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SUMMARY 

We explore the recently developed snapshot-based dynamic mode decomposition (DMD) technique, a 
matrix-free Arnoldi type method, to predict 3D linear global flow instabilities. We apply the DMD technique 
to flows confined in an L-shaped cavity and compare the resulting modes to their counterparts issued from 
classic, matrix forming, linear instability analysis (i.e. BiGlobal approach) and direct numerical simulations. 
Results show that the DMD technique, which uses snapshots generated by a 3D non-linear incompressible 
discontinuous Galerkin Navier-Stokes solver, provides very similar results to classical linear instability 
analysis techniques. In addition, we compare DMD results issued from non-linear and linearised Navier-
Stokes solvers, showing that linearisation is not necessary (i.e. base flow not required) to obtain linear modes, 
as long as the analysis is restricted to the exponential growth regime, that is, flow regime governed by the 
linearised Navier-Stokes equations, and showing the potential of this type of analysis based on snapshots 
to general purpose CFD codes, without need of modifications. Finally, this work shows that the DMD tech-
nique can provide three-dimensional direct and adjoint modes through snapshots provided by the linearised 
and adjoint linearised Navier-Stokes equations advanced in time. Subsequently, these modes are used to 
provide structural sensitivity maps and sensitivity to base flow modification information for 3D flows and 
complex geometries, at an affordable computational cost. The information provided by the sensitivity study 
is used to modify the L-shaped geometry and control the most unstable 3D mode. Copyright © 2014 John 
Wiley & Sons, Ltd. 

1. INTRODUCTION 

Over the last decades, flow instability analysis has arisen as a powerful method to understand the 

onset of flow bifurcations leading to unstable (e.g. unsteady, periodic or chaotic) flow regimes. 

During this time, various numerical techniques have been developed that are able to tackle insta-

bility problems of increasing complexity [1-5]. The simplest numerical techniques are concerned 

with local instability, where only a small region of the computational domain is selected for anal-

ysis. These spatially localised techniques (e.g. Orr-Sommerfeld equations) require some a priori 

knowledge of the flow behaviour in the surroundings of the studied region (e.g. parallel or weakly 



non-parallel flow). These techniques have proven very successful to provide insight into the flow 
physics governing flow instabilities [4, 6], but the application of local analysis to complex 3D flows 
remains limited [6]. 

Alternatively, the entire flow domain may be considered for analysis leading to a global 

instability analysis. These type of methods do not require an a priori knowledge of the local flow 
features and may be applied to complex geometries [2]. In particular, TriGlobal methods have been 
successful in predicting global flow instabilities for complex 3D configurations (e.g. see [7] for 
the first fully TriGlobal computation), wherever the computational effort can be handled [2]. These 
techniques rely on the numerical discretisation of the eigenvalue problem derived from considering 
the linearised Navier-Stokes (NS) equations around an equilibrium flow state: the base flow, which 
is generally steady (see Section 2). The resulting eigenvalue system may be large, and its solution 
may be expensive to compute (e.g. using an Arnoldi method coupled to a shift-inverse strategy [1]). 
This has been regarded as the main bottleneck for the extension of matrix forming methods to 3D 
flows and complex geometries. To alleviate the computational cost associated with performing a full 
three-dimensional eigenvalue calculation, the BiGlobal approach [2, 8] was introduced. In this sim-
plification, the flow is assumed periodic in one of the three spatial directions, consequently reducing 
the computational cost; further details can be found in the following sections. 

Alternatives to the solution of large eigenvalue systems (i.e. matrix forming methods) are pro-
vided by time-stepper techniques [9-12]. These type of approaches construct a Krylov subspace 
using snapshots issued from numerical simulations (or from experimental data). The resulting space 
can be subsequently analysed (e.g. Arnoldi technique with QR orthogonalisation [13] or dynamic 
mode decomposition (DMD) [14]) to obtain flow instability information related to the underly-
ing NS operator, as detailed in Section 2. These matrix-free methods enable computations of the 
most unstable eigenvalues without requiring the solution of a complete eigenvalue system as would 
require a matrix forming TriGlobal type analysis. Additionally, if the concern is the computation 
of transient growth type phenomena, time-steppers methods are often preferred. Examples of such 
analysis can be found in [15, 16] for boundary layers in the linear regime or in [17-19] in the 
non-linear cases. 

Almost independently, post processing techniques, that enable the analysis of relevant flow struc-
tures either in terms of energy: Proper Orthogonal Decomposition or their dynamics: DMD, have 
been developed and applied to the analysis of laminar and turbulent flows [20, 21]. However, the 
application of the latter technique to the exponential growth regime (i.e. temporal flow region where 
linearisation of the NS equations holds) is still limited and is the focus of this paper. The recently 
developed DMD approach [22] enables the extraction of dynamic modes, which are spatial struc-
tures ranked by their dynamics. For this reason, the DMD technique provides very similar flow 
instability results when compared to BiGlobal analyses when applied to flow fields generated by 
linear operators and is equivalent to a time-stepping matrix-free method [10,12]. 

Let us note that linearised theories (e.g. matrix forming methods) can only predict flow insta-
bilities in the exponential growth region (i.e. region where the linearised NS equations hold), 
whilst post processing techniques (e.g. DMD) can be applied to any flow region (snapshots pro-
duced by linearised or non-linear NS solvers), as far as the results are interpreted accordingly. 
However, in this work we will restrict our analysis to the exponential region. In addition, let us 
remark that if the non-linear equations are used to produce the snapshots, there is no need to con-
sider any type of base flow assumption (e.g. steady state base flow is not required), since this is 
implicitly embedded in the simulation. Results obtained using the latter procedure can be found in 
following sections. 

All these numerical methods aim to obtain relevant flow structures (i.e. direct global modes) 

and track their evolution. The evolution of such structures may be studied in a spatial or temporal 
framework [1], the latter being retained in this paper. 

Global modes obtained from the adjoint NS equations (or linearised adjoint NS equations) lead to 
relevant structures for the adjoint system: adjoint global modes. The latter are essential to provide 
insight into flow control strategies [3,5]. In addition, with the direct and adjoint modes at hand, it 
is possible to compute the sensitivity of the flow to local feedback (or structural sensitivity) [23] 
and to base flow modifications [24]. These sensitivities relate to flow control strategies, since they 



provide information on the sensibility of modal growth rates to changes in the linearised system, 
see Section 4. 

Finally, Direct Numerical Simulations (DNS) denote the numerical simulation of the NS 
equations without modelling or simplifications. Since instability analysis is concerned with the tem-
poral evolution (i.e. growth or decay) of small perturbations superimposed upon a equilibrium state 
(i.e. the base flow), the level of accuracy demanded in the computations is very high. High-order 
numerical techniques (e.g. Spectral h/p or discontinuous Galerkin) are well suited to this purpose, 
since they provide numerical solutions where dissipative and dispersive errors are minimum [25]. 
The techniques used within this work (i.e. matrix forming BiGlobal, DNS and matrix-free methods) 
are all of high-order type and are detailed in Section 2. 

From the overview of the various techniques available for global instability analysis, it becomes 
apparent that some degree of unification with respect to the applicability of these techniques is 
necessary. In addition, low cost techniques need to be available if stability analysis is to become 
an industrial engineering tool. To this aim, we present comparisons between matrix forming tech-
niques BiGlobal and matrix-free DMD-based results. Namely, we include direct and adjoint modes 
extracted using these two methods. In addition, we compare DMD modes obtained from snap-
shots that have been generated from linearised, adjoint linearised and non-linear solvers. Finally, the 
low cost DMD method is used to obtain 3D sensitivity maps that provide valuable information to 
generate more stable modified geometries. 

The following bullet points summarise the various aims of the present work: 

• Show that the matrix-free DMD technique coupled to a linearised or a non-linear high-
order DNS solver, provides very similar results to a classic matrix-forming linear instability 
analysis techniques (i.e. BiGlobal analysis), when analysing the exponential growth flow 
region. Additionally, we clarify the limits of usability and methodology for the application of 
snapshot-based methods. 

• Show that the DMD technique provides global direct and adjoint modes, when considering the 
linearised and non-linear NS equations as long as the flow is not saturated. The possibility of 
using the DMD technique with non-linear solvers (i.e. no base flow required) should enable a 
wider range of applications. In addition, this paper shows that the DMD technique can provide 
instability results from an existing non-linear code without the necessity of writing a linearised 
version. 

• Show that it is possible to obtain an approximation of the 3D direct and adjoint modes, as well 
as the associated sensitivity fields (e.g. to local feedback and to base flow modifications), at a 
reduced computational cost for general complex 3D geometries using DMD. 

• Show that the obtained DMD modes compare very well with more classical, matrix forming, 
linear instability analysis techniques (i.e. BiGlobal analysis). 

• Use the information obtained from the sensitivity maps to provide a modified L-shaped cavity 
where the most unstable 3D instability has lower growth rates than originally. 

• Provide physical 3D global instability and sensitivity results for the L-shaped cavity, which 
have not been reported previously. 

• Finally, we provide the first, to the authors' knowledge, results for direct, adjoint modes and 
sensitivity maps using a high-order incompressible discontinuous Galerkin DNS numerical 
solver. 

This paper is structured as follows. In Section 2, we describe the various formulations (i.e. non-
linear, linearised and adjoint NS equations) and numerical methodologies (i.e. DNS, BiGlobal and 
DMD) used to obtain direct and adjoint modes. Then, we describe in Section 3 the L-shaped cavity 
problem and the flow conditions for the analysis. Results for the direct global modes and com-
parisons between matrix forming and matrix-free methods are also presented in Section 3, whilst 
adjoint modes and sensitivity results are included in Section 4. Finally in Section 5, a modified 
geometry for the L-shaped is presented, where the information provided by the sensitivity maps has 
been used to reduce the growth rate of the most unstable 3D mode. 



2. NUMERICAL TECHNIQUES 

This section describes the three methodologies used to predict and analyse flow instabilities. We 
limit the scope of this analysis to the incompressible NS equations, which are described hereafter. 

Let Q be a domain in Hd, where d = 2,3 represents the problem dimension with boundaries 
dQ, and associated outward unit normal vector n. Domain boundaries may be of Dirichlet (dQo) 

or Neumann (dQ,#) type, where dQ = dQp U dQ^ and dQp n dQ^ = 0. The unsteady non-
dimensional incompressible NS equations read: 
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where t represents the dimensionless time, u = (u, v, w)T m&p are the non-dimensionalised veloc-
ity vector and static pressure (normalised using upstream dynamic pressure q = QU2, where Q is 
the fluid density and U represents a characteristic velocity) respectively and Re is the Reynolds 
number (i.e. Re= UL/v where L is a characteristic length scale and v is the kinematic viscosity). 
In addition, u0 represents an initial condition for the velocity field and LD defines the Dirichlet data 
for the velocity. The term N(u) represents the non-linear contributions which can be, without loss 
of generality, expressed in their convective form: N(u) = (u • V)u. 

Linearisation of the NS equations can be accomplished by decomposing the velocity solutions 
into a base flow component u (generally assumed steady i.e. -gf = 0 or time periodic as in Floquet 
type analysis [1, 26]) and a relatively small perturbation field u', such that the velocity field can be 
reconstructed using summation: u = u + u'. In addition, the pressure field is decomposed similarly: 

P = P + P' 
Substituting these decompositions into the NS equations Equation (1), and subtracting the base 

flow equation, we obtain the following system for the perturbation field: 
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where the term L(u, u') = (u • V)u' + (u' • V)u represents the linearised advective terms, where 
the quadratic contributions for the fluctuating velocities (i.e. (u' • V)u') have been neglected (i.e. 
assumed small when compared to the retained terms L(u, u')). In addition, the Reynolds number in 
the linearised equations is defined as Re= UL/v « UL/v, for a mean characteristic base flow U. 

Further details may be found in [1] or [25]. 

Finally, the linearised adjoint NS equations can be derived by considering the time-space L2 

inner product (i.e. < q', q* > = f0 j a q'q*dxdt) between the linearised NS (LNS) equation and 

the linearised adjoint NS (L^) equations such that: ( L ^ q ' . q * ) - (q'.L^J.q*) = 0, where 
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q' = (u', p')T denotes the direct modes and q* = (u*, p*)T the adjoint counterparts. The resulting 
linearised adjoint NS equations read: 

du* 
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where LAdj(u, u*) = —(u • V)u* + (Vu) ru*. By setting the time t to a negative time —t, where 
i denotes a new time variable, one can use the numerical scheme defined to integrate the equations 
forward in time [27, 28] to solve the adjoint equations as noted previously by Barkley et al. [13]. 

2.1. Direct numerical simulations: non-linear, linearised and adjoint linearised solvers 

Flow solutions of the non-linear 3D incompressible NS equations, are obtained from the unsteady 
high-order (order > 3) h/p Discontinuous Galerkin (DG) - Fourier solver developed by the first 
author and detailed in [27-29]. This high-order solver provides highly accurate solutions on static 
and moving meshes composed of mixed triangular-quadrilateral meshes and can cope with curved 
boundary elements. A second order stiffly stable method is used to discretise in the NS equations 
in time whilst spatial discretisation is provided by the DG - Symmetric Interior Penalty Galerkin 
formulation with modal basis functions in the x-y plane. Spatial discretisation in the z-direction 
is provided by a purely spectral method that uses Fourier series and allows computation of span-
wise periodic three-dimensional flows. The solver has been widely validated for a variety of flows, 
including bluff body flows, airfoil and blade aerodynamics under static and rotating conditions 
[27,28]. 

A linearised version of the previous code may be obtained via modification of the routines to 
compute the non-linear terms (i.e. N(u) —> L(u, u')) and modification of boundary conditions (i.e. 
LD —> 0) . In addition, a linearised adjoint DNS solver has been obtained through the modification 
of the non-linear terms (i.e. N(u) —> LAdJ(u, u*)) and boundary conditions. Results issued from 
this solver for the direct solutions are reported in Section 3 and in Section 4 for the time advancement 
of the adjoint equations. 

Finally, when computing cavity flows, no-slip Dirichlet boundary conditions are imposed at walls 
except for the lid driving wall, where u = (1 ,0 ,0) r is defined. To avoid corner singularities, in 
previous work ([8]), the boundary condition for the lid velocity is regularised, when continuous 
high-order numerical methods based on the strong form of the governing equations. However, when 
using a weak imposition of boundary conditions, as enabled by the weak form of the DG formulation 
[28], we found that no regularisation is necessary. All computations included in this work have been 
performed with polynomial orders k = 17 per triangular mesh element (Nel = 6) and used 64 
Fourier planes (FF Tz = 64) to discretise the z-direction, providing a total number of degrees of 
freedom (i.e. DOF = Nel\(k + \)(k + 2)FFTZ) of 65.664 (1026 per Fourier plane). Finally, 
all computations have been obtained using a second order time advancement scheme with a non-
dimensional time step At = 0.001. 

2.2. BiGlobal linear instability analysis 

BiGlobal instability analysis [2, 8] is a matrix forming technique that assumes homogeneity in 
one spatial direction, reducing the computational cost of performing a full 3D TriGlobal instabil-
ity analysis. Since the linearised version of the NS equations does not couple modes through the 
non-linear terms, it is possible to solve an independent system for each spanwise wavenumber /J 



of the perturbations instead of solving a coupled 3D system. Consequently, this approach is appro-
priate for the analysis of the temporal evolution of small-amplitude perturbations, superimposed 
upon a steady two-dimensional equilibrium state (i.e. the base flow), as shown previously for the 
linearised NS equations. In the BiGlobal approach, the velocity and pressure fields are decomposed 
as q(x,y,z,t) = q(x,y) + q'(x,y,t) = q(x, y) + q(x,y)el^z~Xt) + ex., where f> = 2n/Lz 

denotes a characteristic wavenumber in the z direction, with corresponding physical periodic wave-
length Lz. In addition, A = (Xr, A,-) is a complex number whose real and imaginary parts represent 
the perturbation growth rate and frequency, respectively and q(x,y) denotes the modal shape (i.e. 
eigenvector) associated to a particular pair of f> and A. Substitution of the perturbation q' into the 
linearised NS equations, Equation (2), results in an 2D eigenvalue problem (for a fixed spanwise 
wavenumber /3) which can be solved to obtain linear instability eigenmodes with associated complex 
eigenvalues (A) providing dynamic information of the perturbed flow. 

The BiGlobal solver relies on a high-order continuous (i.e. C1) multi-domain Chebyshev spectral 
collocation technique. Implementation details and validation can be found in [8]. BiGlobal compu-
tations included in this work used quadrilateral elements and required polynomials of order k = 20. 
The resulting number of degrees of freedom for a 2D domain with a fixed spanwise wavenumber /3, 
is 1200 (i.e. DOF = Nelk2). 

Before continuing, we summarise various assumptions used throughout the development of the 
BiGlobal approach. Firstly, it is required that an equilibrium state, i.e. the base flow, exists. This 
requires a steady state solution for the two-dimensional case, which in turn serves as an input for 
the instability calculation. Secondly, the modelled perturbation is required to be periodic in the z-

direction. Finally, the flow regime is assumed linear and hence non-linearities in the saturated flow 
are beyond its scope. 

2.3. Dynamic mode decomposition: snapshot analysis 

In recent years, the snapshot-based technique DMD, has seen an increased popularity [22, 30] and 
has been applied to a variety of flows including numerical and experimental data, e.g. [14, 21, 31, 
32]. The formulation retained here can be found in [22], but other algorithms have been proposed 
[30,33]. In addition, we note that the temporal framework for the study of flow instability is retained, 
but that the DMD with spatial snapshots is also possible [22]. 

It was shown by Mezic [21], Rowley et al. [31] and more recently by Bagheri [14] that the 
modes resulting from the DMD algorithm are approximations of Koopman modes. Koopman oper-
ators are infinite dimensional linear operators capable of describing non-linear processes. Some 
of the associated infinite number of modes related to this operator may be approximated through 
the DMD decomposition [21]. In the case of the approximated operator being linear (exponential 
growth region), we will show that the DMD results are very similar to classical matrix forming 
global approaches for stability analysis. 

Schmid [22] described in detail the DMD technique and hence only a summary of the algorithm 
is described here. Given a sequence of 1 to N flowfield snapshots (e.g. taking one or all variables of 
the flow field), one can construct the following matrix: 

V1
A r={v(t1) ,v(t2) , . . ,v( tN)}, (4) 

where subindex and superindex denote the first and last values of the sequence, respectively. Let us 
note that this data needs to be ordered, and that the snapshots require a constant sampling time AT 
such that: tj + i = tj + AT for all 7 = 1,.., N. In the case of linear stability analysis and within the 
exponential growth region, one can define a linear operator A (i.e. a numerical approximation of the 
linearised NS operator) between snapshots such that u(f i + 1) = Av(tj), and rewrite Equation (4) as 
a Krylov sequence [34]: 

V1
Ar = {v(t1),Av(t1),.. ,AAr-1v(t1)}. (5) 



It is easy to see that for an ordered sequence, Equation (5) can be equated to Equation (4), to lead: 

A{v(ti), v(t2),.., v(tN_i)} = {v(t2), v(t3),.., v(tN)}, (6) 

which can be written in matrix form as: 

AV1
N-1=V2

N. (7) 

The algorithm continues by obtaining the Singular Value Decomposition (SVD) of the matrix 
V i ^ - 1 = UZW f f , where the superscript H denotes the conjugate transpose. Replacing the SVD 
definition into Equation (7), leads to AUE W ^ = Y2

N• To find the reduced matrix S associated to 
the initial system described by A, it suffices to rewrite the previous equality as: 

S = U ^ AU = U ^ V2
N WE _ 1 . (8) 

Inspection of Equation (8) reveals that the reduced matrix S is the projection of the matrix A onto 
the Proper Orthogonal Decomposition space contained in U, and obtained through the singular value 
decomposition [22]. 

Having found the reduced matrix S, one can obtain the reduced DMD modes yr and associated 
eigenvalues jii (i.e. growth rates ReQit) and frequencies Im(jii) mapped to the unit circle) of the 
reduced system by solving for the eigenvalues of Syi = /lyt. One can then recover the approximated 
eigenmodes of the matrix A by projecting into the original space using 0 r = Uyr. To retrieve 
the growth rates and frequencies in the complex half-plane, one can map the eigenvalues using: 
Xi = logQit)/ AT. 

The numerical convergence of the DMD technique is dictated by the sampling frequency 
IDMD = 1 / A T , where AT represents the sampling time between snapshots extracted from the 
DNS computation. On the one hand, to capture the highest frequency within the analysed flow, it is 
required that /DMD > 2ffiow> where f/iow is the frequency of the flow feature to be captured and 
the factor of two is dictated by Nyquist criterion. In addition, note that if the flow frequency is not 
known a priori, then we select a small sampling time (high frequency) to cover most of the flow spec-
trum and avoid aliasing. On the other hand, the number of necessary snapshots (to obtain unchanged 
eigenvalues) is a priori unknown and hence for each case we perform tests where we increase the 
number of snapshots until convergence is reached, in terms of the most unstable eigenvalues. Let 
us note that the DMD technique provides valuable information whenever the flow exhibits distinct 
frequencies, but its applicability is limited when analysing flows that show broadband spectrums. 

We finalise by noting some of the advantages of the DMD algorithm detailed in this section. 
This algorithm enables the post-process of only a limited flow region, which reduces drastically the 
computational cost for the extraction of the eigenmodes and related dynamical information [22]. In 
addition, the algorithm does not require all flow variables to be considered for the analysis, indeed, 
most of the results presented in this work use only one variable (w-velocity component for the L-
shaped cavity). The latter enables the reduction of the computational cost by a factor of three of the 
original 3D vector field. Finally, no shift and inverse type of strategy has been required in this work 
to obtain accurate eigenmodes, which has been shown to be necessary when using other matrix-free 
Arnoldi type algorithms [2, 12]. The shift and invert technique is sometimes necessary to extract 
modes whose eigenvalues are close to the unit circle (e.g. most unstable eigenvalues associated to 
flows near bifurcations). It may therefore be concluded that enhanced robustness can be achieved 
when compared to more traditional matrix-free Arnoldi methods. 

To summarise, the DMD method is a robust technique that provides accurate modes and dynami-
cal information at a reduced computational cost, by reducing both the spatial region of analysis and 
the number of variables required to obtain qualitative and quantitative information. In addition, it 
can be applied to numerical or experimental data providing dynamical information for linear and 
non-linear flows. 



2.4. Summary of methods and notation 

Henceforth and to simplify the notation, we denote 7VDNS+DMD, the combination of producing 
snapshots using the full non-linear NS solver and subsequently analysing these flow fields using the 
described DMD technique. In addition, £DNS+DMD, will denote the combination of producing 
snapshots using the linearised version of the NS solver combined with the DMD analysis. 

3. DIRECT PROBLEM: L-SHAPED CAVITY AND THREE-DIMENSIONAL INSTABILITIES 

Cavity flows are of major interest both for their simplicity of analysis and because they may be 
regarded as a simplified version of geometries found in industrial applications, e.g. airplane landing 
gears compartments or short-dwell coaters [35]. 

Let us first clarify the scope of the various techniques described in previous sections. To this end, 
we introduce a DNS simulation of a L-shaped cavity at Re=900. Figure l.(a) shows the 2D steady 
base flow (streamlines and velocity magnitude contours) resulting from driving the flow inside a L-
shaped cavity with a lid velocity on the upper wall. In addition, Figure l.(b) depicts the evolution 
of the logarithm of the absolute value of the maximum w -velocity in the cavity as a function of 
time obtained using the discontinuous Galerkin DNS solver. In the latter plot, two zones can be 
clearly identified: an exponential growth regime (coloured red on the left) and a saturated regime 
(coloured blue on the right). These two flow regions correspond to zones where the linearised NS 
or the non-linear NS equations describe the flow behaviour. The red curve may be simulated by 
means of a linearised or a non-linear DNS solver, but flow character in the saturated region can 
only be captured through a non-linear DNS solver. We will now compare the various techniques 
presented, which are used for the analysis of the L-shaped cavity problem. We utilise this geometry 
to asses the scope and limits of each numerical approach and to provide qualitative and quantitative 
instability results. 

The flow features developing within this geometry have been studied numerically by other authors 
[36, 37] and the 2D bifurcations by [38, 39] but to the authors' knowledge, there has not been any 
3D instability analysis performed in this geometry, other than the study included in de Vicente's 
PhD dissertation [8] (second author of this paper). Cavity flows are characterised by 3D instabilities 
developing at lower Reynolds numbers (on the basis of the geometrical cavity length and the lid 
velocity) than 2D instabilities [40-42]. For this reason, they are ideal candidates for testing new tools 
for analysis of 3D flow structures. It is worth mentioning that the underlying bifurcation mechanism 

(b)4 

>; o 

(0 

E 
TO e 

-10 

Exponential Growth Regime ' 
& I 

Linearised NS equations | 

Saturated Non-linear Regime 
& 

Non-linear NS equations 

550 600 650 700 750 

Total time 
800 850 

Figure 1. L-shaped cavity at Reynolds 900 and non-dimensional spanwise length of Lz = 0.628. Results 
obtained from non-linear DNS computation: polynomial order k=17 in the x-y plane and 64 Fourier planes 
in the z-direction. (a) Velocity contours [0:1] and streamlines showing the 2D flow pattern and (b) Time 
evolution of the non-dimensional maximum w-velocity component (z-direction), colours show exponential 

growth regime (red) and saturated non-linear regime (blue). 
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Figure 2. BiGlobal instability analysis of an L-shaped cavity, (a) Growth rate (Ar) of the most unstable 3D 
mode for two Reynolds 900 and 1100 and varying non-dimensional spanwise length 1 < f$ < 30 (arrows 
show selected spanwise wavenumbers) and (b) Spanwise velocity component of the unstable BiGlobal 

eigenmode for Re=900 and f$ = 10. 

leading to the 3D modes of relatively short wave length is associated to a centrifugal type instability 
[43]. We note that to obtain a base flow for the cavity simulations is suffices to run a two-dimensional 
calculation inhibiting the w-velocity flow component. 

Preliminary studies for a range of Reynolds and spanwise wavenumbers were performed by the 
second author using BiGlobal analysis [8]. This preliminary work has enabled the selection of appro-
priate flow conditions to compare the various techniques, when one or two 3D unstable modes are 
present in the cavity. Figure 2.(a) shows the variation of the growth rates (Ar) for two Reynolds 
numbers and a range of spanwise wavenumbers (/J = 2n/Lz, where Lz is the cavity length in the 
z-direction). Note that Xr > 0 characterises unstable modes. 

Two flow conditions have been retained for the present work. In the first case, Re=900 and /J = 10 
(resp. Lz = 0.628), only one 3D instability develops and in the second case, Re=l 100 and f> = 22.5 
(resp. Lz = 0.279), two 3D instabilities grow with time. In our calculations, the Reynolds number 
is calculated using the characteristic lid velocity U = 1 and length L = 1. Vertical arrows in 2. (a) 
show the two selected spanwise wavenumbers used in the analysis. In addition, 2.(b) shows the 
shape of the unstable 3D w-component of the eigenmode found using the matrix-forming BiGlobal 

approach at Re=900 and f> = 10, which is to be compared to the eigenmodes provided by other 
techniques in the following section. 

3.1. Instability at Re = 900 and f> = 10; one 3D unstable mode 

The L-shaped cavity at this Reynolds number shows one unique 3D unstable mode. The shape of the 
spanwise velocity component of the unstable eigenmode, obtained using the BiGlobal approach, was 
shown in Figure 2.(b) and can be compared to non-linear and linearised DNS simulations shown in 
Figure 3.(a) and Figure 3.(b). The shapes of the 3D instabilities that are visualised through velocity 
isocontours of w-velocity compare favourably to the BiGlobal mode. The visualisation of the DNS 
structures is possible in this case since the base flow has zero w-velocity component and there is 
only one unstable mode present in the simulation. In addition, the three-dimensional modes (only 
real part is shown) obtained using the DMD technique applied to non-linear and linear DNS results, 
Figure 3.(c) and 3.(d), may be compared to the DNS structures (Figure 3.(a)) and the BiGlobal 

eigenmode (Figure 2.(b)) showing good agreement. 

Quantitative results for the dynamical information is summarised in Table I. We observe that all 
methods compare well, hence cross-validating the various methodologies presented. Note that the 
results from DNS simulations (non-linear and linearised solvers) have been obtained by curve fitting 
and Fourier analysis of the time evolving w-velocity (shown in Figure l.(b)) and lead to the growth 
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Figure 3. 3D global instability analysis of an L-shaped cavity at Reynolds 900 and non-dimensional span-
wise length of 0.628, simulation with polynomial order k=17 in the x-y plane and 64 Fourier planes in the 
Z-direction: (a) Nonlinear DNS (A/DNS): 10 iso-surfaces of z velocity, (b) Linearised DNS (£DNS): 10 iso-
surfaces of w-velocity, (c) WTJNS+DMD: real part of the most unstable mode and (d) £DNS+DMD: real 

part of the most unstable mode. 

Table I. L-shaped cavity at Reynolds number Re = 900 
and j6 = 10, growth rate Ar and frequency A, of the 
three-dimensional unstable mode. Non-linear and linear 
DNS results are compared to linear BiGlobal analysis and 
DMD results from non-linear (WDNS) and linear (£DNS) 

simulations. 

Xr A,-

WTJNS 0.1025 1.0295 

£DNS 0.1069 1.0295 

BiGlobal 0.1023 1.0284 

WTJNS+DMD 0.1047 1.0303 
£DNS+DMD 0.1167 1.0387 

rates and frequencies summarised in the table. Results from non-linear DNS simulations compare 
well with the eigenvalues obtained from BiGlobal analysis. In addition, the table shows that both 
non-linear and linearised solvers can predict the growth rate and frequency of the three-dimensional 
mode. The DMD analysis provides very similar results if used in combination with non-linear or 
linearised solvers, showing that, as long as the snapshots are taken within the exponential growth 
zone, linearisation is not necessary. However, let us note that the DMD analysis, when using non-
linear simulations, might become difficult to perform if far from the bifurcation point. Our analysis 
assumes that it is possible to obtain snapshots during the exponential growth of a small perturbation 
introduced in the simulation. If the flow conditions are too far from equilibrium, it is likely that the 
flow saturates almost instantly not providing enough time to sample the exponential growth region 
for DMD analysis. 

3.2. Instabilities at Re = 1100 and f> = 22.5; two 3D unstable modes 

In this section, we push the previous comparison forward to a flow regime where two unstable 
3D modes develop. Table II compares growth rates and frequencies obtained using the BiGlobal 

instability analysis together with DMD results combined with the non-linear and linearised DNS 
solvers. Results for all methods compare favourably. Differences in the growth rates provided by the 
BiGlobal and the DMD analysis may be explain by the very different underlying numerics used to 
compute these cases: matrix forming Chebyshev spectral collocation and time-stepping discontinu-
ous Galerkin methods. These techniques are different when computing both the base flows and the 
perturbation evolution. 

Let us note that in this case, where two unstable modes are present, the direct computation of 
growth rates and frequencies from the DNS simulations is more difficult, since the contributions of 
various modes overlap. It is in these cases, where the DMD analysis proves advantageous to extract 
the dominant structures for complex 3D flow. In addition, the eigenmodes issued from BiGlobal 



Table II. L-shaped cavity at Reynolds number Re = 
1100 and f$ = 22.5, growth rate Xr and frequency 
\i of the three-dimensional two unstable modes. Lin-
ear BiGlobal analysis and DMD results from non-linear 
(WDNS+DMD) and linear (£DNS+DMD) simulations. 

BiGlobal 

WDNS+DMD 
£DNS+DMD 

Mode 1 

K 

0.0789 

0.0926 
0.1001 

h 

0.0000 

0.0000 
0.0000 

Mode 2 

Xr 

0.0617 

0.0786 
0.0796 

h 

1.0899 

1.0864 
1.0883 

Figure 4. 3D global instability analysis of an L-shaped cavity at Reynolds 1100 and non-dimensional span-
wise length of 22.5: (a) Unstable BiGlobal eigenmode 1, (b) Unstable BiGlobal eigenmode 2, (c) Non-linear 
DNS + DMD: Unstable eigenmode 1 and (d) Non-linear DNS + DMD: Unstable eigenmode 2. All cases 

show a spanwise slice of the w-velocity component through the 3D modes. 

analysis and non-linear DNS analysed with the DMD technique are depicted in Figure 4, and show 
to be in good agreement, hence validating the methodology when various unstable modes evolve 
with time. 

4. ADJOINT PROBLEM AND SENSITIVITY 

In this section, we obtain 3D adjoint modes; i.e. modes associated to the linearised adjoint NS 
equations described in Section 2. More specifically, we time-step the linearised adjoint NS equations 
in time to produce snapshots that are subsequently analysed using the DMD technique. Adjoint 
modes are obtained for the L-shaped cavity for the first set of flow parameters, Re=900 and /J = 10 
(as in Section 3.1). In this work and to the best of our knowledge, we present novel results for 3D 
adjoint modes and sensitivity maps using the DMD technique. 

Adjoint modes are essential to provide insight into flow control to receptivity to external mass 
and momentum forcing [4, 5]. In addition, with the adjoint modes at hand, it is easy to compute the 
sensitivity of the flow to local feedback (i.e. structural sensitivity denning the wavemaker region) 
[23] and the sensitivity to base flow modifications [24]. 

On the one hand, the structural sensitivity can be directly computed using the direct and adjoint 
modes through the relationship: S = ||u*|| • ||u'|| with < u*,u' > = 1, where u' and u* are the 
direct and adjoint velocity modes and < •, • > denotes the L2 inner product with associated norm 
| | » | | = < » , » > 1 / 2 . This sensitivity locates the zones were direct and adjoint modes overlap and 
reveals the flow regions were a localised force would produce the largest drift in the eigenvalues 
(sometimes referred to as wavemaker region, see Giannetti and Luchini [23] for further details). On 
the other hand, the growth rate sensitivity to a base flow modification can be computed using: 

V^A = - [ V u ' f .u* + V u * - u ' , (9) 

with the normalisation condition < u*, u' > = 1, as shown by Marquet et al. [24] and provides 
the spatial location where a small modification of the base flow provides the largest eigenvalue 
drift. In addition, the base flow sensitivity, provides the gradients of the sensitivity, which can 



Figure 5. Circular cylinder at Re=45: (a) Structural sensitivity and (b) Growth rate sensitivity to base 
flow modification. 

Table III. Non-dimensional frequency {frequency = jk) ^or 

the least stable eigenvalue for the circular cylinder at Re= 45. 

Reference frequency 

Giannetti and Luchini [23] 0.118 
Marquetef al. [24] 0.116 
Crouch et al. [45] 0.115 
Present: £DNS+DMD 0.118 

be represented using streamlines (see Figure 5.(b)) and give information on the direction of 
the base flow modification that results in a stabilising or destabilising effect in the eigenvalue 
growth rate. 

4.1. Validation for a 2D cylinder flow at Re = 45 

To validate our methodology, we compute the sensitivity to local feedback (i.e. structural sensitivity 
or wavemaker region) and the sensitivity of the growth rate to a modification of the base flow, for the 
2D flow after a circular cylinder at Re=45. The critical Reynolds numbers for the circular cylinder 
is ReCrit ~ 46.6 (see for example [14, 23]), where a Hopf type bifurcation is responsible of a 2D 
unstable regime leading to a von Karman type vortex street. For steady regimes (i.e. Re<Rec r r t) 
the flow is steady and hence the base flow is naturally provided by advancing the unsteady NS 
equations in time. There is no requirement of any numerical technique to obtain a steady base flow 

(e.g. Newton method or selective frequency damping [44]). 
The DMD technique is used to extract direct and adjoint modes from the linearised and adjoint 

linearised snapshots produced by the discontinuous Galerkin solver, which are subsequently used to 
calculate the structural sensitivity and the sensitivity to base flow modification shown in Figure 5. (a) 
and 5.(b), respectively. These results compare well with previously published results [23, 24], 
validating the methodology. 

In addition, Table III summarises previous published values [23, 24, 45] for the frequency of the 
least stable eigenmode for the circular cylinder case at Re=45. We observe excellent agreement of 
the DMD mode extracted from linearised NS equations when compared to published results. 

4.2. 3D sensitivities for the L-shape cavity at Re = 900 and f> = 10 

Having validated the procedure, we note that no significant changes, other than the computational 
cost, are introduced when considering 3D flows. We proceed to study the 3D sensitivities for the 
L-shaped cavity at Re=900 and f> = 10. 

To the authors knowledge, these sensitivity maps are given for the first time in this work. Figure 6 
shows the 3D direct, adjoint modes (real parts only) together with the associated structural sensitivity 
(the latter computed using real and imaginary information). 



Figure 6. L-shaped cavity at Reynolds 900 with a non-dimensional spanwise length of 0.628, showing 10 
iso-surfaces: (a) Real part of the direct mode (b) Real part of the adjoint mode and (c) Structural sensitivity. 

Figure 7. L-shaped cavity at Reynolds 900 with a non-dimensional spanwise length of 0.628: (a) Real part 
of the BiGlobal adjoint mode, (b) Real part of the £DNS+DMD adjoint mode, (c) BiGlobal structural 

sensitivity and (d) £DNS+DMD structural sensitivity. All cases show a spanwise slice. 

Inspection of Figure 6.(c) reveals three pairs of regions of high sensitivity located within the main 
recirculation of the 2D base flow (see Figure 1). In particular, the highest levels appear close to the 
L-shape corner within two distinct lobes separated by the 3D mode wavelength (i.e. L/0&e ~ ^Lz). 

In addition and for the sake of completeness, we compare the adjoint modes corresponding to 
the most unstable direct modes in Figure 7.(a) and 7.(b), and the associated structural sensitivity, 
in Figure 7.(c) and 7.(d). These results have been obtained using the continuous BiGlobal approach 
and the DMD technique together with the time-stepped adjoint linearised NS equations. The figures 
show that very good agreement is obtained between matrix forming and matrix free methods. 

To gain insight into the sensitivity of these instabilities, we determine the sensitivity to modifica-
tions of the base flow. Figure 8. (a) shows 3D iso-surfaces of the most sensitive flow regions to base 
flow modifications and is detailed in Figure 8.(b) for a particular z-slice providing a 2D contour of 
sensitivity. In addition, Figure 8.(c) depicts 2D streamlines for the gradients of the sensitivity to a 
modification of the base flow. Both sensitivities, Figure 6.(c) and Figure 8.(a), provide regions of 
sensitivity that are high near the L-shaped corner. It can be seen that the sensitivity to a modification 
of the base flow, Figure 8.(b), follows the primary circulation pattern of the 2D base flow as shown 
in Figure l.(a). However, the streamlines shown in Figure 8.(c) do not provide a clear indication on 
the direction in which the base flow should be modified. It may be speculated that modifications of 
the main recirculation region together with its interaction with the L-shape corner (i.e. shear layer 
region) may affect the 3D instability. To explore this possibility, we consider a modified version of 
the L-shaped cavity. 

5. A GEOMETRIC MODIFICATION OF THE L-SHAPED CAVITY 

The previous section showed that a modification of the flow near the L-shaped corner of the cavity 
may provide the highest stabilising (or destabilising) effect in terms of the 3D instability for Re=900 
and ft = 10 (i.e. Lz = 0.628). 

In this section, we propose a modified shape (rounded corner) for the L-shaped cavity which 
aims at decreasing the growth rate of the 3D instability. Figure 9.(a) and 9.(b) show the resulting 



Figure 8. L-shaped cavity at Reynolds 900 with a non-dimensional spanwise length of 0.628 and growth rate 
sensitivity to base flow modification: (a) 3D iso-surfaces (10 levels shown), (b) 3D streamlines, (c) Contours 

at section z = 0.24 (z/Lz = 0.38) and (d) 2D Streamlines at at section z = 0.24 (z/Lz = 0.38). 

Figure 9. Modified L-shaped cavity at Reynolds 900 with a non-dimensional spanwise length of 0.628. 
(a) 2D base flow: 2D streamlines and velocity magnitude contours and (b) 3D instability issued form non-

linear DNS. 

2D base flow and iso-contours for the 3D instability, respectively, issued from a non-linear DNS 
simulations for the modified cavity. The 3D instability associated to this new geometry has a 
growth rate Xr = 0.0537 and frequency Ar = 0.0745. The growth rate and frequency for the 3D 
instability before modification of the geometry, when evaluated from the non-linear DNS solution, 
were detailed in Section 3.1 Xr = 0.1025 and Ar = 1.0295. We observe that the modified geometry 
reduces the growth rate by a factor of two and decreases its frequency. It may be concluded that this 
new geometry is more stable, in terms of 3D instabilities, for this particular Reynolds number and 
spanwise length that the original cavity, showing the potential of the presented methodology. This 
modified geometry aimed to show the potential of the methodology introduce in this work but does 
not represent the optimum shape. To obtain an optimal shape further studies would be required. 

6. CONCLUSIONS 

This work provides comparisons of high-order numerical techniques, including high-order continu-
ous and discontinuous Galerkin formulations, to predict 3D global instability analysis and sensitivity 
maps at an affordable computational cost for general 3D complex geometries. These methods have 
been applied to characterise 3D instabilities arising within a lid driven L-shaped cavity at various 
Reynolds numbers and spanwise lengths. 



The work presented has shown that the relatively new high-order numerical approach to solve the 
incompressible NS equations based on a discontinuous Galerkin variational formulation is able to 
predict the onset of 3D flow stabilities through DNS calculations. In addition, the recently developed 
DMD technique, has shown to be an efficient, robust and cost effective mean to extract dynamical 
information from snapshots produced by DNS computations. It has been shown that the modes 
extracted from non-linear solvers (no need for linearisation) agree well with matrix forming (i.e. 
BiGlobal) and matrix-free linearised methods (i.e. linearised time marched NS). The latter remark 
expands the potential of this type of analysis based on snapshot analysis to existing Computational 
Fluid Dynamics codes, without need of modifications. Furthermore, since non-linear calculations 
are performed and resulting snapshots analysed using the DMD technique directly there is no need 
to obtain a base flow. 

The methodology presented shows that it is possible to obtain an approximation of the 3D direct 
and adjoint modes, as well as the associated sensitivity fields (e.g. to local feedback and to base flow 

modifications), at a reduced computational cost for general complex 3D geometries. This knowledge 
may be used to provide valuable information of the most sensitive flow regions that may help control 
or attenuate 3D instabilities. The potential for finding more stable geometries is illustrated through 
a modification of the L-shape cavity. Finally, this paper provides physical global instability and 
sensitivity results for the lid driven L-shaped cavity that have not been reported before. 
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