
 Open access  Journal Article  DOI:10.1109/TCOMM.2020.3043007

Low-Complexity Symbol Detection and Interference Cancellation for OTFS System
— Source link 

Huiyang Qu, Guanghui Liu, Lei Zhang, Shan Wen ...+1 more authors

Institutions: University of Electronic Science and Technology of China, University of Glasgow

Published on: 01 Mar 2021 - IEEE Transactions on Communications (IEEE)

Topics: Single antenna interference cancellation, Orthogonal frequency-division multiplexing,
Interference (communication), Interference (wave propagation) and Communication channel

Related papers:

 OTFS Performance on Static Multipath Channels

 Low-Complexity Frequency Domain Equalization over Fast Fading Channels.

 Orthogonal Time Frequency Space Modulation

 Embedded Pilot-Aided Channel Estimation for OTFS in Delay–Doppler Channels

 Adaptive channel estimation for high Doppler channel

Share this paper:    

View more about this paper here: https://typeset.io/papers/low-complexity-symbol-detection-and-interference-
32q870nco3

https://typeset.io/
https://www.doi.org/10.1109/TCOMM.2020.3043007
https://typeset.io/papers/low-complexity-symbol-detection-and-interference-32q870nco3
https://typeset.io/authors/huiyang-qu-3w5plxgl1r
https://typeset.io/authors/guanghui-liu-19nodqdqnd
https://typeset.io/authors/lei-zhang-msb875s5q7
https://typeset.io/authors/shan-wen-2r3lnwv8nd
https://typeset.io/institutions/university-of-electronic-science-and-technology-of-china-2ngxdbs5
https://typeset.io/institutions/university-of-glasgow-1li5yodc
https://typeset.io/journals/ieee-transactions-on-communications-r4vy07z3
https://typeset.io/topics/single-antenna-interference-cancellation-2phefcg8
https://typeset.io/topics/orthogonal-frequency-division-multiplexing-1dya58wo
https://typeset.io/topics/interference-communication-3l548ebn
https://typeset.io/topics/interference-wave-propagation-10406syx
https://typeset.io/topics/communication-channel-sw7p6m9r
https://typeset.io/papers/otfs-performance-on-static-multipath-channels-535j4493wx
https://typeset.io/papers/low-complexity-frequency-domain-equalization-over-fast-rfjbi318jp
https://typeset.io/papers/orthogonal-time-frequency-space-modulation-2pb05srzg0
https://typeset.io/papers/embedded-pilot-aided-channel-estimation-for-otfs-in-delay-1vnqbmtunv
https://typeset.io/papers/adaptive-channel-estimation-for-high-doppler-channel-72wtbmixkz
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/low-complexity-symbol-detection-and-interference-32q870nco3
https://twitter.com/intent/tweet?text=Low-Complexity%20Symbol%20Detection%20and%20Interference%20Cancellation%20for%20OTFS%20System&url=https://typeset.io/papers/low-complexity-symbol-detection-and-interference-32q870nco3
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/low-complexity-symbol-detection-and-interference-32q870nco3
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/low-complexity-symbol-detection-and-interference-32q870nco3
https://typeset.io/papers/low-complexity-symbol-detection-and-interference-32q870nco3


 

 
 
 
 
 
 
Qu, H., Liu, G., Zhang, L., Wen, S. and Imran, M. A. (2020) Low-complexity symbol 
detection and interference cancellation for OTFS system. IEEE Transactions on 
Communications, (doi: 10.1109/TCOMM.2020.3043007). 

 
   
There may be differences between this version and the published version. You are 
advised to consult the publisher’s version if you wish to cite from it. 
 
 
 

http://eprints.gla.ac.uk/226632/              
      

 
 
 
 
 
 

Deposited on: 9 December 2020 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk  

  

http://eprints.gla.ac.uk/226632/
http://eprints.gla.ac.uk/


1

Low-Complexity Symbol Detection and Interference
Cancellation for OTFS System

Huiyang Qu, Guanghui Liu, Senior Member, IEEE, Lei Zhang, Senior Member, IEEE,
Shan Wen, Student Member, IEEE, and Muhammad Ali Imran, Senior Member, IEEE

Abstract—Orthogonal time frequency space (OTFS) is a two-

dimensional modulation scheme realized in the delay-Doppler

domain, which targets the robust wireless transmissions in high-

mobility environments. In such scenarios, OTFS signal suffers

from multipath channel with continuous Doppler spread, which

results in significant inter-symbol interference and inter-Doppler

interference (IDI). In this paper, we analyze the interference

generation mechanism, and compare statistical distributions of

the IDI in two typical cases, i.e., limited-Doppler-shift channel

and continuous-Doppler-spread channel (CoDSC). Focusing on

the OTFS signal transmission over the CoDSC, our study

firstly indicates that the widespread IDI incurs a computational

burden for the element-wise detector like the message passing

in the state-of-the-art works. Addressing this challenge, we

propose a block-wise OTFS receiver by exploiting the structure

and characteristics of the OTFS transmission matrix. In the

receiver, we deliberately design an iteration strategy among

the least squares minimum residual based channel equalizer,

reliability-based symbol detector and interference eliminator,

which can realize fast convergence by leveraging the sparsity

of channel matrix. The simulations demonstrate that, in the

CoDSC, the proposed scheme achieves much less detection error,

and meanwhile reduces the computational complexity by an

order of magnitude, compared with the state-of-the-art OTFS

receivers.

Index Terms—Orthogonal time frequency space (OTFS), least

squares minimum residual (LSMR), channel equalization, high

mobility, continuous-Doppler-spread channel (CoDSC).

I. INTRODUCTION

Reliable data transmission in high-mobility environments,
such as high-speed railways [1], [2], vehicular to everything
network (V2X) [3]–[5], and unmanned aerial vehicles [6],
[7], has been recognized as an important requirement in
future wireless communications. One of the main challenges
in these scenarios is estimation and equalization of highly
doubly-dispersive radio channel in the time-frequency (TF)
domain. The challenge poses a bottleneck to the overall
system performance when the traditionally one-dimensional
time or frequency modulation scheme is adopted. Recently,
a two-dimensional (2-D) modulation technique, namely or-
thogonal time frequency space (OTFS), has been proposed
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to improve the wireless transmission performance in high-
mobility scenarios [8]. Unlike the TF-domain scheme adopted
in orthogonal frequency division multiplexing (OFDM) [9]–
[11], OTFS constructs a delay-Doppler (DD) transmission
scheme by multiplexing the information symbols in a DD
plane. In high mobility, the sparsity and lower variability of
the channel in the DD domain simplify channel estimation
and signal detection [12]. Benefitting from that, OTFS can
reap the full channel diversity more efficiently than OFDM,
yielding superior transmission performance [13].

The (inverse) symplectic finite Fourier transform
(ISFFT/SFFT) builds a bridge between the DD (TF)
domain and TF (DD) domain, which enables the OTFS
to be implemented by a simple pre-processing step over
the TF-domain multi-carrier scheme such as OFDM [14],
[15]. As a Fourier duality of TF domain, the DD-domain
transmission can be expressed by a 2-D convolution between
DD channel and OTFS symbols [16]. For a multipath
channel with nonzero Doppler spread, this 2-D convolution
makes each OTFS symbol diffuse along both the delay and
Doppler dimensions. As a result, the diffusion causes the
inter-symbol interference (ISI) and inter-Doppler interference
(IDI), respectively distributing in the delay and Doppler
dimensions [17]. The higher the channel delay and Doppler
spreads are, the severer ISI and IDI are in OTFS systems.
Therefore, in high-mobility environments, the interference
cancellation and signal detection are indispensable for
realizing robust OTFS data transmission.

Several OTFS signal detectors have been proposed in the
literature, including non-linear schemes [18]–[22] and linear
schemes [23]–[25]. These methods are based on an assump-
tion that the OTFS signal undergoes the limited-Doppler-shift
channel (LDSC), where the channel spectrum appears as a
few impulses in the Doppler dimension [18]. Unfortunately,
the assumption is only suitable for the sparse-scattering
environments, for instance, high-speed train running in a clear
and open signal-transmission space [26]. In contrast, in some
mobile transmissions, such as vehicular communications with
large number of surroundings [27], there are abundant channel
scatters. The channel spectrum always occupies a continuous
range in the Doppler frequency. To our best knowledge, in
OTFS transmission, there is no research focusing on the
continuous-Doppler-spread channel (CoDSC). The traditional
demodulation algorithms, developed for the LSDC, cannot
directly used in the CoDSC for achieving the desired de-
modulation performance and/or implementation complexity.
Specifically, although the widely-used linear schemes [23]–
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[25] are easy to be implemented, they can not achieve the
ideal detection performance, in contrast to the state-of-the-art
message passing (MP) based non-linear equalization schemes
[18]–[20]. In the CoDSC, however, the MP detector involves
an unacceptable computation burden, since its complexity
highly relies on the number of channel scatters.

Recognizing the challenges for the OTFS demodulation
in the CoDSC, this paper proposes a low-complexity OTFS
receiver, which is constructed by the least squares minimum
residual (LSMR) based channel equalizer, dynamic symbol
detector, and joint ISI and IDI eliminator, to iteratively
perform data detection and interference cancellation. With
only a few iterations, the transmitted quadrature amplitude
modulation (QAM) symbols can be ideally retrieved. The
proposed algorithm, with linear complexity, can be more ef-
ficiently implemented, compared with the factor graph based
interference cancellation in the MP [18]–[20]. Specifically,
our contributions are summarized as follows.

1) It is the first time to model the OTFS signal trans-
mission over CoDSC. We mathematically derive the
generation mechanism of the IDI, and further analyze
the statical properties of the interference in the CoDSC
and LDSC. The analysis provides useful insights into
designing channel equalization in the scatter-abundant
scenarios.

2) An efficient block-wise receiver architecture involving
a joint ISI and IDI eliminator is proposed to en-
hance the OTFS performance in CoDSC. Based on
the observation, that the OTFS channel matrix is large
size, sparse and ill-conditioned, we develop an LSMR
based channel equalizer, which leverages a reliability-
based dynamic detector to retrieve the transmitted QAM
symbols, instead of adopting the traditional hard or
soft decision of the symbol estimates. The proposed
iteration scheme between the symbol detection and in-
terference cancellation converges quickly by leveraging
the sparsity of the OTFS transmission matrix, which
enables the OTFS receiver to work efficiently in the
CoDSC.

3) We build the OTFS simulation platform and investigate
demodulation performance of the proposed OTFS re-
ceiver in the CoDSC. The simulation results demon-
strate the proposed receiver is capable of achieving
the superior demodulation performance to the existing
OTFS equalizers. For example, in the 64-QAM OTFS
system, the proposed receiver achieves at least 5 dB
signal-to-noise ratio (SNR) gain, in the CoDSC with
a velocity of 540 km/h, compared with the MP based
receiver [18]. Meanwhile, thanks to the much fewer
iteration times, the required detection complexity is
reduced by an order of magnitude.

The remainder of this paper is organized as follows. The
OTFS signaling and the DD channel are formulated in Sec. II.
In Sec. III, the IDI generation mechanisms are presented. The
OTFS receiver is developed in Sec. IV, followed by simulation
results in Sec. V. Finally, this paper is concluded in Sec. VI.

Notations: In this paper, we use upper (lower) boldface

letters to denote matrices (column vectors). Y (l, v) denotes
the element in the l-th row and v-th column of matrix Y. The
l-th element in vector y is denoted as y(l). Vectors X (n, :)
and X (:, n) denote the n-th row and n-th column of X,
respectively. We use (·)�1, (·)T and (·)H to represent inverse,
transpose and conjugate transpose, respectively. The operators
vec(·), k·k, Cond (·) and E {·} are denoted as the vectorizing
of a matrix, Frobenius norm, the condition number of a
matrix, and expectation operation, respectively. � (·) represent
unit impulse function. C stands for the set of complex num-
bers. IM denotes the M⇥M identity matrix. The zeroth order
Bessel function of the first kind is denoted as J0 (·). FM and
FN denote the fast Fourier transform (FFT) matrices, which
are composed of FM (m, k) = 1p

M
exp (�j2⇡mk/M) and

FN (n, k) = 1p
N
exp (�j2⇡nk/N), respectively.

II. OTFS TRANSMISSION ARCHITECTURE

The discrete-time OTFS transmission model is depicted in
Fig. 1. The DD-domain data, composed of QAM symbols,
are arranged into a data matrix X 2 CM⇥N , where M

and N are numbers of resource grids along the delay and
Doppler dimensions, respectively. The ISFFT converts X

from the DD domain into TF domain, i.e, D = FMXF
H

N
.

Subsequently, the time-domain data block is generated by
S = F

H

M
D. Each column of S, i.e., S (:, n), is treated as

a time-domain OFDM symbol. The CP with length Mcp

is inserted at the beginning of each symbol to avoid ISI.
The discrete-time OFDM sequences go through the doubly
selective channel, of which the impulse response is defined
as h [n, l0] , l0 2 [0, L� 1], where the maximum channel delay
spread L  Mcp. Assuming the channel observes typical
wide-sense stationary uncorrelated scattering model, we have

E {h [n, l0]h⇤ [m, l
00]} = �

2
l0r (n�m) � (l0 � l

00) . (1)

In (1), �2
l0 denotes the power of the l

0-th propagation path;
r (n�m) denotes the normalized tap autocorrelation, where
r (0) = 1.

At the receiver side, after removing CP, the received time-
domain data block R 2 CM⇥N is converted into the TF
domain by means of FFT in OFDM demodulator, which is
expressed as D̃ = FMR. Then, the SFFT converts the TF-
domain data block D̃ back into the DD domain, according to
Y = F

H

M
D̃FN .

Proposition 1: We denote the (l, v)-th element of Y as
Y (l, v) , l 2 [0,M � 1] , v 2 [0, N � 1]. It follows

Y (l, v) =
N�1X

v0=0

M�1X

l0=0

⌦ {l, (l � l
0)
M
, v � v

0
}X (l0, v0) +W (l, v) ,

(2)

where ⌦ {l, l
0
, v

0
} is the DD-domain channel response

⌦ {l, l
0
, v

0
} =

1

N

N�1X

i=0

e
�j2⇡iv0

N h [i (M +Mcp) +Mcp + l, l
0],

(3)
W (l, v) represents the additive white Gaussian noise with
zero mean and variance �

2; X (l0, v0), l0 2 [0, L� 1] , v0 2
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Fig. 1. The baseband transmission model of OTFS system.

[0, N � 1] denotes the (l0, v0)-th entry of X. Proposition 1 is
proofed in Appendix A.

We rewrite (2) as

Y (l, v) = ⌦ {l, 0, 0}X (l, v) + I (l, v) +W (l, v) , (4)

where the fisrt term in the right-hand side (RHS) of (4)
denotes the desired signal component, and the second term
I (l, v) represents the interference, which is expressed in (5).

It can be seen from (5) that I (l, v) contains the ISI and IDI
components. The ISI is caused by the spread of OTFS signal
along the delay dimension. If L = 0, the time-domain CIR
is rudeced to h[n, l0] = h[n]�(l0). According to (3) and (5),
only the second term in the RHS of (5) exists in this case.
In the next section, we will analyze the characteristics of the
IDI, which can provide some insights into the equalization of
the OTFS signal.

III. ANALYSIS OF INTER-DOPPLER INTERFERENCE

The generation mechanism and distribution of the IDI
are analyzed in this section, by means of investigating its
second-order statistics, i.e., interference power. Comparing
the IDI in two typical channels, i.e., LDSC and CoDSC,
we find the continuous channel Doppler spectrum incurs
a widespread IDI in OTFS system, posing a challenge to
channel equalization.

From (1) and (3), the power of DD-domain channel gains,
i.e., E

n
|⌦ {l, (l � l

0)
M
, v � v

0
}|

2
o

is derived as (6). Equ.
(6) can be further rewritten as (7), where q = i � s,
autocorrelation function rt (q) follows

rt (q) = rt (i� s) = r ((i� s) (M +Mcp)) , (8)

and

!q =

⇢
N � |q| , �N < q < N

0, else
. (9)

For simplicity, we suppose E
n
|X (l0, v0)|2

o
= 1.

IDI-generating mechanism: The second and third terms
in the RHS of (5) contain IDI. It generates from the diffusion
of OTFS symbols along the Doppler dimension. Based on
the channel power in (7) and IDI components in (5), the IDI
power ⌅IDI

N
(v � v

0) is expressed as

⌅IDI
N

(v � v
0) =

1

N2

X

q

!qrt (q) e
�j2⇡(v�v

0)q/N
. (10)

The term in the RHS of (28) can be rewritten in a form
of convolution by applying the Fourier transform to !q and
rt (q). Thus, we have the following proposition.

Proposition 2: The IDI power is formulated as

⌅IDI
N

(v � v
0) = (W (�) ⇤R (�))|

�=v�v0 , (11)

I (l, v) =
M�1X

l0=0,l0 6=l

⌦ {l, (l � l
0)
M
, 0}X (l0, v)

| {z }
ISI only

+
M�1X

v0=0,v0 6=v

⌦ {l, 0, v � v
0
}X (l, v0)

| {z }
IDI only

+
N�1X

v0=0,v0 6=v

M�1X

l0=0,l0 6=l

⌦ {l, (l � l
0)
M
, v � v

0
}X (l0, v0)

| {z }
ISI and IDI

.

(5)

E
n
|⌦ {l, (l � l

0)
M
, v � v

0
}|

2
o
= �

2
(l�l0)M

1

N2

N�1X

i=0

N�1X

s=0

e

�j2⇡(i�s)(v�v0)
N r ((i� s) (M +Mcp)). (6)

= �
2
(l�l0)M| {z }

Delay�domain Power

1

N2

X

q

!qrt (q) e
�j2⇡(v�v

0)q/N

| {z }
Doppler�domain Power

. (7)
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where R (�) is the channel Doppler spectrum

R (�) =
X

q

rt (q) e
�j2⇡�q/N

, (12)

and W (�) denotes the discrete-time Fourier transform of
!q

�
N

2, i.e.,

W (�) =
1

N2

X

q

!qe
�j2⇡�q/N = (Diric (2⇡�/N))2. (13)

In (13),

Diric (x) =
sin (Nx/2)

N sin (x/2)
, (14)

which is commonly known as a Dirichlet sinc [9].
From (11), the IDI power ⌅IDI

N
(�) is the convolution

between the channel Doppler spectrum R (�) and function
W (�). The distribution of ⌅IDI

N
(v � v

0) highly depends on
the channel Doppler spectrum R (�). In some high-mobility
environments, for instance, the high-speed trains running in
the clear and open signal-transmission spaces, the channel
scattering components are very limited, and so are the channel
Doppler shifts. It means R (�) always consists of a small
number of frequency elements. However, in some other high-
mobility scenarios, such as the vehicles moving in the urban
areas with lots of surroundings, the channel scattering com-
ponents are infinite. It means R (�) may occupy a continuous
range of the Doppler frequency. In this paper, to facilitate the
study of IDI, we analyze and compare the IDI distribution in
two typical cases, namely LDSC and CoDSC. Each of them
shows the exclusive characteristics of R (�), thus exposing
different IDI power ⌅IDI

N
(v � v

0).
Case I (LDSC): We give a general CIR expression in the

LDSC, and further derive the channel Doppler spectrum R (�)
to help us analyze the IDI power ⌅IDI

N
(v � v

0). In the LSDC,
the CIR h [n, l0] can be modeled as

h [n, l0] =
K�1X

k=0

↵l0,ke
j(2⇡fl0,knTs+✓l0,k) �

=
K�1X

k=0

↵̃l0,ke
j2⇡fl0,knTs

(15)
where ↵̃l0,k = ↵l0,ke

j✓l0,k , Ts is the system sampling period
and K denotes the number of Doppler shifts of the transmis-
sion path. Parameters ✓l0,k, ↵l0,k and fl0,k represent the k-th
initial phase, complex gain and Doppler shift associated with
the l

0-th path.
Combining (15) with (1), the autocorrelation function rt (q)

in (5) can be expressed as

rt (q) =
K�1X

k=0

e
j2⇡fl0,kTs(M+Mcp)q �

=
K�1X

k=0

e
j2⇡f̄l0,kq/N . (16)

In (16), f̄l0,k = N (M +Mcp)Tsfl0,k denotes the sampled
Doppler shift, decomposed as

f̄l0,k = f̄
Int
l0,k + f̄

Fra
l0,k , (17)

where
f̄
Int
l0,k =

⌅
f̄l0,k

⇧
,
��f̄ Int

l0,k

��  N/2 (18)

stands for the index of integer Doppler taps, and f̄
Fra
l0,k is

the fractional part of f̄l0,k, called as the index of fractional
Doppler taps [18]. The values of f̄

Int
l0,k and f̄

Fra
l0,k rely on

the sampling resolution N (M +Mcp)Ts in the Doppler-
frequency direction. By using (16) and (12), the Doppler
spectrum is expressed as

R (�) =
K�1X

k=0

�
�
�� f̄l0,k

�
. (19)

Substituting (13) and (19) into (11), the IDI power
⌅IDI

N
(v � v

0) in the LDSC is calculated as

⌅IDI
N

(v � v
0) =

K�1X

k=0

⇥
Diric

�
2⇡
�
v � v

0
� f̄l0,k

��
N
�⇤2

.

(20)
With (17), (20) can be rewritten as

⌅IDI
N

(v � v
0) =

K�1X

k=0

⇥
Diric

�
2⇡
�
v � v

0
� f̄

Int
l0,k � f̄

Fra
l0,k

��
N
�⇤2

.

(21)
In (21), ⌅IDI

N
(v � v

0) achieves the maximum value when
v � v

0
� f̄

Int
l0,k = 0 or 1, and quickly drops to zero as |v � v

0
|

increases. It can be seen from (21) that the IDI in LDSC
distributes in a form of Dirichlet sinc and the IDI power
depends on the value of fractional Doppler f̄Fra

l0,k . In particular,
if f̄Fra

l0,k = 0, we have

⌅IDI
N

(v � v
0)=

⇢
1
�
N

2
, v � v

0 = f̄
Int
l0,k

0, others
, (22)

indicating the IDI is not incurred. When f̄
Fra
l0,k 6= 0, the

transmitted symbols will diffuse along the entire Doppler
dimension, thus involving the IDI.

Case II (CoDSC): As a typical case of the CoDSC, the
classical Jakes’ channel model [28] is selected to help us
analyze the IDI. For l

0-th transmission path, h [n, l0] follows
Rayleigh distribution in time, of which the autocorrelation
function rt (q) in (5) is

rt (q) = J0 (2⇡fdTs (M +Mcp) q) , (23)

where fd denotes the maximum Doppler frequency, which is
normalized to the symbol rate as

f̃d = fdTs (M +Mcp) . (24)

⌅IDI
N

(v � v
0) = (W (�) ⇤R (�))|

�=v�v0 (26)

=

0

@(Diric (2⇡�/N))2 ⇤
1

2⇡
q
f̃
2
d
� (�/N)2

1

A

������
�=v�v0

. (27)
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The channel Doppler spectrum R (�) is computed as

R (�) =

(
1

2⇡
p

f̃
2
d�(�/N)2

, |�| < Nf̃d

0, |�| > Nf̃d

, (25)

which is a classical U-shaped (bell-shaped) spectrum extend-
ed in the Doppler dimension. Based on (25) and (13), the IDI
power ⌅IDI

N
(v � v

0) is derived from in (26) and (27).
When f̃d = 0, R (�) turns into a single impulse at � = 0,

and

⌅IDI
N

(v � v
0) = [Diric (2⇡ (v � v

0)/N)]
2
. (28)

No IDI incurs since ⌅IDI
N

(v � v
0) = 0 for any integer v 6= v

0.
Once f̃d 6= 0, R (�) occupies a continuous interval �Nf̃d <

� < Nf̃d, leading to a spread of ⌅IDI
N

(v � v
0) in the Doppler

dimension. As a result, the IDI will be involved.

0 lf c

" #R I

0 1 2 1N%...-1-21N% & ...

" #W I

*

dNfdd0

" #R I

Case I: LDSC

dNfdd

Case I

Case II

Fra 0.5lf c  

7.5%df  7.5%dfd  

15%df  15%15%15%15%dffd   

2N%

2N%

2N

2N
v'

v'

Fig. 2. Illustration of the IDI-generating mechanism (single-Doppler-shift
channel (SDSC) and Jakes’ channel).

Fig. 2 demonstrates the IDI-generating mechanism in the
single-Doppler-shift channel (SDSC) and Jakes’ channel1,
respectively, where the Doppler spectrum R (�) is convolved
by W (�). For the SDSC, we consider the integer Doppler
f̄
Int
l0 = 0 and fractional Doppler f̄

Fra
l0 = 0.5 in (17), which

results in the most significant IDI power in (21) for all values
of f̄

Fra
l0 . The ratio of IDI bandwidth to the entire Doppler

spectrum, for ⌅IDI
N

(�v) � 10�2
,�v = v � v

0, is about
5%. Hence, the state-of-the-art OTFS receivers that utilizing
the MP detection schemes [18]–[20], can model the OTFS
transmission as a sparsely-connected factor graph, by ignoring
the IDI components for ⌅IDI

N
(�v)  10�2. In this way,

the MP can achieve a satisfactory interference cancellation
performance with a relatively low implementation cost thanks
to the narrow IDI band. In the Jakes’ channel, we choose

1Here, we take the SDSC and Jakes’ channel as examples to illustrate the
IDI-generating mechanism in the LDSC and CoDSC cases, respcetively. The
SDSC is commonly considered in the existing works, e.g., [15], [18]–[20],
[24], [25].

f̃d in (24) as 7.5% and 15%. It can be seen that the IDI
bandwidth for ⌅IDI

N
(�v) � 10�2, are much wider than that

in the SDSC. In the high-speed environment, f̃d = 15%,
corresponding to a velocity of 540 km/h 2, the ratio becomes
more than 30%. Then, in this case, the MP detector causes
unacceptable computation burden.

Remark 1: In SDSC, the generation of IDI is not directly
related to the UE’s velocity but depends on the Doppler-
domain sampling resolution Ts (M +Mcp)N . In other word-
s, the distribution of IDI relies on the value of fractional
Doppler f̄Fra

l0 . Hence, in practice, N needs to be sufficiently
large to achieve an ideal resolution in the Doppler domain,
which ensures f̄

Fra
l0 approach to be zero, such that the

fractional Doppler incurred IDI can be ignored [29]. In
contrast, in the Jakes’ channel, IDI is introduced due to
the mobility (nonzero Doppler spread). Once the UE is not
static, the nulls of (W (�) ⇤R (�)) no longer fall on the
Doppler grids, thus introducing IDI. Compared with the single
Doppler spectrum, the continuous Doppler spectrum within
the interval �Nf̃d < � < Nf̃d involves a much wider IDI
bandwidth.

IV. SYMBOL DETECTION AND INTERFERENCE
CANCELLATION

The analysis of the interference reveals that the IDI can-
cellation in CoDSC is a challenging task. Instead of adopting
the factor-graph-based equalizer structure like the MP [18],
we investigate the structure and characteristics of OTFS
transmission matrix, and design an iterative receiver, which
targets the symbol detection and interference cancellation in
the CoDSC.

We use (2) and (3) to formulate the OTFS transmission as
the following matrix form,

y = Gx+w. (29)

Vector x 2 CMN⇥1 denotes the transmitted symbol vector

x = [X (0, :) , · · · ,X (l0, :) , · · · ,X (M � 1, :)]
T
, (30)

The received symbol vector y and the noise vector w take
the same form of x. In (29), G 2 CMN⇥MN denotes the
channel gain matrix (CGM), or namely OTFS transmission
matrix. According to [17], we have

G = B (FN ⌦ IM )HTD

�
F

H

N
⌦ IM

�
B

H
, (31)

2In this paper, the subcarrier spacing and the carrier frequency are 15 KHz
and 4 GHz, respectively. The maximum UE’s speed is considered as 540
km/h, of which the maximum Doppler frequency normalized to the symbol
rate f̃d is 15%.

G =

2

666664

G0,0 0 · · · 0 GL�1,0 · · · G2,0 G1,0

G1,1 G0,1 0 · · · 0 GL�1,1 · · · G2,1
...

...
...

...
...

...
...

...
0 · · · · · · 0 GL�1,M�2 · · · G0,M�2 GM�1,M�2

0 · · · 0 GL�1,M�1 · · · · · · G1,M�1 G0,M�1

3

777775
, (32)
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where HTD 2 CMN⇥MN is the time-domain channel
matrix constructed by the CIR samples, and B is an
MN ⇥ MN permutation matrix [30]. Matrix G is block-
banded, shown in (32), where G(l�l0)M ,l 2 CN⇥N ; l, l0 =
0, · · · ,M � 1 is a submatrix. The element in the v-th
row and v

0-th column of G(l�l0)M ,l, is G(l�l0)M ,l (v, v
0) =

⌦ {l, (l � l
0)
M
, v � v

0
} ; v, v0 = 0, · · · , N � 1.

Fig. 3 intuitively demonstrates the structure of G and
G(l�l0)M ,l in CoDSC, where the block size M⇥N = 8⇥8 is
considered. Subfigures (a) and (b) illustrate G and G(l�l0)M ,l

in mathematics, respectively. The ISI is contributed by the
submatrices G1,l, · · · ,GL�1,l, l = 0, · · · ,M � 1. When the
channel’s delay spread is zero, G(l�l0)M ,l = 0; 8(l � l

0)
M

6=
0, CGM G turns into a block diagonal matrix and no
ISI appears. Meanwhile, the IDI is contributed by the off-
diagonal elements of G(l�l0)M ,l in (32). When the channel’s
Doppler spread becomes zero, implying the channel is static,
submatrix G(l�l0)M ,l; 8l, l

0 turns into a diagonal matrix and
thus the IDI disappears. Subfigures (c) and (d) present the
instances of matrices G and G(l�l0)M ,l, respectively. As we
can see, channel matrix G is block-banded. The number of
non-zero submatrices in each row or column direction is L�1.

1,0G2,0G3,0G0,0G

2,1G3,1G0,1G1,1G

3,2G 3,2G0,2G2,1G2,2G

0,3G

0,4G

0,5G

0,6G

0,7G1,7G2,7G3,7G

2,6G 1,6G3,6G

1,5G2,5G3,5G

1,4G2,4G3,4G
1,3G2,3G3,3G

(a) Matrix G.

^ ` ^ ` ^ `
^ ` ^ ` ^ `

^ ` ^ ` ^ `

4,0,0 4,0,1 4,0, 1
4,0, 1 4,0,0 4,0, 2

4,0, 1 4,0, 2 4,0,0

N
N N

N N

: : : $ª º
« »: $ : : $« »
« »
« »
: $ : $ :« »¬ ¼

ª º^4,^: $^4,^
« »

^4,^4,^
« »^« »« »^4,0,4,^4,0,4,^« »^4,0,^4,0,^4,0,4,^4,0,4,^« »
« »
« »« »« »« »« »
« »« »

« »« »« »« »« »
« »« »« »« »« »« »
« »
« »
« »

« »^4,^« »^4,^« »
¬ ¼^« »^4,^« »

 

(b) Submatrix G(l�l0)M ,l.

(c) An instance of G. (d) An instance of G(l�l0)M ,l.

Fig. 3. The structure of channel matrix in the case of CoDSC, where the
maximum channel delay spread L = 4.

To compare the IDI difference between LDSC and CoDSC,
we plot some parts of the DD-domain channel responses
of them in Fig. 4. As an example, we plot the first row
of G0,4 (0, :) in Fig. 3(b). There are two Doppler shifts in
the LDSC. Thus, in the Doppler-frequency direction, two
major components are observed in Fig. 4(a). For the CoDSC,
since the channel spectrum occupies a continuous range
in the Doppler frequency, the bandwidth of ⌦ (4, 0, v0) for
|⌦ (4, 0, v0)| > 0.1, are much wider than that in the LDSC.

(a) An instance of ! "4,0,vc: in the LDSC (b) An instance of ! "4,0,vc: in the CoDSC

Fig. 4. The illustration of ⌦ (4, 0, v0); v0 = 0, · · · , 63, in the LDSC
and CoDSC. There are two Doppler shifts in the LDSC. In the CoDSC, the
maximum Doppler frequency normalized to the symbol rate f̃d is 15%.

A. Linear Equalizers

The linear equalization methods, i.e, linear minimum mean
square error (LMMSE) and zero forcing (ZF), are commonly
employed to retrieve x from (29), expressed as

x̂LMMSE =
�
G

H
G+ �

2
I
��1

G
H
y, (33)

x̂ZF =
�
G

H
G
��1

G
H
y. (34)

In the SDSC, matrix G is block-circulant [24]. Relying on the
matrix-decomposition techniques, proposed in the previous
OTFS receivers [24], [25], the implementation complexity of
the LMMSE or ZF equalizer can be reduced from O

�
M

3
N

3
�

to O (MN log(MN)). However, considering the OTFS signal
transmission over CoDSC, matrix G is no longer block
circulant. Accordingly, the low-complexity schemes can not
be directly implemented. Due to the indispensable matrix
inversion, we have to face a calculational complexity of
O
�
M

3
N

3
�

for realizing the LMMSE or ZF equalizer3.

Fig. 5. The probability distribution function (PDF) of Cond (G).

When a CoDSC changes quickly, there is a high prob-
ability that matrix G is ill-conditioned4, i.e., Cond (G)

3There are some matrix decomposition techniques, such as triangle de-
composition and singular value decomposition [31], can be used to reduce
the complexity. However, the techniques still remain a complexity order of
O
�
M2N2

�
.

4Whether G is ill-conditioned depends on its the condition number:
Cond (G). Since B (FN ⌦ IM ) and

�
F

H

N
⌦ IM

�
B

H in (31) are unitary
matrices, we have Cond (G) = Cond (HTD). According to [32]–[34], when
the maximum Doppler frequency fd in the CoDSC is large, the value of
Cond (HTD) fluctuates significantly and mostly concentrates in a large
numerical interval. Hence, HTD is probably ill-conditioned.
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Fig. 6. The block diagram of the symbol detection and joint interference cancellation.

becomes quite large. To illustrate this, we give Fig. 5 as
an example to show the probability distribution function
(PDF) of Cond (G). In the Jakes’ channel, the distribution of
Cond (G) is much broader than that in the SDSC5. Thus, for
the Jakes’ channel, the inversion of channel matrix may not
robust enough, thereby introducing a significant equalization
error in the LMMSE or ZF.

B. The Proposed Iterative OTFS Receiver

Recalling (29), the channel equalization is developed by
solving the following LS problem

min
x̂2CMN⇥1

kGx̂� yk2. (35)

The main features of G can be summarized: 1) the size of
G is quite large for big OTFS transmission blocks; 2) matrix
G is probably ill-conditioned, shown as Fig. 5; 3) it is a
sparse matrix, shown as Fig. 3. Consequently, one-shot matrix
inversion, adopted in the LMMSE and ZF equalizers, may
result in significant performance degradation of the OTFS
receiver.

In mathematics, some well-known iterative methods, such
as LSMR [35], minimal residual (MINRES) [36] and least-
squares QR decomposition (LSQR) [37], were developed to
solve large-scale, ill-conditioned and sparse LS problems as
(35). The methods use a recursive strategy to obtain the
LS solution with precision similar as the LMMSE method.
Meanwhile, by exploiting the sparsity of G, the iteration pro-
cess needs much lower computational overhead. The LSMR
iteration converges much faster than the LSQR. Also, the
LSMR is algebraically equivalent to MINRES in solving the
normal equation

�
G

H
G+ �

2
I
�
x = G

H
y, (36)

but has better numerical stability.
In this paper, focusing on the exclusive nature of OTFS

transmission, we construct an LSMR based channel equalizer
to remove the channel distortions on the transmitted OTFS
symbols. Instead of using the conventionally hard decision on
the symbol estimates from the channel equalizer, we propose
a dynamic detection scheme to classify the symbol estimates
into reliable and unreliable sets. In other words, we only
detect the partial symbol estimates with high reliability to help

5The results are depicted by simulations. The entries in G are filled
by the DD-domain channel gains, i.e., ⌦

�
l, (l � l0)

M
, v � v0

 
, which are

generated by the CIRs in (3). The CIRs are obtained by the SDSC and Jakes’
channel simulators.

calculate the symbol introduced interference. Furthermore,
a block-wise interference eliminator, i.e., a cascade of the
symbol detector, is designed to realize the joint ISI and
IDI cancellation. The interference eliminator contributes to
modifying the observed data by removing the ISI and IDI
caused by the detected symbols from the reliable sets. As a
result, it helps to improve the accuracy of data detection in
the next iteration6.

. .. .

. .. .

. .. .

. .. .
Re

Im

Re

Im
Tk

T k

Re

Im
T 0K  

T
0

K
 

... ...

0T

0T
. .. . . .
. .. .

. .

. .. .

. .. . . .

. .. .
. .
. .. .

Fig. 7. Illustration of “unreliable zone” for the constellation of 16-QAM.

Algorithm 1 Iteration procedure of the proposed OTFS
receiver
Input: Channel matrix: G; observations: y
Output: Estimated QAM symbols: x̂

1: Initialization: G
(0) = G; y(0) = y; Setting parameter

T

2: for k = 1 : K do

3: The LSMR based channel equalization: x
(k) =

LSMR
�
G

(k)
,y

(k)
�

4: The detection of x
(k) in the proposed “unreliable

zone”:
1) out of the unreliable zone x

(k)
QT, rearranging into x̂;

2) in the unreliable zone x
(k)
Un , performing the next

iteration.
5: ISI and IDI cancellation:

1) Subtracting the ISI and IDI: y
(k+1) = y

(k)
�

G
(k)
QTx

(k)
QT;

2) Updating the threshold of “unreliable zone”: Tk =
T0 (1� k/K);
3) Updating G

(k+1): G(k+1) = G
(k)
Un (G(k)

Un related to
x
(k)
Un .

6: if x(k)
Un = 0, break out

7: end for

6Note that there are two types of iterations: 1) The iterations inside the
LSMR based channel equalizer, to acquire the OTFS symbol estimates; 2)
The iterations between the OTFS symbol detector and interference eliminator,
to realize joint ISI and IDI cancellation.
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The proposed iterative symbol detection and interference
cancellation for OTFS is illustrated in Fig. 6. In the k-th
iteration, the LSMR aims to solve the overdetermined LS
problem as

min
x̂(k)

���G(k)
x̂
(k)

� y
(k)
��� . (37)

The output of the LSMR channel equalizer, i.e., the estimated
symbols in x̂

(k), will be detected in the proposed detection
(quantization) zone with a dynamic threshold, as presented
in Fig. 7. In this way, the data symbols in x̂

(k) are divided
into two subsets, which are composed of reliable symbols in
x̂
(k)
QT and unreliable symbols in x̂

(k)
Un , respectively. Then, the

observation vector y
(k) will be updated through subtracting

the ISI and IDI reconstructed by the reliable (quantized)
symbols: y(k+1) = y

(k)
�G

(k)
QTx

(k)
QT, where G

(k)
QT is formed

by the columns of G(k) corresponding to the reliable symbols
in x̂

(k)
QT. This step is also denoted as the joint ISI and IDI

cancellation. Specifically, the iteration process is summarized
in Algorithm 1. In the initial step, the observation vector and
CGM are denoted as y

(0) = y 2 CMN⇥1 and G
(0) = G 2

CMN⇥MN , respectively. The width of the “unreliable zone”
is set as T0, as demonstrated in Fig. 7. The iteration process
is described in the following part.

Algorithm 2 The LSMR based channel equalization
Input: G

(k); y(k)

Output: x
(k)

1: Initialization:

1) Calculating parameters: �1u1 = y
(k), ↵1v1 =�

G
(k)
�T

y
(k), h1 = v1, h̄0 = 0, x(k)

0 = 0, ↵̄1 = ↵1,
⇣̄1 = ↵1�1, ⇢0 = 1, ⇢̄0 = 1, c̄0 = 1, s̄0 = 1 G

(0) = G;
y
(0) = y

2) Setting thresholds: I , A1, B1, and C1

2: for i = 1 : I do

3: Bidiagonalization:
�i+1ui+1 = G

(k)
vi � ↵iui, �i+1 = kui+1k,

↵i+1 = kvi+1k, ↵i+1vi+1 =
�
G

(k)
�T

ui+1 � �i+1vi

4: Solving the LS equations in Krylov subspace:
⇢i =

q
↵̄
2
i
+ �

2
i+1, ci = ↵̄i/⇢i, si = �i+1/⇢i, ✓i+1 =

si↵i+1, ↵̄i+1 = ci↵i+1, ✓̄i = s̄i�1⇢i

⇢̄i =
q
(c̄i�1⇢i)

2 + ✓
2
i+1, c̄i = c̄i�1⇢i/⇢̄i, s̄i =

✓i+1/⇢i, ⇣i = c̄i⇣̄i, ⇣̄i+1 = �s̄i⇣̄i

5: Update x
(k)
i

:
x
(k)
i

= x
(k)
i�1 + (⇣i/(⇢i⇢̄i)) h̄i, h̄i = hi ��

✓̄i⇢i

�
(⇢i�1⇢̄i�1)

�
h̄i�1,

hi+1 = vi+1 � (✓i+1/⇢i)hi, r
(k)
i

= y
(k)

�G
(k)

x
(k)
i

6: if
���r(k)i

���  B1

��y(k)
��+A1

��G(k)
��
���x(k)

i

���, break out

7: if
���
�
G

(k)
�T

r
(k)
i

���  A1

��G(k)
��
���r(k)i

���, break out

8: if
���
�
G

(k)
�T

r
(k)
i

���  A1

��G(k)
��
���r(k)i

���, break out
9: end for

LSMR channel equalizer: In the k-th iteration, the obser-
vation vector y

(k)
2 CMN⇥1 and CGM G

(k)
2 CMN⇥Jk

are sent into the LSMR equalizer to estimate vector x
(k)

2

CJk⇥1, which is detailed in Algorithm 2. It begins with
the Golub-Kahan process (Bidiagonalization) [38]. After the
Bidiagonalization operation, the Krylov subspace V

(k)
i

=
[v1,v2, · · · ,vi] is constructed to obtain s

(k) by solving
the linear equation x

(k)
i

= V
(k)
i

s
(k). The estimated data

vector x
(k)
i

is further updated in the Krylov subspace. To
accelerate the convergence in the iteration process, four stop
criterions exist in the LSMR, as presented in Algorithm 2.
Parameters I , A1, B1 and C1 denote the iteration times,
the error threshold of

��G(k)
��
���x(k)

i

���, the error threshold of
��y(k)

�� and the threshold of Cond
�
G

(k)
�
, respectively. The

quantities of
�
G

(k)
�H

r
(k)
i

and r
(k)
i

decrease monotonically
in LSMR, where r

(k)
i

= y
(k)

� G
(k)

x
(k)
i

is the residual
for the approximate solution x

(k)
i

. For LSQR, only r
(k)
i

decreases monotonically. Hence, LSQR is recommended for a
compatible system y

(k) = G
(k)

x
(k)
i

, but on LS problems with
loose stopping tolerances, LSMR may be able to terminate
significantly sooner than LSQR.

Fig. 8. The comparison of the estimation error e(k)
i

versus the number of
iterations i, where �2 = 0.01.

We denote

e
(k)
i

= E
⇢���x(k)

� x̂
(k)
i

���
2
�

(38)

as the estimation error after the i-th iteration. Fig. 8 compares
e
(k)
i

versus number of iterations i, where noise variance
�
2 = 0.01. The black line denotes the estimation error

corresponding to the LMMSE algorithm, which is regarded
as a threshold to evaluate the convergence of the LSMR and
LSQR. It can be seen that as i increases, e

(k)
i

gradually
approaches to the threshold. Also, the LSMR converges
faster than the LSQR. In this example, after 12 iterations,
the LSMR can achieve the comparable symbol estimation
accuracy against the LMMSE.

Reliability-based symbol detection: In each iteration,
the equalized data symbols in x̂

(k), i.e., the output of the
LSMR equalizer, are quantized (detected) by utilizing the
proposed quantization criterion. Inspired by [39], we design
an “unreliable zone” in QAM constellation plane. The width
of the “unreliable zone” is denoted by the threshold parameter
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Tk. Fig. 7 gives an example to demonstrate the “unreliable
zone” in the constellation of 16-QAM. When the estimated
symbol in x̂

(k) does not fall inside the “unreliable zone”, it
will be detected as the reliable symbol and quantized to the
nearest QAM symbol. Otherwise, it will not be quantized.
The unreliable symbols will be picked out and sent into
“update CGM” module. After quantization operation, the
overall elements in x̂

(k) are separated into two sets, quantized
symbols (out of “unreliable zone”) x̂

(k)
QT 2 C(Jk�Jk+1)⇥1

and unreliable symbols (in the “unreliable zone”) x̂
(k)
Un 2

CJk+1⇥1. To accelerate the convergence of our algorithm, the
width of the unreliable zone decreases to Tk = T0 (1� k/K)
after each iteration, and finally equals zero so as to ensure the
overall symbols can be quantized. Note that when Tk = 0, the
quantization criterion becomes a conventionally hard-decision
metric on symbol estimates.

CGM update: In the k-th iteration, after quantization opera-
tion, the CGM will be updated. Specifically, G(k)

2 CMN⇥Jk

is divided into two submatrices, i.e. G(k)
Un 2 CMN⇥Jk+1 and

G
(k)
QT 2 CMN⇥(Jk�Jk+1). Matrix G

(k)
Un is composed of Jk+1

columns of G(k) corresponding to unreliable symbols. It will
be arranged into the LSMR equalizer as the updated CGM
G

(k+1) = G
(k)
Un , and further employed to perform the next

iteration. Matrix G
(k)
QT is formed by the Jk � Jk+1 columns

of G
(k) corresponding to the quantized symbols in x̂

(k)
QT. It

will be sent into the interference eliminator, to reconstruct the
ISI and IDI.

ISI and IDI cancellation: Relying on the detected data
symbols x̂

(k)
QT and the corresponding CGM x̂

(k)
QT, we can

reconstruct the ISI and IDI as: G(k)
QTx̂

(k)
QT. The received data

vector is updated through subtracting the ISI and IDI as
y
(k+1) = y

(k)
� G

(k)
QTx̂

(k)
QT. It is a block-wise interference

cancellation scheme. After that, the interference-eliminated
observation vector y(k+1) will be sent into the LSMR equal-
izer to perform the next iteration.

Remark 2: The proposed symbol detector, combined with
the interference eliminator, can work efficiently in the OTFS
receiver. On the one hand, the LMSR with the proposed
quantization method can ideally retrieve a subset of the
transmitted QAM symbols in each iteration. The estimated
QAM symbols enables the corresponding ISI and IDI to
be accurately reconstructed. On the other hand, the block-
wise interference eliminator can remove the ISI and IDI
from the received data vector with linear implementation
complexity. The updated observation vector and CGM, also
helps to improve the symbol estimation performance in the
next iteration.

C. Computational Complexity

Here, we compare the computational complexity of three
detection schemes, i.e., LMMSE, MP [18] and ours. For the
LMMSE, the complexity order is O

�
M

3
N

3
�
, which only de-

pends on the size of OTFS transmission block, i.e., MN . For
the MP, the complexity order is O (MNBQIMP ) [18], where
B, Q and IMP are the number of nonzero elements in each
row of G, alphabet size and iteration times, respectively. In

the proposed scheme, the complexity order of implementing
the LSMR is O (MNBI) [35]. With K iterations, the overall
complexity order is O (MNBIK). In this paper, we suppose
the channel gains occupy the whole grids in the Doppler
dimension, which follows B = NL. Hence, the complexity
orders of the proposed and MP schemes are O

�
MN

2
LIK

�

and O
�
MN

2
LQIMP

�
, respectively. It should be noted that

the complexity of the proposed algorithm relates to the OTFS
transmission block size (M,N ), but is independent of the
modulation order Q.

The difference between ours and the MP algorithms lies in
the selection of parameters I , K, IMP and Q. In general, the
number of iteration times in our algorithm is much fewer
than the MP, i.e., K ⌧ IMP . Taking 16-QAM signaling
as an example, the typical values are: I = 15, K = 10,
IMP = 50 and Q = 16. Thus, we have IK ⌧ IMPQ,
indicating much lower computation cost. In practice, for
different QAM constellation sizes, parameters I , K and IMP

will be properly chosen to achieve a tradeoff between the
computation overhead and demodulation performance.

V. SIMULATION RESULTS

In this section, the demodulation performance is evaluated
for the OTFS system, of which the parameters are set accord-
ing to Tab. I.

TABLE I
OTFS SYSTEM SIMULATION PARAMETERS

Parameter Value

Num. of subcarriers (M ) 64
Length of CP (Mcp) 8
Num. of symbols (N ) 6/12/24
Carrier frequency (fc) 4 GHz

Subcarrier spacing (�f ) 15 KHz
UE’s velocity 2.7 ⇠ 675 km/h

Modulation scheme QPSK, 16-QAM, 64-QAM
Channel model Extended vehicular A (EVA) [40]

Channel Doppler spectrum Continuous “U”-shaped spectrum [28]

In the channel simulator, the channel taps are assumed to
be independently and identically distributed random variables
correlated in time according to (33) with maximum Doppler
frequency fd [41]. To avoid the detection performance loss
introduced by channel estimation errors, we assume that the
channel responses are perfectly known at the receiver side. In
practice, the channel can be precisely estimated by using the
methods in [42]. Both the uncoded and coded demodulation
performance are investigated in this section. For the uncoded
case, we present the symbol error rate (SER) results to focus
on the demodulation performance. In the coded performance
simulation, a recursive systematic convolutional code with the
coding rate of 2/3 and a random interleaver are employed.

We consider some scenarios with fd ranging from 10 Hz
to 2500 Hz, corresponding the velocities from 2.7 km/h to
675 km/h. Note that the proposed OTFS framework can
be potentially applied to wireless transmissions with large
number of surroundings, such as V2X communications [43],
[44]. Additionally, the widely-used equalizers, i.e., the
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(a) The initial step, k = 0. (b) The 2nd iteration, k = 2. (c) The 4th iteration, k = 4.

(d) The 6th iteration, k = 6. (e) The 8th iteration, k = 8. (f) The 10th iteration, k = 10.

Fig. 9. The distribution of unreliable symbols after k-th iteration, when SNR = 20 dB.

Fig. 10. The SER versus the number of iterations k for 16-QAM, when
SNR = 20 dB.

LMMSE [24] and the MP [18], are compared in terms of
SER performance and implementation complexity.

The convergence process of the proposed algorithm is
shown in Fig. 9, through the scatterplots of constellations
after iterations. In each subfigure, the black points and the
gray region denote the symbols in 16-QAM alphabet and
the “unreliable zone”, respectively. When k  4, there
is a relatively large number of unreliable symbols in the
grey zone. As k increases, the region of “unreliable zone”
shrinks, and more LSMR estimates are quantized (detected)
as the reliable symbols. As we can see, the proposed symbol

Fig. 11. The SER versus the number of iterations k for 64-QAM, when
SNR = 28 dB.

detection scheme can achieve a desired convergence rate.
After 10 iterations, there are only two unreliable symbols
remaining in the grey zone.

Figs. 10 and 11 compare the SER versus the number of
iterations k for 16-QAM and 64-QAM signaling, respectively.
It can be seen that the OTFS achieves the superior SER per-
formance to OFDM in both the moderate- and high-Doppler-
spreading scenarios. When k = 0, the joint ISI and IDI
elimination scheme is not invoked, while the one-shot LSMR
equalizer has the similar SER performance to the LMMSE
equalizer. After ten iterations, a significant SER performance
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Fig. 12. The SER comparison of SNR, when fd = 1000 Hz (corresponding
to a velocity of 270 km/h).

 

Fig. 13. The SER comparison of SNR, when fd = 2000 Hz (corresponding
to a velocity of 540 km/h).

improvement is achieved for the proposed OTFS receiver.
Therefore, we choose the maximum number of iterations K

as 10 for 16-QAM signaling, to tradeoff the performance and
complexity. For 64-QAM, as shown in Fig. 11, K is chosen
as 15.

Figs. 12 and 13 compare the SER versus SNR for different
modulation schemes in velocities of 270 and 540 km/h,
respectively. For the MP based detection [18], the iteration
times for QPSK, 16-QAM and 64-QAM are chosen as IMP

= 30, 50, and 100, respectively, for obtaining stable SER
results. In contrast, for these constellations, the iteration times
of the proposed scheme can be set as K = 5, 10, and 15,
respectively. Meanwhile, the developed receiver significantly
outperforms the LMMSE receiver. As shown in Fig. 12,
for SER = 2 ⇥ 10�4, the achievable SNR gain is about
8 dB for 16-QAM signaling. Further, compared with the
nonlinear receiver using the MP scheme, the SNR gains are
about 1.6 dB, 3 dB and 6 dB for QPSK, 16-QAM and 64-
QAM signaling, respectively. Similarly, in Fig. 13, for SER =
3⇥10�4, the proposed receiver can achieve about 1.5 dB, 2.3
dB and 5.5 dB SNR gains for QPSK, 16-QAM and 64-QAM
signaling, respectively, in contrast to the MP based receiver
[18].

To evaluate the equalization performance under the differ-

Fig. 14. The coded BER performance of the proposed receiver with
different OTFS block sizes and QAM constellations, when fd = 2000 Hz.

Fig. 15. The BER versus fd in coded OTFS system, where the block
size is M ⇥ N = 64 ⇥ 12. The SNRs for QPSK, 16-QAM, and 64-QAM
signaling are 11 dB, 19dB, and 27 dB, respectively.

ent traffic loads, we simulate the coded bit error rate (BER)
performance as Fig. 14. Given M ⇥N = 64⇥ 12, the SNR
gap among QPSK, 16-QAM and 64-QAM signaling is about
8.5 dB at BER = 1 ⇥ 10�5. In addition, for a certain QAM
constellation, increasing the OTFS block size, which yields an
enhanced sampling resolution in Doppler frequency, results in
an improved BER performance.

Fig. 15 demonstrates the BER floor versus fd in the
coded OTFS system. As shown in Fig. 15, the BER floors
decrease as fd increases. An encouraging conclusion, hence,
can be reached, that the stronger IDI cannot deteriorate the
performance of the designed equalizer, but improve it. The
reason is that the interference is treated as channel diversity in
our receiver and the corresponding gains can be obtained for
enhancing the demodulation performance in high mobilities.

In the end, the computational complexity in terms of
complex multiplications (CMs) is illustrated in Fig. 16. We
calculate the number of CMs according to Sec. IV-C. The
corresponding parameters are consistent with those used in
Figs. 12 and 13. It can be seen that for all the considered
QAM constellations, the proposed algorithm achieves the
lowest computation overhead, while the LMMSE has the
highest complexity. In contrast to the MP, the CMs of our
scheme can be decreased by 2, 4.5, and 17.9 times for QPSK,
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16-QAM and 64-QAM, respectively.

Fig. 16. The comparison of computational complexity.

VI. CONCLUSIONS

In this paper, we study the orthogonal time frequency space
(OTFS) signal transmission over the continuous-Doppler-
spread channel (CoDSC) with the focus on the symbol detec-
tion and interference cancellation. Specifically, we analyze the
generation mechanism and distribution of the inter-Doppler
interference, and find that the factor-graph based message
passing equalizer in the state-of-the-art works is not efficient
to cope with the CoDSC incurred interference. According to
the characteristics of the OTFS transmission matrix, we pro-
pose a low-complexity equalizer utilizing the mathematical
least squares minimum residual (LSMR) algorithm. Based
on the LSMR equalization, we develop an iterative OTFS
receiver by introducing the reliability-based dynamic detec-
tor and block-wise interference eliminator. The simulations
demonstrate that the developed iteration scheme, between the
symbol detection and interference cancellation, outperforms
the state-of-the-art OTFS demodulation schemes with respect
to error-rate performance and computation complexity.

APPENDIX A
PROOF OF Proposition 1

The transmitted time-domain data block in OTFS is for-
mulated as

S = F
H

M
D = XF

H

N
. (37)

At the receiver side, after removing CP, the i-th received
vector ri 2 CM⇥1 is represented as ri = Hisi +

^
wi, where

si 2 CM⇥1 is the i-th column vector of S, ^
wi 2 CM⇥1

denotes the AWGN vector and Hi 2 CM⇥M is a Toeplitz

matrix constructed by CIR values. The DD-domain received
data block Y is expressed as

Y =F
H

M
D̃FN = RFN

= [H0s0, · · · ,HN�1sN�1]FN +W,
(38)

where W =
h

^
w0, · · · ,

^
wN�1

i
FN . The element at the l-th

row and the v-th column of Y, denoted as yv (l), is expressed
in (39), where Hi (l, l0) denotes the l-th row and l

0-th column
of Hi, i.e.,

Hi (l, l
0) = h [i (M +Mcp) +Mcp + l, (l � l

0)
M
]

and xv0 (l0) and wv (l0) take the same form of yv (l). Defining
the DD-domain channel response ⌦ {l, (l � l

0)
M
, v � v

0
} as

(40) then we have

Y (l, v) =
N�1X

v0=0

M�1X

l0=0

⌦ {l, (l � l
0)
M
, v � v

0
}X (l0, v0)+W (l, v) .

(41)
⌅
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