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CuInAlS2 thin films for different substrate temperatures were deposited by a novel nebulizer 

spray technique. The polycrystalline CIAS thin film exhibited tetragonal structure with the 

preferential orientation of (1 1 2) plane. Nanoflakes were observed from the surface morphology 

of CIAS film. The peak position of core level spectra confirms the presence of CuInAlS2 from 

XPS analysis. The absorbance spectra and optical band gap were observed from the optical 

property. The activation energy, carrier concentration, hole mobility and resistivity were 

determined by linear four probe and Hall effect measurements. The CIAS film was used as a 

counter electrode (CE) in dye-sensitized solar cells (DSSCs) and is characterized by cyclic 

voltammetry, electrochemical impedance spectroscopy and Tafel measurements. DSSC 

fabricated with the CIAS CE achieved the photo conversion efficiency of about 2.55 %. 

Key words: CIAS, nebulizer spray, XPS, counter electrode, dye-sensitized solar cells. 

1. Introduction 

 In recent days, the traditional fossil resources such as coal, petroleum, and natural gas 

have been scarce as the energy demand and global economy increased abundantly. Solar energy 

is the best alternative to the traditional fossil resources because of its non-pollution and 

renewability [1]. Dye-sensitized solar cells (DSSCs) have attracted research interests due to their 

low-cost, non-pollution, simple fabrication processes, high efficiency, etc [2]. The important part 

of DSSCs is the counter electrode (CE) whereas it should possess high electrocatalytic and 

electrical conductivity [3]. The high expensive, low natural abundance and poor corrosion 

resistance of platinum restrict the industrial use of DSSCs [4]. Therefore, an alternative low-cost 
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are widely used because of their strong electrocatalytic activity and stability in the tri-iodide 

process. Few reports are available for CuInS2 (CIS) and CuInGaS2 (CIGS) as CE material in 

DSSCs  [5, 6].  

CuInS2 is one among the materials in chalcopyrite group which has high absorption co-

efficient in the wide spectral range in the visible region, optimum optical energy band gap, good 

stability and radiation hardness [7]. CuInS2 is one of the most potential candidates for the 

photovoltaic applications with the band gap value of 1.53 eV [8]. Moreover, in the quaternary 

material CuInGaS2, gallium is a rare and expensive element, so it can be substituted by abundant 

and economical elements such as aluminum [9], iron [10], sodium [10], zinc [11], bismuth [12], 

titanium [13], cerium [14], tin [15], etc.  Among these materials, Al is the most preferable 

material to be incorporated in CuInS2 due to its corrosion resistance, good thermal and electrical 

conductivity. There are only a few records available in the literature for CuInAlS2 [16-18]. 

Theoretically, the energy band gap of CuInAlS2 (CIAS) can be varied from 1.53 eV (CuInS2) to 

3.5 eV (CuAlS2) by tuning aluminum incorporation. CIAS thin films have been prepared mostly 

by PVD techniques such as thermal evaporation, sputtering followed by sulfurization at high 

temperature, etc [8, 9]. Since H2S gas is highly toxic and hazardous to human health, extra care 

has to be taken while using in the laboratory [19]. A simple and cheap method is required for 

manufacturing commercial solar cell devices on a large scale. Nebulizer spray method is simple, 

cost-effective and more advanced compared to conventional spray in preparing functional thin 

film coatings for different technical applications [20, 21]. The precise control of droplets size has 

the ability to produce good adherent, pinhole-free nanostructured film which is more 

advantageous over conventional spray method [22].  
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by a novel nebulizer spray technique for different substrate temperatures. The role of substrate 

temperature on the structural, morphological, electrical and optical properties of CIAS thin films 

was investigated. The electrocatalytic activity and the performance of device fabrication of CIAS 

CEs in DSSCs had been discussed in detail. We are the first to report the CIAS thin film 

prepared by nebulizer spray technique and also used as a CE in DSSCs. 

2. Experimental 

2.1. Preparation of CIAS thin film  

The working principle of nebulizer spray method had been reported earlier by our 

research group [23]. Copper (II) chloride dihydrate (CuCl2.2H2O), indium (III) chloride (InCl3, 

anhydrous), aluminum (III) chloride (AlCl3, anhydrous) and thiourea (SC(NH2)2) were purchased 

from Alfa Aesar and dissolved in distilled water for different substrate temperatures (250, 300, 

350 and 400 °C) with the molar ratio of 1:0.7:0.3:4. The prepared solution was stirred vigorously 

at room temperature and sprayed onto clean glass and FTO substrates with the pressure of 1.0 

kg/cm2 to produce device quality of CIAS thin films.  

2.2. Fabrication of DSSCs device 

All the assembled DSSCs were fabricated based on standard procedure using TiO2 

photoanode for fair comparison. FTO substrates were ultrasonically cleaned in ethanol, acetone 

and deionized water for 10 minutes to remove the contaminants over the surface. The cleaned 

FTO substrate was immersed in 20 mM aqueous solution of TiCl4 to form TiO2 blocking layer. 

The resultant film was gradually heated in air at 450 °C for 30 minutes. Commercial TiO2 paste 
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obtain mesoporous and scattering layer which was baked at  150 °C for 5 minutes and finally 

annealed in air at 500 °C for 1 hour respectively. The obtained TiO2 photoanode was soaked in a 

solution of N719 dye mixed with 0.3 mM of ethanolic solution for 12 hours at room temperature 

under dark condition. The excess dye molecules over TiO2 photoanode were removed by dipping 

in ethanol and allowed to dry. The platinum CE layer on FTO was prepared by spin coating, the 

solution of H2PtCl6.6H2O dispersed in 10 mM isopropanol solution annealed at 400 °C for 30 

minutes. The nebulizer-spray deposited CIAS/FTO CEs and Pt CE were separated using a surlyn 

film spacer with dye-sensitized TiO2 electrode. The iodine electrolyte solution containing 0.06 M 

LiI, 0.6 M 1-propyl-2,3-dimethylimidazolium iodide, 0.03 M I2, 0.5 M 4-tertbuyl pyridine and 

0.1 M guanidinium thiocyanate dissolved in acetonitrile was injected in the gap between the two 

electrodes with a small capillary syringe and the holes were completely sealed with molten glue. 

The active area of the fabricated DSSCs was 0.4 × 0.4 cm2. 

2.3. Characterization 

The deposited CIAS thin films were analyzed to study their structural, morphological, 

elemental composition, optical and electrical properties. The X-ray diffraction patterns were 

recorded with a PANanalytical X’PERT PRO diffractometer using Cu Kα radiation with a 

wavelength of 1.5406 Å. A Reinshaw (Invia Make) spectrometer was used to analyze the Raman 

spectra. The surface morphology of the film was analyzed by Scanning Electron Microscope 

(VEGA3 TESCAN) and Atomic Force Microscope (A100, APE Research). The chemical state 

of the CIAS thin film and its composition were investigated using Kratos axis ultra DLD X-ray 

photoelectron spectrometer and energy dispersive spectroscopy (Bruker). A JASCO UV-Vis-
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Hall measurements were carried out by four probe method with the Keithley 2400 source meter 

and Ecopia HMS-3000 source meter respectively. The photocurrent density – voltage 

characterization of the prepared DSSCs was measured using a potentiostat (VMP3, BIO-LOGIC) 

under illumination using a solar simulator (Photoemission Tech) coupled with  AM 1.5G filter 

set and the intensity of the illumination is 100 mW/cm2. Cyclic voltammetric measurements were 

conducted using three electrode cells setup under iodine electrolyte. Pt wire was used as the 

counter electrode, standard calomel electrode (SCE) served as the reference electrode and 

CIAS/FTO as the working electrode. The electrochemical impedance spectroscopy (EIS) of 

prepared DSSCs was recorded at the constant potential of 0.7 V under dark condition in the 

frequency range 0.1 Hz to 1 MHz with an amplitude voltage of 10 mV.  

3. Results and Discussion 

3.1. X-ray diffraction analysis 

The structural developments of CIAS thin films are depicted as a function of substrate 

temperature which is shown in Fig.1. The as-deposited CIAS thin films were identified as 

tetragonal structure with the space group of I-42d. The diffraction peaks located at               2θ = 

27.8 °, 46.5 ° and 54.9 ° are assigned to (1 1 2), (2 0 4) and (2 1 5) planes respectively according 

to JCPDS card no 65-1572. The intensity of the polycrystalline CIAS thin film increases and 

full-width half maximum decreases with the increase in substrate temperature upto 300 °C giving 

an indication of enhancement in crystallinity. The reason may be the sufficient amount energy 

acquired by the atoms for diffusion in the crystal lattice. Further increasing the substrate 

temperature to 350 and 400 ºC, the intensity of the peaks deteriorates due to the re-evaporation 
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observed similar type of decline in peak intensity by increasing the substrate temperature beyond 

300 ºC in Zn doped CuInS2 films [25].   

The different crystalline parameters of CIAS thin film like crystallite size (D), 

microstrain (ε), dislocation density (δ), and lattice parameters (‘a’ & ‘c’) are determined from the 

following the relations [21, 26],                                                         

        
cos
K

D
λ

β θ
=          (1) 

       
cos
4

β θε =                            (2) 

                                                
2

1

D
δ =   (lin /m2)                            (3) 

    

22 2

2 2 2
hkl

1 h k l
d a c

+= +     (4) 

where ‘K’ represents the shape factor taken as 0.9, ‘λ’ is the wavelength of X-ray (Kα=1.5406 

Å), ‘β’ refers to full-width half maximum, ‘θ’ is the diffraction angle, ‘d’ denotes the distance 

between lattice points, and ‘h’, ‘k’, and ‘l’ represent to Miller indices. 

Figure 2 represents the maximum crystallite size with the minimum microstrain and 

dislocation density obtained for the CIAS thin film deposited at 300 °C resulting in reduction in 

the concentration of lattice imperfections leading to preferred orientations [27]. The lattice 

parameters of CIAS thin film prepared for different substrate temperatures are listed in the Table 
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temperature in the prepared CIAS films as it is slightly deviated from Vegard’s law. Basically in 

chalcopyrite type semiconductors AIBIIIC2
VI, the tetragonal distortion is a vital parameter which 

is pure indication of unequal bond lengths between the A-C and B-C atoms [9]. The value of 

tetragonal distortion can be observed from c/a ratio (Fig. 3) with increase in substrate 

temperature and it follows a similar trend as X-ray diffraction intensity. This tetragonal distortion 

induces stress in the crystal structure which is directly reflected in crystalline parameters such as 

crystallite size, strain and dislocation density values of CIAS films. The lower crystallite size 

values observed for 350 and 400 °C might be due to small deviation in stochiometry as well as 

thermally generated defects increases the broadening of the diffraction peaks. 

3.2. Raman spectra 

Raman spectroscopy is a nondestructive tool to analyze the local structure from 

vibrational modes of the atoms present in the crystal lattice. Raman spectra of CIAS thin films 

were recorded at room temperature and the obtained results are shown in Fig. 4. In this work the 

peak obtained at 299 cm-1 belongs to the A1 mode of chalcopyrite structure observed for all the 

deposited CIAS thin films. On careful observation two important inferences can be observed: (i) 

the variation in peak broadening with substrate temperature and (ii) shift of A1 mode towards 

larger wave number. The strong intense A1 mode of chalcopyrite compounds in the Raman 

spectra generally located between the range 291-314 cm-1 and in addition to Al mode another 

weak peak observed at 350 cm-1 corresponds to B2(LO) mode of chalcopyrite [9]. No other 

minor phases were observed in   X-ray diffraction and it is once again confirmed in Raman 
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with less defect structure and can promote electron transfer at the CE/electrolyte interface [28]. 

3.3. Surface morphology 

Figure 5 represents the SEM images of CIAS thin film deposited at different substrate 

temperatures. Small spherical grains are developed in the initial stage of nucleation process at 

250 °C. When the substrate temperature increased to 300 °C, the grains began to grow into 

nanoflakes due to an adequate supply of the thermal energy. At high substrate temperatures (350 

and 400 °C), the agglomerated grains resulted due to the formation of bigger islands as the 

mobility of surface atoms increases with the impact of high thermal energy applied to the 

substrate.  Similar type of observation was made by Swapna et al. for spray pyrolyzed Mo doped 

zinc oxide thin films [29]. Thus the substrate temperature plays a vital role in determining the 

surface morphology and the morphology inturn affects the charge transport CE/electrolyte 

interface in DSSCs.  

3.4. Atomic force microscope (AFM) 

  The surface topography of CIAS thin films was analyzed by AFM and the 2D and 3D 

AFM images of CIAS films prepared at different substrate temperatures are shown in Fig. 6. The 

obtained root mean square (rms) roughness values are reported in Table 1. AFM images reveal 

that grain growth depends on the substrate temperature. Initially at 250 °C, small and non-

uniform grains are clearly visualized. CIAS film deposited at 300 °C seems to be dense and 

uniformly packed grains. The CIAS films deposited at 350 and 400 °C consist of some voids and 

cluster grain formation due to thermally generated defect structure at grain boundaries. The voids 
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poor performance in DSSCs. Generally for a CE material, the surface should be void-free for 

better electrical conductivity and electrocatalytic performance [30]. 

3.5. X-ray photoelectron spectroscopy (XPS) 

Figure 7 (i) shows the XPS survey spectrum of CIAS thin film deposited at 300 °C in a 

wide energy range of 0 – 1200 eV. The characteristic peaks observed from survey spectra are Cu 

2p, In 3p, O 1s, In 3d, C 1s, S 2p, Al 2s, Al 2p, and S 3s indicating the presence of elements in 

the prepared film. No other peaks related to impurities or secondary phases other than copper, 

indium, aluminum and sulfur were detected confirming the purity of elements. The obtained 

binding energy values of Cu, In, Al and S are reported in the literature [18]. The binding energy 

of carbon species C 1s (284.1 eV) was utilized to calibrate the spectra.  

The core level spectra of copper, indium, aluminum and sulfur of CIAS thin film are 

displayed in Fig.7 (ii). The binding energy of copper peaks 931.2 and 950.0 eV corresponding to 

2p3/2 and 2p1/2 respectively was split by 19.8 eV representing the Cu (I) oxidation state. Perera et 

al. reported a satellite peak at 942 eV that denotes Cu (II) oxidation state of 2p3/2 [31]. The 

nebulizer spray-coated CIAS thin film clearly represented the absence of Cu (II) state and 

confirmed the Cu (I) state. The indium peak 3d5/2 and 3d3/2 emerged at 444.5 and 452.1 eV with 

the splitting binding energy of 7.6 eV. A peak at 74.07 and 160.0 eV indicates Al 2p and S 2p3/2. 

The presence of oxygen (530.1 eV) and sulfur (167.8 eV)  peaks were owing to the formation of 

sulphate as surface contaminant [32].  
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 The EDS spectrum of CIAS thin film prepared at 300 °C is shown in Fig.8. The presence 

of copper, indium, aluminum and sulfur proved that no other impurities were present in the 

nebulizer spray-coated CIAS thin film. The elemental composition of CIAS thin films deposited 

at different substrate temperatures (inset of Table in Fig. 8) revealed better stoichiometric ratio. 

3.7. Optical properties 

Figure 9 shows the optical absorbance spectra of CIAS thin films deposited at different 

substrate temperatures measured in the wavelength range of 350 -1100 nm. A wide range of 

absorbance spectra was observed in the visible region for the all the deposited CIAS thin films 

and the absorbance decreases with the rise in the substrate temperature.  

The optical band gap energy of the CIAS thin film deposited for different substrate 

temperatures can be obtained by using the Tauc plot relation [23], 

( )n

h A h E gα ν ν= −   (5) 

where, ‘α’- absorption co-efficient, ‘hν’- incident photon energy, ‘Eg’ - band gap and ‘n’- type of 

transition. CIAS is a direct band gap semiconducting material, therefore the value of ‘n’=1/2. 

From Fig.10, the band gap energy values can be determined by extrapolating tangents to ‘x’-axis 

and found to be 1.31, 1.27, 1.40 and 1.38 eV with respect to the substrate temperature. The 

variation in optical band gap with increase in substrate temperature might be due to the electron–

electron interactions and electron impurity scattering [33]. 
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The electrical parameters such as resistivity (ρ), carrier concentration (n) and   mobility 

(�) are necessary to determine the electrocatalytic performance of counter electrode materials. 

The electrical parameters dependency over substrate temperature is represented in Fig.11. The 

entire CIAS films exhibited p-type semi-conductivity observed from Hall effect experiments at 

room temperature. The carrier concentration and mobility values lie between 1014 - 1017 cm3 and 

15-160 cm2/Vs for the deposited CIAS films. The obtained values are in closer agreement with 

the thermally evaporated CuIn1-xAlxS2 films prepared by Cheng et al. [34]. Temperature 

dependent conductivity measurements (ln σ vs 1000/T (K)) were made using linear four probe 

method to identify the defect states in CIAS films (Fig.12). It can be observed from the plot that 

the conductivity of the films increases slowly with the rise in temperature and follows a linear 

behaviour which means the carriers are non-degenerate. This type of non-degeneracy was 

observed earlier by Kavitha et al. for SILAR deposited Cu (In Al) Se2 films [35].  

The relation between the activation energy (Ea) and conductivity (σ) is given by [36], 

0 exp aE

kT
σ σ  =  

 
    (6) 

where ‘k’ is the Boltzmann constant and ‘T’ is the temperature and ‘σ0’ is the pre-exponential 

factor. The obtained activation energy values are presented in Table 1. The activation energy 

values are found to be low due to the occupation of Al atoms in chalcopyrite CuInS2 creating a 

shallow acceptor level below Cu vacancies [37]. Moreover, the weak dependence of temperature 

over conductivity reveals that ionized impurity scattering is the dominant mechanism that 

hinders the carrier transport. The variation in activation energy and high resistivity values 
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strain and dislocations created in CuInAlS2 films. Similar type of observation was made by 

Mahendran et al. for Bi doped CuInS2 films [12]. Hence it can be concluded that CuInAlS2 film 

deposited at 300 °C has the optimized electrical parameters and it is more preferable to the 

counter electrode in DSSCs.  

3.9. Electrochemical activity and stability of CEs 

The device performance of CIAS CE depends upon the catalytic activity towards tri-

iodide reduction [38]. To elucidate the catalytic performance of the CIAS CEs in I-/I3
- process, 

cyclic voltammogram (CV) of all the CEs was studied with iodide containing electrolyte. The 

CV spectra of CIAS CEs were compared with those of the Pt CE as shown in Fig. 13 (i). A pair 

of oxidation and reduction peak was observed for all the CIAS CEs predicting that it can act as 

electrocatalysts for the reduction of I- to I3
-. In the CV curves, the anodic (Jpa) and cathodic (Jpc) 

peak current densities and peak-to-peak separation (
Ep) are the two vital parameters to 

determine the catalytic activity [39].  The electrocatalytic behavior of the CIAS CE increases 

with the increasing deposition temperature and further decreases at the higher deposition 

temperatures. The highest cathodic current density Jpc with the lowest 
Ep was achieved for the 

CIAS CE deposited at 300 °C indicating higher electrocatalytic activity in the redox couple as 

the nanoflake morphology offers high surface area for iodine ions to be diffused over the surface. 

The advantage of CIAS nanoflake structures over other morphological features is rapid charge 

transfer at the electrolyte interface [40]. The low Jpc obtained for the other CIAS CEs denotes the 

poor interactions with the electrolyte that led to an increase in the interfacial charge transfer 

resistance, thereby decreasing the fill factor of the device [41]. The long-term stability of CIAS 
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delamination or peel off of CIAS CE was observed even after completing 40 cycles which 

ensures that the nebulizer spray-deposited film is stable and robust in nature in the electrolyte. 

Figure 13 (ii) shows no variations in anodic and cathodic peak current densities; specifying the 

more electrocatalytic stability in I-/I3
- process and suggesting an alternative CE for Pt. 

3.10. Electrochemical Impedance Spectroscopy (EIS) 

 The electron charge transport at the CE/electrolyte interface can be studied by 

electrochemical impedance spectroscopy. Figure 14 (i) represents the CIAS/CEs with the TiO2 

based-DSSCs devices of EIS spectra. The series resistance (Rs) and the charge transfer resistance 

(Rct) values of CIAS CEs at the CE/electrolyte interface for I3
- reduction are listed in Table 2. 

The Rs and Rct are determined from the horizontal intercept and the radius of semicircle in the 

high frequency region. The equivalent circuit of CIAS CE fitted by Zsimpwin software was 

shown in the inset of Fig.14 (ii). The variation observed in Rs value depends on the binding 

nature with the FTO substrate and electrical resistivity of the films [42]. The minimum value of 

Rs and Rct was obtained for the CIAS CE prepared at 300 °C and it denotes strong 

electrocatalytic behaviour and fast electron transfer at the CE/electrolyte interface. The series 

resistance and charge transfer resistance increases drastically for higher deposition temperatures 

(350 and 400 °C). The high series resistance (Rs) might be attributed to decrease in electrical 

conductivity and carrier density as well as the grain boundary defects generated during high 

thermal treatment to the substrate. Larger charge transfer resistance (Rct) could be ascribed to the 

agglomeration of grains and dense nature of the films deposited at elevated substrate 

temperatures reduces the diffusion of electrolyte ions, thereby impedes the easy charge transfer 
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higher substrate temperatures would result in low fill factor and efficiency in DSSCs [43].  

3.11. Tafel Analysis  

 The Tafel polarization of CIAS CEs with symmetric cells is analyzed to determine the 

relation between the overpotential and current density, which can get the exchange current 

density (J0) and limiting diffusion current density (Jlim). The Tafel polarization curves of CIAS 

CEs and the limiting diffusion coefficient values are depicted in Fig.14 (ii) and     Table 2. The 

exchange current density J0 and diffusion limit coefficient Jlim were determined from the intercept 

of slope near the origin and the Tafel curve at high potential respectively. The parameters J0 and 

Jlim achieved for the CIAS CE deposited at 300 °C were nearer to that of Pt CE suggesting that 

CIAS CE can replace the Pt CE. 

3.12. Photocurrent density-voltage (J-V) characterization  

 Figure 15 displays the photocurrent density-voltage of CIAS CEs at different substrate 

temperatures. The photovoltaic parameters like short-circuit current density (Jsc), open-circuit 

voltage (Voc), fill factor (FF) and efficiency (η) of CIAS CEs are listed in    Table 3. The 

efficiency and FF of Pt CE was about 0.63 and 5.30 %. The decrement in FF for CIAS CEs could 

be attributed to high series resistance (Rs) and charge transfer resistance (Rct) compared to Pt 

electrode [44]. The efficiency obtained at 250 °C was 1.47% owing to the poor electrocatalytic 

behavior (low Jpc and ∆EPP) as witnessed from CV results. Among CIAS CEs, the maximum Jsc 

(7.22 mA/cm2) and efficiency (2.55 %) were attained for the CIAS CE deposited at 300 °C. The 

nanoflake-like morphology with high electrical conductivity and carrier concentration has 
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substrate temperatures, the FF and η of CIAS CEs decreased due to the poor crystalline nature, 

high Rs and Rct values as detected from XRD and EIS analysis. Therefore, the CIAS CE can be 

used instead of Pt CE in DSSCs by optimizing the parameters in experimental technique and 

high photo conversion efficiency can be achieved.  

4. Conclusion 

 CIAS thin films were prepared by nebulizer spray method for different substrate 

temperatures. The substrate temperature of CIAS film has a strong influence on the structural, 

morphological, optical and electrical properties. The better crystalline quality of CIAS thin film 

was observed at 300 °C with the maximum crystallite size. The nanoflake-like morphology was 

examined by the SEM analysis. The absorbance spectrum covers broad spectral range in the 

visible region for all the deposited CIAS films and obtained the optimum band gap energy. The 

electrical properties of the films were investigated by linear four probe and Hall effect 

measurements. CIAS thin film used as a CE in DSSCs attained good electrocatalytic activity for 

reduction of I3
-, charge transfer kinetics and series resistances stating that CIAS CEs has better 

electrochemical property. To the best of our knowledge, CIAS as a CE in DSSCs has been 

reported for the first time and achieved the maximum efficiency of 2.55 % with the short-circuit 

current density of 7.22 mA/cm2. Therefore, CIAS is a promising candidate and paves a new 

pathway for fabricating low-cost with the high efficient CEs for DSSCs and it can be a better 

replacement of Pt CE by improving the experimental parameters. 
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Figure 1: X-ray diffraction of CIAS thin films at different substrate temperatures  

Figure 2: Substrate temperature vs crystallite size, strain and dislocation density of CIAS 
thin films 

Figure 3: Substrate temperature vs tetragonal c/a ratio and FWHM 

Figure 4: Raman Spectra of CIAS thin films at different substrate temperatures 

Figure 5: SEM images of CIAS thin films at different substrate temperatures 

Figure 6: AFM images of CIAS thin films at different substrate temperatures 

Figure 7: (i) Survey spectrum and (ii) Core level spectra of Cu, In, Al and S of CIAS thin 
film deposited at 300 °C 

Figure 8: Energy Dispersive X-ray Analysis spectra of CIAS thin film at 300 °C 

Figure 9: Absorbance vs wavelength of CIAS thin films at different substrate temperatures 

Figure 10: Optical band gap of CIAS thin films at different substrate temperatures 

Figure 11: Electrical parameters of CIAS thin films deposited at different substrate 
temperatures  

Figure 12: Arrhenius plot (ln σ vs. 1000/T (K-1)) of CIAS films at different substrate 
temperatures 

Figure 13: (i) Cyclic voltammograms of Pt and CIAS CEs and (ii) 40 continuous cyclic 
voltammograms of CIAS CE deposited at 300 °C 

Figure 14: (i) EIS spectra of the TiO2 based DSSCs devices with Pt and CIAS CEs and (ii) 
Tafel polarization of Pt and CIAS symmetric cells 

Figure 15: J – V characteristics of DSSCs with Pt and different CIAS CEs 
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Table 1: Lattice Constants, Root Mean Square Roughness and Activation Energy of CIAS 

thin films 

Substrate 
Temperature 

(°C) 

Lattice 
Constants (Å) 

Root Mean 
Square 

Roughness 
(nm) 

Activation 
Energy 
Ea (eV) a c 

250 5.49 11.47 32.5 0.10 
300 5.45 11.48 23.3 0.19 
350 5.46 11.44 32.0 0.11 
400 5.53 11.37 35.6 0.34 

 

 

 

 

 

 

 

 

 

 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

40 

 

Samples 
Jpa 

(mA/cm2) 

Jpc 

(mA/cm2) 

�Ep 

(mV) 

Rs  

(� cm2) 

Rct  

(� cm2) 

log Jlim 

(mA/cm2) 

Pt 1.75 -1.00 421 5.12 2.46 7.14 

250 °C 1.42 -0.32 469 6.49 113.01 2.22 

300 °C 1.63 -0.57 436 6.02 89.50 6.42 

350 °C 1.54 -0.50 448 6.14 96.63 5.51 

400 °C 1.45 -0.42 455 6.21 124.09 4.93 

 

 

 

 

 

 

 

 

 

 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

41 

 

Samples Voc (V) Jsc (mA/cm2) FF η (%) 

Pt 0.78 10.87 0.63 5.30 

250 °C 0.76 6.60 0.29 1.47 

300 °C 0.78 7.22 0.45 2.55 

350 °C 0.76 6.19 0.43 2.03 

400 °C 0.75 6.56 0.36 1.75 

 

 

 


