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Abstract— We present a series of experiments which explore
the use of consumer-grade accelerometers as joint position sen-
sors for robotic manipulators. We show that 6- and 7-dof joint
angle estimation is possible by using one 3-d accelerometer for
each pair of joints. We demonstrate two calibration approaches
and experimental results using accelerometer-based control in
both position-control and torque-control regimes. We present
a manipulator design combining accelerometer-based sensing
with low-cost actuation, and conclude by demonstrating the
utility of consumer-grade accelerometers even on high-precision
manipulators.

I. INTRODUCTION

Many robotic applications demand manipulators with high

degrees of repeatibility, precision, and reliability. Production-

line robots provide stereotypical examples of this domain.

However, although high-precision manipulators excel at tasks

for which they can be pre-programmed, robotic manipulators

have not become commonplace in the unstructured domains

of typical homes and workplaces.

Prior work has investigated the manipulation of objects

without high-precision knowledge of its exact position, ori-

entation, and shape [1]. Uncertainty must be resolved by the

robot’s sensors, such as cameras, lasers, or contact sensors,

among other modalities [2]. Furthermore, in some such

environments the task itself is not clearly defined, and must

be inferred by the robot through human-robot interaction,

scene inference, or other methods [3]. This body of research

demonstrates that the effective manipulation error in unstruc-

tured environments is no longer restricted to the mechanical

precision of the manipulator; rather, it incorporates errors

from the entire robotic system. Sensor calibration, object

localization algorithms, and sensor-manipulator registration,

among other sources of error, are cumulative and add up

quickly. For many tasks envisioned for household service

robots, millimeter-order repeatability errors are unlikely to

cause drastic changes in the performance of the system, as

errors of that order are often overshadowed by larger errors

in the perception system, and thus the robotic system must

already be robust to such perturbations.

In this paper, we present a sensing strategy which lever-

ages the recent progress in low-cost 3-d MEMS accelerom-

eters. Our approach mounts at least one 3-d accelerometer

for each pair of joints and infers the joint angles using an
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Fig. 1. Two manipulators used to demonstrate the utility of accelerometer-
based sensing: a Willow Garage PR2 Alpha and a prototype low-cost
manipulator.

Extended Kalman Filter (EKF). Because of its low cost, this

system of joint-position estimation can be used to augment

an existing robotic sensor suite, or to function as the primary

sensor for a low-cost robotic manipulator.

II. RELATED WORK

Inertial sensing has been used extensively in recent years

for human motion capture. Several companies provide small,

lightweight, and networkable inertial units which integrate

accelerometers, gyroscopes, and magnetometers, and can be

easily attached to human limbs and torsos. These units can be

worn for use in film or video-game character modeling [4],

virtual reality [5], [6], and activity recognition [7].

Accelerometers are used in virtually every aerial and

underwater robot as part of the attitude detemination system.

However, accelerometers have found other uses in robot

navigation: for example, when strapped to legged robots, they

can be used to classify the surface, which can help in gait

selection and tuning [8].

Prior work using accelerometers in robotic manipulation

includes simulation results of configuration estimation [9],

employing strapdown inertial units on heavy equipment [10],

kinematic calibration [11], and the creation of a fault-

detection system [12]. In [13], accelerometers were doubly-

integrated using an Extended Kalman Filter (EKF) to esti-

mate the configuration of a SCARA-type manipulator un-

dergoing high-dynamic motions. The use of accelerometers

in flexible-link robots was proposed in [14]. A human-

robot system was proposed in [15] which incorporated the

attachment of accelerometers and other sensors to a human

tele-operator.

These prior studies have demonstrated that accelerometers

offer a compelling source of information. However, we



are not aware of published results of robotic manipulators

which emphasize the potential for cost-reduction and higher

reliability by using accelerometers for state estimation and

control.

III. STATE ESTIMATION

Virtually all robotic manipulators use shaft encoders of

some variety (optical, magnetic, resistive, etc.) to determine

the kinematic configuration of the manipulator. In this sec-

tion, we depart from this convention and discuss a sensing

scheme based solely on 3-d MEMS accelerometers.

In static conditions, a 3-axis accelerometer returns a 3-d

vector pointed at the center of the earth. Since the length of

this vector is fixed at 1 g, a 3-axis accelerometer only has two

degrees of freedom. Hence, one accelerometer is required for

every two rotary joints in a robotic manipulator. However, if

the kinematics of the structure allows it, incorporating one

accelerometer per rotary joint will increase the robustness of

the calibration and the accuracy of the joint-state estimates.

This effect will be discussed in the following sections.

A. Joint-angle estimation

In this section, we will describe how we produce a coher-

ent estimate of the manipulator state using accelerometers

attached to each link of the kinematic chain. This is a sensor-

fusion problem: each accelerometer, by itself, can only deter-

mine the direction of a downward-facing vector. However, by

using a priori knowledge of the kinematic constraints of the

manipulator, it is possible to produce a unified state estimate.

In our implementation, this is done by an Extended Kalman

Filter (EKF). An augmented forward kinematics function is

used to predict the accelerometer readings given the current

belief state. The EKF algorithm then updates the belief

state after observing the true measurement. The following

paragraphs will discuss this process in more detail.

First, we note that given a 3-d accelerometer reading and

knowledge of the axis of rotation, it is possible to compute

the joint angle in all cases except a singularity where the

axis of rotation is parallel to vertical. In an all-accelerometer

sensing scheme, this set of configurations must be avoided,

and the severity of this limitation is dependent on the kine-

matics of the manipulator and the required task: for example,

accelerometer-only sensing will completely fail on SCARA

manipulators. However, for the anthropomorphic manipula-

tors considered in this paper, vertical joint configurations are

readily avoidable. Furthermore, excursions through vertical

joint orientations could be gracefully handled by augmenting

the accelerometer measurements with magnetometers, back-

EMF sensing, angular rate sensors, or conventional shaft

encoders in the EKF framework.

Numerous strategies can be employed to infer the manipu-

lator configuration from accelerometer readings. We chose to

use an EKF due to its relatively simple implementation and

fast on-line performance. A detailed discussion of the EKF

algorithm is beyond the scope of this paper and is presented

in many excellent texts [16].

To encourage smooth estimates of the joint position, we

define the EKF state space to include the joint angles,

velocities, and accelerations:

x =


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where θ represents the joint angles of the manipulator. The

state (plant) update function implements numerical integra-

tion and assumes constant acceleration:

f(x) =
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The measurement function needs to predict sensor mea-

surements z given a state x. As is often the case in EKF

implementations, the measurement function could be made

arbitrarily complex to capture more and more properties

of the system. However, we found that a measurement

function which only predicts the acceleration due to gravity

was sufficient to handle the low-frequency regime of our

manipulator. Adding additional terms to capture centripetal

accelerations and linear accelerations induced by joint-angle

accelerations did not change the performance, as will be

discussed in Section V.

To predict the measurement zi of a particular 3-d ac-

celerometer αi given the state x,

zi = Rαi
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where Rαi

i represents the rotation from the accelerometer

frame to the frame attached to link i, the rotations Ri
i−1

(x)
are the rotations between the link frames, and R0

w is the

rotation from the base of the manipulator to the world. The

following paragraphs describe these rotations in more detail.

Rαi

i is determined by how accerometer αi is physically

mounted on link αi. For our manipulator, it is a permutation

matrix followed by a rotation of a few degrees. Rαi

i is a static

parameter that can be estimated by the calibration process

described in the next section.

Ri
i−1

(x) is determined by the axial orientation of link i

and link i − 1, as well as by the joint angle θi present in

the state x. The link twist can be statically estimated during

calibration, but the joint angle must be recursively estimated

by the EKF.

R0

w is the rotation between the base of the manipulator

and the gravitational frame. If the manipulator is stationary,

this rotation is constant and can be estimated by static

calibration.1

1There are numerous situations where the R
0
w

rotation is not constant and
needs to be estimated, but they lie in more extreme domains of robotics:
manipulation on vehicles traveling on mountainous terrain, on spacecraft,
or aboard ships in rough seas, for example. These situations are far beyond
the scope of this paper but could be readily addressed by estimating R

0
w

through an inertial unit or some other means.



Fig. 2. Left: an unpowered arm used to evaluate the calibration potential of
the accelerometer-based sensing approach. Right: touching the end effector
to points on the calibration board.

Using the state-update and measurement functions, the

EKF algorithm produces a recursive estimate of the mean and

covariance of the state as more timesteps and observations

are experienced.

B. Calibration

For a variety of reasons, the accelerometer axes of sensi-

tivity are unlikely to be exactly aligned with the axes of the

reference frames attached to manipulator links. Internal mis-

alignments of MEMS accelerometer axes, misalignments in-

curred when mounting accelerometer-equipped circuit boards

to the manipulator links, and manufacturing tolerances of the

links themselves combine to result in rotations of several

degrees between the axes of the accelerometers and the

axes of the kinematic frames. Fortunately, these mechanical

imperfections are static, and can be calibrated out.

To demonstrate calibration for low-cost manipulators using

accelerometers as the primary sensors, we constructed the

unactuated arm shown in Figure 2. This 4-dof mockup has

a roughly spherical shoulder and an elbow joint, with link

lengths similar to the manipulator shown in Figure 1.

Our calibration scheme for the low-cost prototype is

loosely derived from the checkerboard-based calibration

method widely used in computer vision [17]. A planar

calibration board was placed in the workspace of the ma-

nipulator. The end effector of the manipulator was touched

to its corners, each time recording the corresponding ac-

celerometer readings. The board was then moved and rotated

to a different position and orientation, and the process was

repeated to collect a dataset of 20 different measurements

covering the manipulator workspace. This provides the scale

and skew constraints. This data was augmented by collecting

many accelerometer readings of manipulator configurations

where the end effector was in contact with a large planar

surface such as a tabletop. This serves to provide a planarity

constraint.

Formally, the optimization problem can be written as:

argmin
L,R

g1(α,L,R) + λ2g2(α,L,R) + λ3g3(R) (4)

where α are the accelerometer readings in the test set, L

repesents the estimated link parameters, and R represents

the rotation matrices representing the misalignment of each

accelerometer frame to its respective link frame.

The first term enforces the known scale of the calibration

board.

g1(α,L,R) =
∑

i,j

||dij − d̂ij || (5)

where d̂ij is the distance between the estimated positions of

the manipulator:

d̂ij = |FK(αi,L,R)− FK(αj ,L,R)| (6)

Here, FK means to run the forward-kinematics joint-angle

estimation algorithm described in the previous section to

produce estimates of the end-effector positions using the

link parameters L. The subscripts i and j identify times

in the training set which were gathered from the same

position and orientation of the calibration square, which

therefore correspond to end-effector positions whose ground-

truth distance dij is known.

The second term of the calibration optimization function,

g2, corresponds to the planarity constraint of the end-effector

positions gathered from the tabletop. Let P be the plane

fitted by taking the vectors corresponding to the top two

singular values of Y TY , where Y is the n x 3 matrix whose

rows yi consist of the end-effector positions calculated by

the estimated calibration. The sum of the distances between

the end-effector positions and their projections onto the fitted

plane provides an additional source of information about the

severity of the miscalibration. Then,

g2(α,L,R) =
∑

yi

||yi − projP (yi)|| (7)

The final term of the optimization function g3 encourages

the misalignment rotation matrices Ri to remain orthonormal

during the optimization:

g3(R) =
∑

i

||Ri
TRi − I3|| (8)

To calibrate accelerometer-based sensing on a high-

precision robot, we used the Willow Garage PR2 Alpha

platform as a test bed. This robot has 7-dof manipulators

equipped with accurate optical shaft encoders in each joint.

The manipulator is well calibrated and the link parameters

are known a priori. The calibration task is simplified, leaving

only the rotations Ri of the accelerometer mounting on the

kinematic frame to be determined. We treat the joint angles

from the shaft encoders as ground truth and compare these

with the angle estimates from the accelerometer readings

to calibrate out the rotations. The optimization problem

presented below is similar to Equation 4

argmin
R

∑

i

||θi − θ̂i(α,Ri)||+ λ
∑

i

||Ri
TRi − I3|| (9)



Fig. 3. Hold-out test set error during the optimization convergence on
prototype manipulator. The horizontal axis shows the iteration number, and
the vertical axis shows the mean of the miscalibrations. The numerical
optimization drives the average error from 11mm to 2mm.

Fig. 4. Hold-out test set error during the optimization convergence on
Willow Garage PR2 Alpha. The horizontal axis shows the iteration number,
and the vertical axis shows the mean error in joint angle estimates of the
shoulder lift and the upper arm roll. The optimization drives the average
error from 0.1 radians to 0.02 radians.

where θi is the joint angle position of the manipulator as

given by the shaft encoders and θ̂i is the estimate based on

accelerometer readings. θ̂i is computed by solving for joint

angles by considering inverse kinematics on pairs of links.

Our implementation requires approximately one hour

of CPU time to reach convergence using the simplex-

based optimization technique implemented by the MATLAB

fminsearch function. As is always the case with non-

convex optimization, a good starting point is necessary to

achieve a reasonable solution. We found that starting with

the parameters from the CAD model and assuming perfect

sensor alignment resulted in reasonable solutions for our test

data.

To evaluate the performance of the calibration methods

quantitatively, we allowed the optimization algorithm to use

training data containing several manipulator positions and

checkerboard orientations, and maintained a hold-out test

set of several other orientations for evaluation purposes.

The results demonstrate a significant calibration accuracy

improvement compared to inital guess. Figure 3 shows the

convergence of the algorithm from an initial end-effector

Fig. 5. The shoulder motors are evenly spaced around the center of motion
to reduce their inertial contribution. The remote center of motion allows the
large second and third motors to be direct-drive. The wrist differential is
friction-driven by rubber wheels under high compression. This mechanism
provides zero-backlash pitch and roll motion.

mean error of 11mm down to 2mm on our prototype ma-

nipulator. Figure 4 shows convergence of the algorithm from

a mean joint-estimate error of 0.1 radians (5.7 deg) in the

shoulder lift to 0.02 radians (1.15 deg) on an instrumented

Willow Garage PR2 Alpha.

We note that 2mm mean end-effector localization error

is an order of magnitude worse than what is reported by

manufacturers of high-quality robotic manipulators sensed

by shaft encoders. However, it is more accurate than the

best camera-manipulator calibration we have been able to

achieve in several years of constructing and calibrating

vision-guided systems with high-performance manipulators.

We speculate that this level of calibration error would not be

the limiting factor of using low-cost localization approaches

in a complete robotic system.

IV. A LOW-COST MANIPULATOR

To explore the feasibility of low-cost manipulation using

a purely accelerometer-based control scheme, we used a 6-

dof manipulator that was constructed in our laboratory under

a budgetary constraint of $1000 USD (Figures 1, 5, 6). As

this manipulator incorporates several unconventional design

features, we will summarize its design in this section.

The shoulder operates in a spherical RRR configuration

with a remote center of motion. Although the shoulder

motors are powerful, low-cost, and low-backlash (in the

gearhead), they exhibit some cogging due to their ferrous

core, which affects the controllability of these joints. Unfor-

tuantely, powerful low-cost motors suffer almost uniformly

from cogging, and this is a tradeoff that must be balanced

in designing and controlling a low-cost arm.

A friction differential drive (Figure 5) provides the wrist

with pitch and roll degrees of freedom. The differential is

formed by belt-driven rubber wheels pressed firmly against

a thin aluminum veneer. Such wheels are low-cost, durable,

and effective at transmitting high torques. The friction drive

provides zero-backlash and an inherent safety limit on the

wrist: overloading results in slippage rather than damage to

the drivetrain.

The gripper has two independently-driven fingers, each

consisting of a 4-bar linkage for parallel gripping (Figure 6).



Fig. 6. The elbow is driven via belt from a large motor in the shoulder. The
gripper is fabricated from lasercut polypropylene, using flexures to create a
durable 4-bar mechanism. The thin belts are used only to turn potentiometers
for position feedback.

Fig. 7. Accelerometers were attached to the upper arm, forearm, and
gripper of a PR2 Alpha robot.

Linkages are constructed from lasercut polypropylene flex-

ures to avoid the mechanical complexity of using discrete

parts. Flexures have the further advantages of zero backlash,

extreme durability/fatigue resistance, and low-cost.

Linux-based software was written using the open-source

Robot Operating System (ROS) platform [18]. Separate

programs were written for firmware communication (via

the Linux usb-serial driver), state estimation, joint-space

control, teleoperation via joysticks, trajectory recording, and

trajectory playback/looping. The ROS framework handles the

peer-to-peer connections and provides logging, playback, and

visualization tools.

V. EXPERIMENTS

In this section, we present a series of experiments that

quantify the performance of accelerometer-based state esti-

mation on two robots: the low-cost manipulator discussed

in the previous section, and a Willow Garage PR2 Al-

pha, a high-quality 7-dof manipulator. Accelerometers were

designed into the motor control boards of the low-cost

manipulator, which were rigidly attached to four links. The

PR2 Alpha was outfitted with strapdown accelerometers, as

shown in Figure 7.

A. State Estimation

To quantify the performance of the calibration and joint-

tracking systems, we affixed accelerometers to a Willow

Garage PR2 Alpha robot (Figure 7). This 7-dof manipulator

is equipped with high-quality shaft encoders, which served as

Fig. 8. Tracking the forearm roll of the robot shown in Figure 7, showing
the encoder ground-truth (red) against the joint angle estimate from the
accelerometers (blue).

ground truth for this experiment. Its kinematic configuration

includes a vertical first joint (the “shoulder pan”), which we

did not attempt to estimate in these experiments, since this

joint axis is always parallel to gravity.

Figure 8 demonstrates the tracking performance of one

joint (the forearm roll) as the manipulator was smoothly

moved through its workspace. The following table (in de-

grees) shows the mean error throughout the trajectory, mea-

sured as the difference between the shaft encoder readings

and the joint state estimates from the accelerometers.

Shoulder Lift Upper Arm Roll Elbow

Error (deg) 0.965 0.926 1.590

This experiment was done under near-ideal conditions: the

PR2 Alpha arm uses spring balances for gravity compensa-

tion and small coreless motors [19]. The mechanism is thus

extremely smooth and well-behaved, avoiding any transients

or other anomalies as it travels the workspace.

B. Torque Control

Manipulators equipped with shaft encoders can often ig-

nore the state-estimation problem when designing a control

scheme, as the quality of the state estimate is often inde-

pendent of the state of the robot. In contrast, the quality of

the state estimates inferred from the accelerometers can vary

with the configuration and velocity of the manipulator. In this

section, we will discuss the ramifications of this property on

the behavior of the low-cost manipulator equipped only with

accelerometers.

For this experiment, we wrapped a proportional-integral

(PI) controller around the state estimates produced by the

EKF described in Section III. To reduce the efforts required

of the PI controller, we employed active gravity compen-

sation by using the Jacobian to compute the feed-forward

torques necessary to float the manipulator links [20].

We found that the accelerometer-only sensing scheme can

break down under high dynamic conditions. Specifically,

linear accelerations induced by angular joint accelerations are

not modeled in the measurement prediction of Equation 3,



Fig. 9. Estimating the repeatability of the manipulator using optical-
tracking data of the manipulator repeatedly cycling between two target
positions. The plots show the difference between each stopping position
of the arm and its respective cluster centroid, in the horizontal plane (left)
and a vertical plane (right). The mean deviation distance is 18.6mm. Axes
are scaled in millimeters. 14 trials were run, all of which appear on this
plot.

and neither are the centripetal accelerations induced by the

angular joint velocities. Interestingly, we found that adding

those terms did not improve the high-dynamic performance

of the manipulator, nor did adding a derivative term to the PI

controller. We speculate that for such terms to be effective,

the overall system must have a higher bandwidth, calibration

level, or measurement SNR.

As a result of the previous observation, the low-cost ma-

nipulator could become unstable in high-dynamic situations.

Furthermore, the measurement model of Equation 3 does

not model contact forces; as a result, large contact forces

may also induce instability. In either case, stability can be

regained by quickly ramping down motor torques, which

effectively slows the manipulator down until it re-enters a

stable region of the coupled sensing and control systems.

To quantify the repeatability of the low-cost manipulator,

an active optical tracking device (Atracsys EasyTrack500)

was used to obtain ground-truth position data of the end

effector. The tracking system has an accuracy of 0.2mm.

The manipulator was placed in front of the optical tracker,

with the optical beacon attached to the gripper tip.

The manipulator was commanded to cycle between two

joint configurations which required motion of at least 30

degrees on all six joints of the manipulator (excluding the

gripper fingers), resulting in end-effector travel of 34cm. The

optical-tracking data was analyzed to extract the points where

the manipulator had stopped, resulting in one cluster for each

of the target positions. Figure 9 shows an estimate of the

repeatability of the manipulator, as measured by the deviation

of each of these stopping positions from the mean of its

cluster. The mean deviation was 18.6mm, and the maximum

deviation was 33.9mm.

C. Position Control

Our final experiment controlled the PR2 Alpha arm in a

doorknob-grasping task (Figure 10). To avoid the instabilities

witnessed in the low-cost manipulator experiment, we used

the accelerometer to control the low-frequency trajectory of

the manipulator, and used the PR2’s shaft encoders to sta-

bilize the high-frequency behavior. Our accelerometer-based

controller sent relative joint angle commands to the PR2. As

such, this controller could be used without shaft encoders

Fig. 10. In this experiment, accelerometer-based state estimation is used
to generate relative joint position commands, allowing a position-controlled
robot to repeatedly grasp a doorknob.

Fig. 11. Under relative position control, our control scheme is able to
reach out and repeatedly grasp a doorknob. This plot shows a trace of one
joint as it undergoes relative joint angle commands from the accelerometer-
based sensing scheme and simple setpoint-interpolation to derive small step
commands.

on any manipulator with position-based actuators, such as

stepper motor-based manipulators. Since the accelerometers

fly on the actual links of the robot, their measurements are

not corrupted by link droop or backlash.

Our accelerometer-based, encoder-stabilized controller

guided the PR2 Alpha through a sequence of control points

to repeatedly grasp a door handle in front of the robot.

Trajectory tracking in this position-controlled scenario is

shown in Figure 11.

VI. DISCUSSION

The work was motivated by the ever-increasing precision

of consumer-grade MEMS accelerometers, and the observa-

tion that some anticipated future domains of robotics, such as

home service robots, possess many sources of error beyond

manipulator repeatability. In such scenarios, a reduction in

the repeatability of the manipulator may not drastically

increase the overall system error.



In general, the accelerometer-based sensing strategy re-

moves complexity from the mechanism and increases the

complexity of the calibration and control software. This strat-

egy is motivated by the observation that complex software,

unlike complex hardware, can be replicated at no cost.

Because adding accelerometers to an existing manipulator

design is mechanically simple and incurs very little cost, this

sensing approach is also suitable as a backup, or auxilliary,

sensing strategy for manipulators equipped with shaft en-

coders. The accelerometers could be used to bootstrap the

power-up sequence of manipulators: regardless of the con-

figuration of the manipulator at power-up, an accelerometer-

driven EKF will quickly converge to a reasonable estimate of

the manipulator configuration. After an accelerometer-based

joint configuration is estimated, the manipulator could use its

incremental encoders to safely and quickly reach the homing

flags for each joint. Furthermore, accelerometers can provide

information about impacts, drivetrain health (through spectral

analysis), and a continual “sanity check” for the incremental

encoders.

VII. CONCLUSION AND FUTURE WORK

We presented a low-cost sensing scheme based on 3-

d MEMS accelerometers. The system produces coherent,

absolute estimates of the kinematic configuration of a ma-

nipulator. We performed experiments to quantify the perfor-

mance of this scheme using both high-precision and low-cost

manipulators. The accelerometer-based sensing algorithm

can be readily applied to any manipulator to augment its

state estimation with very little hardware cost and trivial

mechanical complexity.

We intend to continue developing the ideas presented in

this paper, exploring a variety of approaches to reduce the

cost of actuation, sensing, and control of robotic manipu-

lators in unstructured environments. To gain feedback and

encourage replication, the mechanical and electrical designs

for the low-cost manipulator, as well as all firmware and

software used in the accelerometer-based sensing scheme,

will be made freely available at http://openarms.stanford.edu
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