number of active channels
lo against SNR and the number of snapshots for estimation P .

See Appendix B for proof of Proposition 4.

Theoretically, each iteration of the proposed JB-HTP algo-

rithm for MMV model (23) has complexity of O(kcNM) from

the matrix multiplication in the correlation step (line 3) and

O((kc)2M) from pseudo-inverse in the least-square step (line 4).

Consequently, each iteration’s complexity writes O(kcNM) +
O((kc)2M) = O(kcNM) as kc << N always holds. Hence,

with Proposition 4, the total complexity of JB-HTP is expressed

by O(kcNM log l).

V. NUMERICAL SIMULATIONS

In simulations, time-domain OFDM signals sososo and ssst are

generated as in (2) and (8). Constant parameters are set as B =
8 (MHz), C = 40, N = 1280 and CB/Fs = 7680, and each

row ofAAA is independent and generated by normalized Gaussian

random vector CN (000, 1
N III). Source symbols γγγ are independent

Gaussian. Additive white Gaussian noise channel model is

adopted and received power in all occupied channels is identical.

Unless specified elsewhere, the default settings of parameters in

the simulation are as follows. Actual active channel number is set

as l := card(Ωs) = 3, making δ(sssf ) = 96 with central frequen-

cies of incumbent channels set by [f1 f2 f3] = [76 164 244]
(MHz), and the number of elements in each measurement vector

is M = 512. The number of measurement vectors for sparse

recovery in (21) is P
′
= M = 512.

A. Performance Evaluation of the Proposed Spectrum Sparsity

Estimation Scheme

Firstly, as shown in Fig. 8, it is noted that the proposed

spectrum sparsity estimation scheme accurately detects the true

sparsity δ(sssf ) = lN/C = 96 with SNR and the number of

measurement vectors P sufficiently large. Moreover, possible

determinations of the active channel number lo = 1, 2, 3 based

on ko have been shown. As a results of that the spectrum sparsity

ko is never overestimated, the proposed ceiling operation in (19)

is justified and it provides more robustness against low SNR
and P while still accurately detects the active channel number

in high SNR and P cases.

In Fig. 9, the minimum integer SNRs with which the de-

tection marginally gives correct active channel number with

varying sample size P are shown. The results have verified
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TABLE I
SETTINGS OF THE PROPOSED CSS SOLUTION AND BENCHMARK SCHEMES

Fig. 9. Minimum SNRs to ensure correct detection of active channel number
lo = l against numbers of snapshots P , of varying numbers of elements each
measurement vector M and l.

the expectation that the decreasing M or increasing l lead to

reduced dimensions in the noise subspace, hence deteriorated

performance.

B. Performance Evaluation of the Proposed CSS Scheme

1) Benchmark Scheme Settings: In order to evaluate the

performance of the proposed JB-HTP-based CSS scheme, we

choose to compare it with a few benchmark schemes illustrated

in Table I. In scheme No. I, II, and III, three CS recovery

algorithms, BP, OMP and HTP are chosen to solve the sparse

recovery problem of the SMV model (5) without the knowledge

of the spectrum sparsity where ED scheme is used. To compare to

SMV-ED schemes, using the active channel number estimation

scheme proposed in Section III, SMV-HD schemes with OMP

and HTP recovery algorithms are examined in scheme No. IV

and V. Apart from the proposed active channel number estima-

tion scheme, in scheme No. VI, VII, and VIII, the MMV model

with dimension and noise reduction proposed in Section IV, i.e.

(21), applies for sparse recovery. Particularly, in scheme No.

VI, the MMV version of BP - multiple-BP (M-BP) [42] - is

used to solve (9) where sparsity estimation is not applicable

and hence ED has to be used. In scheme No. VI and VII, the

MMV version of OMP, simultaneous-OMP (SOMP) [43], and

the proposed JB-HTP are used for MMV model (21) where HD

is used because a spectrum sparsity estimation is required by the

formulation of the proposed model (21).

It should be noted that the recovery algorithms - OMP, HTP

and SOMP in scheme No. IV, V and VII are not purposed

for block-sparse signals so that the block support (i.e. ac-

tive channel support) is not directly output by these recovery

algorithms. In these schemes, we use an intuitive procedure

to produce the active channel support as in [44]. Having re-

covered the spectrum sssrf = [srf [0] s
r
f [1] . . . s

r
f [N − 1]]T from

(5) or (SSSr
v)N×kc from (23), we calculate the channel energy

pppf = [pf [0] pf [1] . . . pf [N − 1]]T whose entries are

pf [c] =

(c+1)N/C−1
∑

i=cN/C

|srf [i]|2, (28)

for SMV modeo (5) or

pf [c] =
∥

∥

∥
(SSSr

v)BLK,{c}

∥

∥

∥

2

F
, (29)

for MMV model (23), where c = 0, 1, . . . , C − 1. We then

directly determine the active channels by sorting pf [n]’s and

indicating the channels corresponding to the largest lo entries,

which effectively achieves hard detection, formally

Ω = {ω1, . . . , ωlo |pf [ω1] ≥ · · · ≥ pf [ωlo ] ≥ · · · ≥ pf [ωC ]} .
(30)

2) Evaluation Metrics: For the purpose of spectrum sensing

in the background of DSA, the performance of detection of

occupied and vacant channel is the natural choice of the metrics

of the performance. In Monte-Carlo simulations, by definition,

the probability of detection Pd and the probability of false alarm

Pf are presented by

Pd =
total # correctly detected channels

# recovery trials× l
,

Pf =
total # falsely detected channels

# recovery trials× (C − l)
.

3) Simulation Results: For the general effectiveness of the

proposed scheme VII with JB-HTP, we exhibit in Fig. 10 the

detection performance with different numbers of samples per

measurement vector M and block sparsity l of the spectrum.

One can see observe that the default setting (M = 512, l = 3)

gives Pd close and approaching 1 (Pd > 0.99) and Pf close

and approaching 0 (Pf < 10−3) starting from the SNR as low

as −20dB. In comparison with other combination of M and l,
the proposed scheme, like other CSS schemes, shows superior

detection performance with larger M (i.e. larger compression
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Fig. 10. Detection performance of the proposed JB-HTP scheme on the MMV
model (23) against SNR. It is assumed the active channel number are correctly
estimated, lo = l in all shown cases.

Fig. 11. ROC curves of SMV-ED schemes and scatters of SMV-HD schemes
in Table I with SNRs from −1dB to −5dB and lo = l = 3.

ratio) and smaller l (i.e. smaller spectrum sparsity). It should be

made clear that the estimated active channel number used here

is accurate, that is lo = l being input to Algorithm 1.

Next, we examine the detection performance the SMV

schemes to exhibit the benefit of using HD scheme brought

by the proposed active channel number estimation. Receiver

operating characteristics (ROCs) of HD scheme IV and V are

given in Fig. 11 to compare with ROC curves of ED schemes - I,

II, and III. Note that ROCs of HD schemes are scattered points

as it is a hard decision scheme. Within the ED schemes, the BP

algorithm outperforms the greedy algorithms in scheme II and

III. Moreover, the advantage in detection performance of HD

schemes is obvious as each ROC scatter lies in the upper-left

region to its counterpart ROC curve of ED scheme, and even

the ED scheme with BP, under the same SNR. Specifically,

the proposed HD scheme can achieve the same Pd level while

dramatically reducesPf by orders of magnitude. This advantage

may be intuitively ascribed to the aid of the extra information

of the active channel number estimation to both the recovery

and decisioning procedures. It is also noted that the effect

of the hard decision based on lo intrinsically constrained Pf

with Pd, that is Pf = (lo − lPd)/(C − l). This implies that

Fig. 12. Detection performance against SNR of MMV-HD schemes com-
pared with SMV-HD counterparts. It is assumed the active channel number are
correctly estimated, lo = l in all shown cases.

the proposed hard-decision scheme has constrained and small

Pf when Pd is relatively large and l is only a fraction of C.

The constraint for lo = l = 3 is drawn in Fig. 11 where Pf <
0.016 is guaranteed when Pd > 0.8. This inherent constraint on

Pf is desirable compared to the ED scheme, where setting a

threshold with Pf constraints requires knowledge of the noise

statistics.

Furthermore, we account the benefit of implementing the

noise and dimension reduction (22) and using the MMV model

(23) by comparing the detection performance of MMV-HD

schemes - VII and VIII - with that of SMV-HD schemes - IV and

V. In Fig. 12, it is clear that each MMV scheme - the proposed

JB-HTP or SOMP - shows abundantly increased robustness re-

garding detection performance against noise. Taking Pd > 0.99

and Pf < 10−3 as reference levels, quantitatively, the proposed

CSS scheme (VIII) with JB-HTP shows the superior robustness

against noise of as much as 20dB to achieve equivalent detection

performance in comparison to both SMV-HD schemes with

OMP and HTP. On the other hand, Fig. 12 indicates that the

use of the proposed JB-HTP algorithm based on MMV model

(23) proves to deliver better detection performance than using

SOMP in scheme No. VII. Furthermore, we also experiment the

proposed scheme (VIII) with different number of measurement

vectors, P
′
= 256, 512, and 1024. As expected, a larger number

of stacked measurement vectors in (21) leads to better sepa-

ration of signal and noise components via eigendecomposition

hence better detection performance after sparse recovery, but one

should bear in mind that a large P
′

also implies longer sample

acquisition time and consequently the delay of spectrum sensing

results.

In Fig. 13, the detection performances of MMV schemes

VI, VII and VIII are illustrated in the form of ROC scatters

and curves. The results show that the proposed scheme VIII

with JB-HTP outperforms the scheme VII with SOMP and the

scheme VI with M-BP and ED in respect of detection perfor-

mance, while the scheme VII is only slightly better than the ED

scheme VI. Additionally, it is also worth considering the cases

when lo is underestimated due to low SNR or the number of
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Fig. 13. ROC curves of MMV-ED schemes and scatters of MMV-HD schemes
in Table I with SNRs from −20dB to −24dB and lo = l = 3. ROC scatters of
MMV-HD schemes with underestimated active channel number lo = l − 1 = 2
and overcompensated active channel number lo = l+ 1 = 3 are also shown for
comparison.

measurement vectors P , and the possible option of purposely

overestimating lo. With underestimated lo, any HD scheme,

can only achieve relatively poor Pd upper-bounded by lo/l,
as a direct consequence of at least l − lo miss-detected active

channel. However, one can deliberately compensate lo by some

integer where some levels of underestimation are prone to appear

under certain SNRs. The price of such compensation method

is that lo is also likely to be overestimated. We experiment with

the proposed scheme VII to examine the detection performance

with both underestimate (lo = l − 1 = 2) and overcompensate

(lo = l + 1 = 4) cases and results are also given in Fig. 13.

In the underestimate case, Pd’s deterioration is obvious - it can

only achieve no higher than 0.67 as expected. In the overcompen-

sate case, the price is the increased Pf which is lower-bounded

by 1/(C − l) = 0.027, and Pd is somehow greater, compared

to the case where lo = 3 under the same SNRs.

Finally, we address the complexity of these benchmarked

schemes I-VII and the proposed scheme VIII. The time com-

plexity of each CSS scheme in Table I has been accounted

in the order of atomic manipulations of complex addition and

multiplication. In comparison within either SMV or MMV

schemes, the HTP or the proposed JB-HTP scheme has the

smallest order of time complexity in the recovery phase. Note

there is also an additional complexity of O(M 3) in scheme

No. IV-VIII from the active channel number estimation due

to the SVD procedure. In addition, the empirical results on

the average time per recovery of the 8 schemes are shown in

Fig. 14 with 3 different values of M . The time required for

estimating the active channel number has also been accounted

for schemes where applicable. As a general trend, the average

time consumed per recovery is positively related to the value

of M . More importantly, the empirical time complexities, with

the account of estimation of lo, of scheme No. VIII and VI are

also the smallest among MMV and SMV schemes, respectively.

By comparing the proposed MMV scheme VIII with the SMV

counterparts III and VI, although the analytic complexity order

and recovery time of scheme VIII is found slightly greater as

shown in Fig. 14, it is reminded by our earlier experiments in

Fig. 14. Average time consumed by the CS recovery schemes in Table I
together with the active channel number estimation scheme (if applicable).

Fig. 11 and 12 that the superiority of the scheme VIII in detection

performance is tremendous.

VI. CONCLUSION

This paper presents a novel greedy-pursuit-based compres-

sive spectrum sensing (CSS) scheme with the aid of subspace-

decomposition-based spectrum sparsity estimation, where the

spectrum sparsity is directly estimated from the output of

the sub-Nyquist measurements without recovery operations. In

the proposed scheme, a multiple-measurement-vector (MMV)

model with noise and dimension reduction is introduced, and

a generalized version of hard thresholding pursuit (HTP) for

joint-block sparse signals is proposed as the recovery algorithm.

The benefits of such a novel CSS scheme are summarized in three

aspects. Firstly, the estimation of spectrum sparsity effectively

alleviates the computational complexity of spectrum recovery

with an explicit spectrum sparsity estimate compared to the

cases where such information is absent. Secondly, the use of

the proposed MMV model with noise and dimension reduction

further enhances the detection performance (as much as 20dB

seen in simulation) while effectively keeping the complexity low.

Thirdly, the use of the spectrum sparsity estimate enables hard

detection when determining the occupancy of wireless channels,

which improves the detection performance from that of energy

detection schemes, as well as removes the need for threshold

adaption. Monte-Carlo simulations have evaluated the perfor-

mance of the spectrum sparsity estimation, shown the superior

detection performance of the proposed scheme against multiple

benchmarking schemes, and verified its low time complexity.
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APPENDIX A

PROOF OF PROPOSITION 3

Proof: Before formally starting the proof, we introduce

Lemma 2 directly from the definition of restricted isotropic

property (RIP).



11774 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 12, DECEMBER 2019

Lemma 2 ([18] ): Define the RIP constant of matrix ΦΦΦ with

sparsity s as

σΦΦΦ,s := max
{S| card(S)≤s}, ∀xxx∈CS

〈(

(ΦΦΦ)H·,S(ΦΦΦ)·,S − III
)

xxx,xxx
〉

||xxx||22
, (31)

and the following relations hold

|| < (III −ΦΦΦHΦΦΦ)uuu,vvv > ||2 ≤ σt||uuu||2||vvv||2,
∀uuu,vvv s.t. card (supp(uuu) ∪ supp(vvv)) ≤ t,

(32)

and

||
((

III −ΦΦΦHΦΦΦ
)

vvv
)

U ||2 ≤ σt||vvv||2,
∀U,vvv s.t. card (U ∪ supp(vvv)) ≤ t.

(33)

For conciseness, denote ΦΦΦ := AFAFAF−1 and ΨΨΨ := VVV s(ΛΛΛs)
1
2 .

From the least-square step (line 4) in Algorithm 1, the residue

produced in the (i+ 1)th iteration ΦΦΦSSS
(i+1)
v −ΨΨΨ is orthogonal

to the measurement space determined by the selected block

support, span ((ΦΦΦ)BLK,Ω(i+1)). This leads to

(ΦSvΦSvΦSv)
H
(

ΦΦΦSSS(i+1)
v −ΨΨΨ

)

= 000, ∀SSSv s.t. (SSSv)BLK,Ω(i+1) = 000,

(34)

which we rewrite as
(

ΦΦΦHΦSvΦSvΦSv

)H
(

SSS(i+1)
v −SSSv

)

= 000, ∀SSSv s. t.(SSSv)BLK,Ω(i+1) = 000.

(35)

Then, we examine the error from the detected support
∥

∥

∥

∥

(

SSS(i+1)
v −SSSv

)

BLK,Ω(i+1)

∥

∥

∥

∥

2

F

= tr

(

(

SSS(i+1)
v −SSSv

)H (

SSS(i+1)
v −SSSv

)

BLK,Ω(i+1)

)

=
(35)

tr

(

(

SSS(i+1)
v −SSSv

)H

·
(

III −ΦΦΦHΦΦΦ
)

(

SSS(i+1)
v −SSSv

)

BLK,Ω(i+1)

)

≤
(32)

σΦΦΦ,2kc

∥

∥

∥
SSS(i+1)

v −SSSv

∥

∥

∥

F

∥

∥

∥

∥

(

SSS(i+1)
v −SSSv

)

BLK,Ω(i+1)

∥

∥

∥

∥

F

,

(36)

from which we arrive at
∥

∥

∥

∥

(

SSS(i+1)
v −SSSv

)

BLK,Ω(i+1)

∥

∥

∥

∥

F

≤ σΦΦΦ,2kc

∥

∥

∥
SSS(i+1)

v −SSSv

∥

∥

∥

F
.

(37)

Next, we account the total error at the (i+ 1)th iteration

∥

∥

∥

(

SSS(i+1)
v −SSSv

)∥

∥

∥

2

F

=

∥

∥

∥

∥

(

SSS(i+1)
v −SSSv

)

BLK,Ω(i+1)

∥

∥

∥

∥

2

F

+

∥

∥

∥

∥

(

SSS(i+1)
v −SSSv

)

BLK,Ω(i+1)

∥

∥

∥

∥

2

F

≤ σ2
ΦΦΦ,2kc

∥

∥

∥
SSS(i+1)

v −SSSv

∥

∥

∥

2

F
+

∥

∥

∥

∥

(

SSS(i+1)
v −SSSv

)

BLK,Ω(i+1)

∥

∥

∥

∥

2

F

,

(38)

from which we obtain

∥

∥

∥
SSS(i+1)

v −SSSv

∥

∥

∥

2

F
≤ 1

1 − σ2
ΦΦΦ,2kc

∥

∥

∥

∥

(

SSS(i+1)
v −SSSv

)

BLK,Ω(i+1)

∥

∥

∥

∥

2

F

.

(39)

On the other hand, we examine the correlation step (line 3)

in Algorithm 1 and instantly have the following

∥

∥

∥

∥

(

SSS(i)
v +ΦΦΦH

(

ΨΨΨ−ΦΦΦSSS(i)
v

))

BLK,Ω(i+1)

∥

∥

∥

∥

2

F

≥
∥

∥

∥

∥

(

SSS(i)
v +ΦΦΦH

(

ΨΨΨ−ΦΦΦSSS(i)
v

))

BLK,Ωs

∥

∥

∥

∥

2

F

,

(40)

whereΩs is the block support ofSSSv . The above may be rewritten

as

∥

∥

∥

∥

(

SSS(i)
v +ΦΦΦH

(

ΨΨΨ−ΦΦΦSSS(i)
v

))

BLK,Ω(i+1)\Ωs

∥

∥

∥

∥

2

F

=

∥

∥

∥

∥

(

(

III −ΦΦΦHΦΦΦ
)

(

SSS(i+1)
v −SSSv

))

BLK,Ω(i+1)\Ωs

∥

∥

∥

∥

2

F

≥
∥

∥

∥

∥

(

SSS(i)
v +ΦΦΦH

(

ΨΨΨ−ΦΦΦSSS(i)
v

))

BLK,Ωs\Ω(i)

∥

∥

∥

∥

2

F

.

(41)

The right-hand side of the inequality (41) is reorganized as the

following given the fact (SSS
(i+1)
v )

BLK,Ω(i+1) = 000,

∥

∥

∥

∥

(

SSS(i)
v +ΦΦΦH

(

ΨΨΨ−ΦΦΦSSS(i)
v

))

BLK,Ωs\Ω(i+1)

∥

∥

∥

∥

F

=

∥

∥

∥

∥

(

(

III −ΦΦΦHΦΦΦ
)

(

SSS(i)
v −SSSv

))

BLK,Ωs\Ω(i+1)

+
(

SSSv −SSS(i+1)
v

)

BLK,Ω(i+1)

∥

∥

∥

∥

F

≥
∥

∥

∥

∥

(

(

III −ΦΦΦHΦΦΦ
)

(

SSS(i)
v −SSSv

))

BLK,Ωs\Ω(i+1)

∥

∥

∥

∥

F

+

∥

∥

∥

∥

(

SSSv −SSS(i+1)
v

)

BLK,Ω(i+1)

∥

∥

∥

∥

F

.

(42)

Focus on the last term and one can shrink it from (42) and (41)

∥

∥

∥

∥

(

SSSv −SSS(i+1)
v

)

BLK,Ω(i+1)

∥

∥

∥

∥

F

≤
∥

∥

∥

∥

(

(

III −ΦΦΦHΦΦΦ
)

(

SSS(i)
v −SSSv

))

BLK,Ωs\Ω(i+1)

∥

∥

∥

∥

F

+

∥

∥

∥

∥

(

(

III −ΦΦΦHΦΦΦ
)

(

SSS(i)
v −SSSv

))

BLK,Ω(i+1)\Ωs

∥

∥

∥

∥

F

≤
√

2

∥

∥

∥

(

(

III −ΦΦΦHΦΦΦ
)

·
∥

∥

∥

∥

(

SSS(i)
v −SSSv

))

BLK,(Ωs\Ω(i+1))∪(Ω(i+1)\Ωs)

∥

∥

∥

∥

F

≤
(33)

√
2σΦΦΦ,3kc

∥

∥

∥

(

SSSv −SSS(i)
v

)∥

∥

∥

F
. (43)
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Congregate (39) and (43) and we finally obtain the recurrence

relation of error, writing

∥

∥

∥
SSS(i+1)

v −SSSv

∥

∥

∥

F
≤
√

2σ2
ΦΦΦ,3kc

1 − σ2
ΦΦΦ,2kc

∥

∥

∥
SSS(i)

v −SSSv

∥

∥

∥

F
. (44)

Convergence of the algorithm requires the constant in (44)

less than one. By definition, σΦΦΦ,3kc > σΦΦΦ,2kc naturally holds.

This immediately leads to σΦΦΦ,3kc < 1/
√

3 as a guarantee of

JB-HTP’s convergence, which completes the proof. �

APPENDIX B

PROOF OF PROPOSITION 4

Proof: The final iteration of JB-HTP is determined at the

point where Ω(i−1) = Ω(i) = Ω = Ωs. For starter, we consider

the selected block upon convergence ∀p ∈ Ω and others ∀q ∈ Ω,

and naturally have the following
∥

∥

∥

∥

(

SSS(i−1)
v +ΦΦΦH

(

ΨΨΨ−ΦΦΦSSS(i−1)
v

))

BLK,{p}

∥

∥

∥

∥

F

>

∥

∥

∥

∥

(

SSS(i−1)
v +ΦΦΦH

(

ΨΨΨ−ΦΦΦSSS(i−1)
v

))

BLK,{q}

∥

∥

∥

∥

F

(45)

On the left-hand side, we observe
∥

∥

∥

∥

(

SSS(i−1)
v +ΦΦΦH

(

ΨΨΨ−ΦΦΦSSS(i−1)
v

))

BLK,{p}

∥

∥

∥

∥

F

=

∥

∥

∥

∥

(SSSv)BLK,{p} +
(

(

III −ΦΦΦHΦΦΦ
)

(

SSS(i−1)
v −SSSv

))

BLK,{p}

∥

∥

∥

∥

F

≥ ǫ−
∥

∥

∥

∥

(

(

III −ΦΦΦHΦΦΦ
)

(

SSS(i−1)
v −SSSv

))

BLK,{p}

∥

∥

∥

∥

F

, (46)

where ǫ := minp∈Ω ‖(SSSv)BLK,{p}‖F . On the right-hand side,

given the fact that (SSSv)BLK,{q} = 000, it holds that

∥

∥

∥

∥

(

SSS(i−1)
v +ΦΦΦH

(

ΨΨΨ−ΦΦΦSSS(i−1)
v

))

BLK,{q}

∥

∥

∥

∥

F

=

∥

∥

∥

∥

(

(

III −ΦΦΦHΦΦΦ
)

(

SSS(i−1)
v −SSSv

))

BLK,{q}

∥

∥

∥

∥

F

.

(47)

Subtract (47) from (46), and one may write and further

reorganize as follows,
∥

∥

∥

∥

(

SSS(i−1)
v +ΦΦΦH

(

ΨΨΨ−ΦΦΦSSS(i−1)
v

))

BLK,{p}

∥

∥

∥

∥

F

−
∥

∥

∥

∥

(

SSS(i−1)
v +ΦΦΦH

(

ΨΨΨ−ΦΦΦSSS(i−1)
v

))

BLK,{q}

∥

∥

∥

∥

F

≥ ǫ−
∥

∥

∥

∥

(

(

III −ΦΦΦHΦΦΦ
)

(

SSS(i−1)
v −SSSv

))

BLK,{p}

∥

∥

∥

∥

F

−
∥

∥

∥

∥

(

(

III −ΦΦΦHΦΦΦ
)

(

SSS(i−1)
v −SSSv

))

BLK,{q}

∥

∥

∥

∥

F

≥
(32)

ǫ−
√

2

∥

∥

∥

∥

(

(

III −ΦΦΦHΦΦΦ
)

(

SSS(i−1)
v −SSSv

))

BLK,{p,q}

∥

∥

∥

∥

F

≥ ǫ−
√

2σΦΦΦ,3kc

∥

∥

∥
SSS(i−1)

v −SSSv

∥

∥

∥

F

≥
(44)

ǫ−
√

2σΦΦΦ,3kc

(
√

2σ2
ΦΦΦ,3kc

1 − σ2
ΦΦΦ,2kc

)i−1
∥

∥

∥
SSS(0)

v −SSSv

∥

∥

∥

F

= ǫ−
√

1 − σ2
ΦΦΦ,2kc · µi

∥

∥

∥
SSS(0)

v −SSSv

∥

∥

∥

F

>
Prop. 3

ǫ−
√

2

3
· µi
∥

∥

∥
SSS(0)

v −SSSv

∥

∥

∥

F
, (48)

where µ := σΦΦΦ,3kc/
√

1 − σ2
ΦΦΦ,2kc . To guarantee (46) to hold,

inequality (48) may be bounded as following where i can be

determined as a conservative upper bound,

0 < ǫ−
√

2

3
· µi
∥

∥

∥
SSS(0)

v −SSSv

∥

∥

∥

F

i <

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

log

(

√

2
3
·
∥

∥

∥
SSS

(0)
v −SSSv

∥

∥

∥

F

ǫ

)

log 1
µ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

.

(49)

The specific upper bound of iteration number relies on the

original sparse signal SSSv which is a statistical signal, and the

initial value SSS
(0)
v . Here, we consider a common case where

SSS
(0)
v = 000 and use a constant ρ to denote the expected logarithm

ratio between the average received energy among all active

channels and the minimum received channel energy,

ρ := E

[

log

(‖SSSv‖F
lǫ

)]

. (50)

Get expectations on both sides (49) and we obtain

E[i] < E

⎡

⎢

⎣
⌈
log
(
√

2
3
· ‖SSSv‖F

ǫ

)

log 1
µ

⌉

⎤

⎥

⎦

≤ E

⎡

⎢

⎣

log
(
√

2
3
· ‖SSSv‖F

ǫ

)

log 1
µ

⎤

⎥

⎦
+ 1

=
log
(
√

2
3

)

+ log l + E
[

log
(

‖SSSv‖F
lǫ

)]

log 1
µ

+ 1

=
log
(
√

2
3

)

+ log l + ρ

log 1
µ

+ 1 = O(log l) +O(1),

(51)

which completes the proof. �
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