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Low-Cost and Programmable CRC Implementation

based on FPGA (Extended Version)
Huan Liu, Zhiliang Qiu, Weitao Pan, Jun Li, Ling Zheng and Ya Gao

Abstract—Cyclic redundancy check (CRC) is a well-known
error detection code that is widely used in Ethernet, PCIe,
and other transmission protocols. The existing FPGA-based
implementation solutions are faced with the problem of excessive
resource utilization in high-performance scenarios. The padding
zeros problem and the introduction of programmability further
exacerbate this problem. In this brief, the stride-by-5 algorithm
is proposed to achieve the optimal utilization of FPGA resources.
The pipelining go back algorithm is proposed to solve the padding
zeros problem. The method of reprogramming by HWICAP is
proposed to realize programmability with a small and constant
resource utilization. The experimental results show that the
resource utilization of proposed non-segmented architecture is
80.7%-87.5% and 25.1%-46.2% lower than those of two state-
of-the-art FPGA-based CRC implementations, and the proposed
segmented architecture has a lower resource utilization by 81.7%-
85.9% and 2.9%-20.8% compared wtih the two state-of-the-art
architectures; meanwhile, the throughput and programmability
are guaranteed. We made the source code available on GitHub[1].

Index Terms—Cyclic redundancy check, FPGA, low cost,
programmable, HWICAP.

I. INTRODUCTION

As the throughput of networks is on a constant rise, in-

creasingly more packet processing tasks are being offloaded

to the FPGA-based SmartNIC[2], including the generation and

verification of cyclic redundancy check (CRC). The 400G

and the coming multi-terabit Ethernet demand faster CRC

caculations, and the implementation of high-performance CRC

calculations based on FPGAs needs to meet three require-

ments: 1) Reduce parallelization cost. The end of Dennard

scaling[3] results in a bottleneck for improving the frequency

of integrated circuits, and higher throughput means a wider

bus inside chips. The slicing-by-4 and slicing-by-8 algorithms

are proposed for parallel processing in[4], which is suitable

for CPU but not optimal for FPGA[5]. 2) Solve the padding

zeros problem. The parallelization means that the final word of

a transaction is composed of valid bytes along with padding
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zeros. The number of padding zeros is uncertain, and CRC

calculations using the complete final word would cause an

erroneous result, which is called the padding zeros problem.

Multiple tables can be used to process the final word, and every

table corresponds to a possible length of valid bytes[6]. The

scheme introduces an O
(

n2
)

resource utilization when the bus

width is n bits. [7][8] is one of the state-of-the-art schemes

for solving this problem. The tables for the final word are

organized in the manner of a pipeline, and each pipeline step

corresponds to one layer of a binary search tree. An O(n)
resource utilization is introduced. 3) Keep programmability.

A programmable implementation of the CRC algorithm can

achieve better reusability; thus, a wide range of applications

can be supported without circuit modification. The demand

can be found in iSCSI[9] and P4[10]. A specific circuit

architecture is used to guarantee programmability[11][12], but

it is not suitable for FPGA. [5] is one of the state-of-the-art

schemes that is suitable for FPGA, but it requires a complex

configuration circuit that leads to a large resource utilization

increase with the bus width.

All three of the aforementioned requirements lead to a con-

siderable resource utilization. Although slicing[4][5], aggres-

sive strides, simultaneous processing of multiple streams[7]

and many other principles behind CRC acceleration are well

known, they can’t achieve low cost, high performance and

programmability at the same time. A multi-core, multi-socket

system with Intel’s CRC instruction[13] can achieve high

throughput, but they suffer from high latency and high power

consumption in packet processing applications. In this brief,

two algorithms and a method corresponding to the three

requirements are proposed to decrease the resource utiliza-

tion with guaranteed throughput and programmability. First,

the stride-by-5 algorithm is proposed, which can reduce the

resource utilization by 79.69%-79.98% compared with the

slicing-by-4 and slicing-by-8 algorithms. Second, the pipelin-

ing go back algorithm is proposed to solve the padding zeros

problem, which will introduce an O (log2 n) resource utiliza-

tion. Finally, a hardware internal configuration access port

(HWICAP) is used to realize dynamic programmability, and

it leads to a small and constant resource utilization regardless

of the bus width.

The remainder of this brief is organized as follows. Section

II provides preliminaries to our proposals. Section III discusses

the system architecture and the three proposals. Section IV

shows the synthesis results and the board-level implementation

results. Section V concludes this brief.
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Fig. 1: LFSR for CRC computing.

II. PRELIMINARIES

A. FPGA LUT Architecture

The basic logic resource of modern Xilinx FPGAs is look-

up tables (LUTs), which can be considered a RAM with five

inputs and two outputs[14]. A truth table can be stored in

a LUT, and two logical equations with the same five inputs

can be realized using it. This is an important property that

will be used in the stride-by-5 algorithm. LUT is the most

consumed resource in FPGA-based CRC implementations, and

the number of consumed LUTs is used as the indicator of the

resource utilization.

B. Serial and Parallel CRC Algorithms

Serial CRC Algorithm

The CRC algorithm is a long division performed with

modulo-2 arithmetic. The dividend is a polynomial B(x)
whose coefficient is the input data. The divisor is a given

polynomial G(x), and the coefficient of the remainder R(x)
is the wanted CRC value. Addition and subtraction can be

realized by the xor operation in GF(2), and “+” means xor in

the remainder of this brief. The aforementioned division can

be realized by the linear feedback shift register (LFSR), as

shown in Fig. 1.

The coefficient of G(x) is [gl, gl−1, . . . , g0]. The coeffi-

cient of B(x) is [b0, b1, . . . , bk], with b0 being the most

significant bit. The initial value of the LFSR is C(0) =
[

c
(0)
l−1, c

(0)
l−2, · · · , c

(0)
0

]T

. The value of the LFSR is C(m) when

bit bm−1 enters the LFSR, and it will become C(m+1) after bit

bm enters the LFSR. We can obtain the relationship between

C(m) and C(m+1) from Fig. 1, which is

C(m+1) = TC(m) + Sbm (1)

where T is a matrix of size l × l. S is a column vector of

size l, and

T =













gl−1 1 0 · · · 0
gl−2 0 1 · · · 0
· · · · · · · · · · · · · · ·
g1 0 0 · · · 1
g0 0 0 · · · 0













(2)

S = [gl−1, gl−2, . . . , g0]
T

(3)

Parallel CRC Algorithm

The parallel CRC algorithm can process multiple data input

bits simultaneously[15], and its theoretical equation can be

derived from (1). The number of bits processed in parallel is

n, which is also the width of the inner bus in the remainder of

this brief. The parallel input data are Bn = [b0, b1, . . . , bn−1]
T

.

The value of the LFSR is C(k) before Bn enters. The rela-

tionship between C(n+k) and C(k) is

C(n+k) = TC(n+k−1) + Sbn−1

= TnC(k) + Tn−1Sb0 + Tn−2Sb1 + · · ·+ Sbn−1

= TnC(k) +WlnBn

(4)

where Wln is a matrix of size l × n and

Wln =
[

Tn−1S, Tn−2S, . . . , TS, S
]

(5)

Tn and Wln can be calculated by equations (2), (3) and (5)

after G(x) is given, and parallel processing by n bits can be

achieved by equation (4).

C. Programmability and HWICAP

Tn and Wln are generally stored inside LUTs for the

FPGA-based implementation of CRC algorithms, and a pro-

grammable implementation requires the ability to modify the

content of the LUTs at runtime. Previous research using logic

resources (LUTs and registers) to realize configuration logic

would lead to several thousands of LUTs consumed when

n ≥ 1024[5].

HWICAP is an Xilinx IP core that can afford users with

access to ICAP primitives using the AXI4-Lite protocol[14].

It can modify the content of the LUTs dynamically. The

resource utilization of HWICAP is as low as 186 LUTs, and

it will not increase with increasing inner bus width. For the

Intel/Altera FPGAs, similar function can be achieved by using

PR-IP[16][17].

III. PROPOSED WORK

A. Non-Segmented System Architecture

The proposed non-segmented system architecture is shown

in Fig. 2. Non-segmented system architecture means that there

should be one frame in a single word, and segmented system

architecture can process multiple frames at the same time[18].

Region 1 and Region 2 correspond to the computation of

WlnBn in (4). Region 1 consumes most of the LUTs, and the

number of consumed LUTs linearly depends on the size of

Wln. The stride-by-5 algorithm, which is discussed in Section

B, is proposed to reduce the LUT consumption of Region 1.

Region 2 is implemented by the means of an xor tree instead

of a one-stage xor function to achieve higher performance.

Region 3 completes the computation of (4). It consumes few

LUTs for the small size of T
n. The padding zeros problem

is solved by Region 4, and the pipelining go back algorithm,

which results in an O (log2 n) resource utilization, is proposed

and discussed in Section C. Region 5 is a HWICAP controller

that can modify the content of the LUTs dynamically. The

operation procedure is discussed in Section D. A segmented

system architecture is proposed in Section E. The packet

processing flow of the two system architectures are illustrated

in Section F.
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Fig. 2: Proposed non-segmented system architecture.
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B. Stride-by-5 Algorithm

In this section, the model of the resource utilization is

established, the stride-by-5 is proven to be the best stride for

various bus widths, and the stride-by-5 algorithm is described

in Algorithm 1.

Stride, as its name implies, means the number of bits

processed by a single logical table[19]. The logical table can

be realized using FPGA LUTs, and it can load the truth table

of a function. For example, an 8-input function is defined as

y = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 (6)

which can be transformed equivalently as






y1 = x1 + x2 + x3 + x4

y2 = x5 + x6 + x7 + x8

y = y1 + y2

(7)

Equations (6) and (7), whose strides are 8 and 4, can be

implemented as shown in Fig. 3(a) and Fig. 3(b), respectively.

A smaller stride means that a smaller logical table can be

realized by a single LUT or cascaded LUTs. Can stride-by-

1 be considered the best stride for FPGA implementation?

We will establish the resource utilization model and find the

answer.

l equations with the same n inputs are required to realize

the computation of WlnBn in (4). n is also the bus width, and

n = ms+ r (8)

in which s is stride. m equals ⌊n/s⌋. r means remainder,

which equals n mod s.

The function A(x) is defined as

A(x) =

{

0 x = 0
1 x > 0

(9)

Fig. 4: The relationship between KR1
(n, s, 32), n and s.

and the resource utilization function K(m, s, r, l) is defined

as

K(m, s, r, l) =































(l/2) · (m+A(r))
s ≤ 5

(l/2) · (m · 2s−5 +A(r))
s > 5, r ≤ 5

(l/2) · (m · 2s−5 +A(r) · 2r−5)
s > 5, r > 5

(10)

There are three equations corresponding to different s and

r. A single LUT is required to realize a logical table when s
is smaller than five, and cascaded LUTs are needed to realize

a logical table when s is larger than five. This is because a

single LUT has five inputs. The computation of the remainder

r is the same as that of the stride s. l is divided by 2 for the

two outputs of a single LUT. (10) can be simplified as

K(n, s, l) =































(l/2) · (⌊n/s⌋+A(n mod s)
s ≤ 5

(l/2) · (⌊n/s⌋ · 2s−5 +A(n mod s))
s > 5, n mod s ≤ 5

(l/2) · (⌊n/s⌋ · 2s−5 +A(n mod s)
·2(n mod s)−5) s > 5, n mod s > 5

(11)

We should determine the values of l and s before exploring

the relationship between K and s and find the best s. l
is related to the generator polynomial, and it is set to 32

here because CRC32 is the most widely used polynomial.

The value of n is set to [64, 128, 256 · · · 4096] to explore

the influence of the bus width. The value of s is set to

[1, 2, 3 · · · 8]. A stride larger than 8 will lead to an excessively

large resource utilization. The resource utilization of Region 1

is KR1
(n, s, 32), and the relationship between KR1

(n, s, 32),
n and s is illustrated in Fig. 4. As shown, stride-by-5 is optimal

for any bus width. Stride-by-5 reduces the resource utilization

by 79.69%-79.98% compared with stride-by-8, which is used

in the slicing-by-4 and slicing-by-8 algorithms[4].

The stride-by-5 algorithm is optimal for the 5-input LUTs

in FPGA. Because the cascaded LUTs are needed if the stride

is larger than 5, a single LUT cannot be fully used if the

stride is smaller than 5. For the FPGAs with non-5-input

LUTs (prior to Xilinx Virtex-5 or Altera Stratix-II), the stride

defined by the number of LUT inputs should be used, and

the LUT sharing mechanism should be exploited. The stride-
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by-5 algorithm is described in Algorithm 1; it processes the

computation in Region 1 here, but the algorithm can also be

used in Regions 3 and Region 4.

Algorithm 1 Stride-by-5 algorithm.

Input: The bus width n. The stride s. The input vector B[n]. The computing
matrix W [l][n].

Output: The meta matrix MD[l][m+ 1], which is the input of Region 2.
1: Initialize s to 5;
2: Initialize m to ⌊n/s⌋;
3: Initialize MD[l][m+ 1] to the null matrix;
4: for i = 0 to l − 1 do

5: for j = 0 to m− 1 do

6: for k = 0 to s− 1 do

7: MD[i][j] = MD[i][j]⊕ (B[j × s+ k] ·W [i][j × s+ k]);
8: end for

9: end for

10: end for

11: for i = 0 to l − 1 do

12: for j = s ·m to n− 1 do

13: MD[i][m] = MD[i][m]⊕ (B[j] ·W [i][j]);
14: end for

15: end for

C. Pipelining Go Back Algorithm

In this section, the pipelining go back algorithm is proposed

with an O (log2 n) resource utilization, and the derivation and

description of the algorithm are presented.

The padding zeros problem is discussed in Section I. p is

used to represent the number of valid bits in the final word.

q is used to represent the number of padding zeros. The data

vector of the final word is Bp+q = [b0, · · · , bp−1, 0, · · · , 0]
T

.

Substitute Bp+q into (4), and then

C(p+q+k) = T p+qC(k) +W(p+q)nBp+q

= T q
(

T pC(k) + T p−1Sb0 + · · ·+ Sbp−1

)

= T qC(p+k)

(12)

The relationship between C(p+k) and C(p+q+k) is

C(p+k) = T−qC(p+q+k) (13)

There will be an O(1) resource utilization to realize the

computation of T−q because the size of T−q is l× l and has

no relation with n. However, q varies and 0 ≤ q < n, and if

we use the n table corresponding to every possible q, there

will be an O(n) resource utilization. We introduce a pipeline

to reduce the resource utilization to O (log2 n).
Inspired by the binary representation, q is represented as

q = 8 ·
(

xh−1 · 2
h−1 + xh−2 · 2

h−2 + · · ·+ x1 · 2 + x0

)

(14)

q and n are multiples of 8 because the data transfer in bytes.

The value of x can be 0 or 1, and h is the number of pipeline

stages, which can be represented as

h = log2 (n/8) (15)

(14) and (15) can be used to convert (13) to

C(p+k) =
((

T−8·2n−1
)xn−1

· · ·
(

T−8
)x0

)

C(p+q+k)

=
(

R
xn−1

1 ·R
xn−1

2 · · ·Rx0

h

)

C(p+q+k)
(16)

where [R1, R2, . . . , Rh] is the h matrices for the h-stage

pipeline, and the size of each matrix is l× l. [R1, R2, . . . , Rh]
can be used to convert C(p+q+k) to C(p+k). Stride-by-5

algorithm can be used to convert [R1, R2, . . . , Rh] to the

content of the LUTs. Using the resource utilization function

in (11), the resource utilization of the pipeline is KR4
=

h · K(l, s, l), where R4 means the Region 4 in Fig. 2. KR4

can be represented as

KR4
=































log2(n/8) · (l/2) · (⌊l/s⌋+A(l mod s))
s ≤ 5

log2(n/8) · (l/2) · (⌊l/s⌋ · 2
s−5 +A(l mod s))

s > 5, n mod s ≤ 5
log2(n/8) · (l/2) · (⌊l/s⌋ · 2

s−5 +A(l mod s)
·2(l mod s)−5) s > 5, n mod s > 5

(17)

As shown in (17), we can achieve an O (log2 n) resource

utilization using the pipelining go back algorithm. The algo-

rithm is described in Algorithm 2.

Algorithm 2 Pipelining go back algorithm.

Input: The temporary CRC value C(p+q+k), the bus width n, the number
of padding zeros q, the computing matrix T .

Output: The wanted CRC value C(p+k).
1: Initialize h to log2(n/8), q to q/8;

2: Initialize matrix R to null matrix, matrix C(p+k) to C(p+q+k);
3: for i = h− 1 to 0 do

4: if q ≥ 2i then

5: R = T−8·2i ;
6: C(p+k) = RC(p+k);
7: q = q − 2i;
8: else

9: continue ;
10: end if

11: end for

D. Reprogramming by HWICAP

Region 5 in Fig. 2 represents an HWICAP IP core, which

can dynamically modify the content of the LUTs. It consumes

186 LUTs for any bus width. In contrast, configuration logic

realized by logic resources leads to several thousands of

LUTs being consumed when n ≥ 1024 [5], and the resource

utilization increases with increasing bus width. The operation

procedure of reprogramming using the HWICAP IP core is

described as follows:

1) Complete the initial design, generate the bitstream using

Vivado, and download the bitstream into the FPGA;

2) Extract the locations of the LUTs used;

3) When reprogramming is needed, compute the new con-

tent of the LUTs using (4) and (16);

4) Map the content of the LUTs to the initial value of the

LUTs;

5) Write the initial value to the LUTs using the AXI Lite

interface of the HWICAP IP core.

The method of reprogramming by HWICAP is useful in

engineering. Our contributions are as follows:

1) We verify the feasibility of reprogramming the FPGA

implementation of the CRC algorithm using the HW-

ICAP IP core. It leads to a small and constant resource

utilization regardless of the bus width;
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2) The proposed method can change the CRC polynomial

directly, without re-coding and re-synthesizing;

3) The code of the above procedure can be accessed in [1],

as a part of the entire project. To our best knowledge,

this is the first open source code covering the whole

procedure described above.

E. Segmented System Architecture

Non-segmented system architecture can’t process multiple

frames in one word (clock), which decreases the throughput of

short or misaligned frames. It is called bus efficiency problem.

The segmented system architecture is proposed to solve the

problem. The bus format is just like that in [7], and the block

in [7] is another name for the segment in [18]. For an example,

a 4096-bit bus can process 8 complete frames at the same time;

hence, the bus can be divided into 8 regions[7]. The number

of regions only depends on the bus width. Different segment

widths are feasible, and if 64-bit segment width is chosen,

one region can be divided into 8 segments (blocks). The

proposed segmented system architecture is shown in Fig. 5.

Compared with the proposed non-segmented system archi-

tecture, proposed segmented system architecture has slightly

more complex Region 1 and Region 2, and multiple duplicates

of Region 3 and Region 4. The number of duplicates is just the

maximum number of the frames processed in a single word.

The comparison between the proposed segmented system

architecture and the proposed non-segmented system archi-

tecture can be found in Fig. 6. The red cuboid represent the

non-segmented system architecture. The blue cuboid repre-

sent the increment between the proposed segmented system

architecture and the proposed non-segmented system architec-

ture. The yellow slice (Bus width = 1024, Segment width =

512) represent the decrement between the two architectures.

Fig. 6a shows that the increment in resource utilization mainly

depends on the bus width instead of segment width. This is

because the increment in resource utilization mainly depends

the number of duplicates of Region 3 and Region 4, which only

depends on the bus width. Fig. 6b shows that the increment

in 65-byte-frame throughput is obvious for most cases. The

only decrese in throughput can be found when the bus width

is 1024 bits and the segment width is 512 bits, where the two

architectures have the same bus efficiency for 65-byte-frame

throughput and the non-segmented architecture has a slightly

higher frequency. 64 bits is chosen as the segment width in

the rest of the brief. The dataset of the Fig. 6 can be found at

[1].

F. Packet Processing Flow of Two System Architecture

In this section, the packet processing flow of the two

system architectures are illustrated. The bus width of the

two architectures is 4096 bits, and the segment width of

the segmented system architecture is 64 bits (64 segments,

8 regions).

Non-Segmented System Architecture

The packet processing flow of non-segmented system archi-

tecture is described as follows:

stride-by-5 lookup table

(multi seg)
merge module

data_in

crc_out(1st)

region 1 region 2

computing
ln n

W B

region 3 & region4  (1st)region 3 & region4  (1st)

region 3 & region4  (2nd)region 3 & region4  (2nd)

region 3 & region4  (pkt th)region 3 & region4  (pkt th)

crc_out(2nd)

crc_out(pkt th)

.

.

.

Fig. 5: Proposed segmented system architecture.
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(b) 65-byte-frame throughput.

Fig. 6: Comparison between segmented architecture and non-

segmented architecture.

1) Region 1: Data input is composed of 512-bit frame

and 3584-bit padding zeros; Region 1 compute the

MD[l][m + 1] in Algorithm 1, where l = 32 and

m = 819;

2) Region 2: Data input is a 32× 820 bit vector; Region 2

compute the WlnBn in (4);

3) Region 3: Data input is the 32-bit WlnBn; Region 3

compute the TnC(k) +WlnBn in (4);

4) Region 4: Data input is the 32-bit TnC(k) + WlnBn;

Region 4 eliminates the impact of padding zeros ( (16)

is used here ), and the correct CRC value is achieved.

Segmented System Architecture

The packet processing flow of segmented system architec-

ture is described as follows:

1) Region 1: Data input is composed of 8 512-bit frames,

which can be divided into 64 segments; Every segment

has its own sub-region to compute the MD[l][m + 1]
in Algorithm 1; Every MD[l][m + 1] is a 32 × 13 bit

vector, and a small xor function is use to convert the

MD[l][m+ 1] to WlnBn.

2) Region 2: Data input is 64 WlnBn of 64 segments;

Region 2 merge the WlnBn of the same frame; 8 WlnBn

of the 8 frames are achieved.

3) Region 3 and 4: Data input is the 8 WlnBn of 8 frames;

Every WlnBn has its own Region 3 and 4, and the

Region 3 and 4 here do the same work as that of the

non-segmented architectures. Finally, 8 CRC values for

8 frames can be achieved.
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IV. EXPERIMENTAL RESULTS

A. Synthesis Result

There are three state-of-the-art studies[7][5][20]. Archi-

tecture in [5][20] can be reprogrammed, whereas architec-

ture in [7] cannot be reprogrammed. Two proposed archi-

tectures are implemented with Virtex-7 XC7VX690T, and

[7][5][20] are implemented with Virtex-7 XCVH870T, Virtex-

6 XC6VLX550T and Stratix-V 5SGSED6N1F45I2, respec-

tively. In this section, two proposed architecture are compared

with their works in terms of resource utilization and maximum

throughput. The proposed segmented architecture is compared

with the architecture in [7] in terms of throughput on all frame

lengths. Architecture in [7] and proposed two architectures

are based on CRC32, and architecture in [5] is based on

CRC64; hence, the resource utilization in [5] halves for a fair

comparison. Power consumption of two proposed architectures

is reported at last. In the following we use the SA to refer to

the segmented architecture.

The synthesis result is illustrated in Fig. 7. Fig. 7a shows

that the resource utilization of the proposed non-SA is lower

than that of architectures in [5] and [7] by 80.7%-87.5%

and 25.1%-46.2%, respectively. The proposed SA has a lower

resource utilization by 81.7%-85.9% and 2.9%-20.8%. The

lower resource utilization results from the algorithms and

method in Section 3, which can also guarantee high perfor-

mance and programmability. If the programmability is not

required, the resource utilization can be furtherly decreased.

In contrast, the architecture in [5] is based on a slicing-

by-N algorithm whose stride is 8, which will lead to a

much higher resource utilization. Furthermore, the complex

configuration logic of the architecture in [5] also leads to

a considerable resource utilization. The architecture in [7]

cannot be reprogrammed, which will reduce much resource

utilization, even though its resource utilization is higher than

that of two proposed architectures. Architecture in [7] is not

concerned with the stride; hence, the LUT resource cannot

be fully utilized, which leads to a higher resource utilization.

Architecture in [20] has a lower resource utilization than that

of the non-SA by 74.4%-81.3%. The reasons for the lower

resource utilization of [20] are: 1). [20] only need to process

half filled and fully filled packets. In other word, the padding

zeros problem is partly addressed. By contrast, two proposed

architectures and [7][5] can fully address the padding zeros

problem; 2). The cost of Nios II IP core is not taken into

account in [20]. By contrast, proposed two architectures take

the cost of HWICAP into account. Moreover, it is difficult to

scale the bus width of [20] up to 1024 bits.

Fig. 7b shows that the maximum throughput of proposed

non-SA is higher than that of the architecture in [5][7][20]

by 24.2%-37.9%, 37.4%-75.0% and 259.4%-284.5%, respec-

tively. The maximum throughput of the proposed SA is higher

than that of the architecture in [5][7] by 28.7%-30.2% and

32.2%-80.2%, respectively. The higher frequency leads to

higher throughput, and the proposed two architectures can

achieve higher frequency for the well-arranged pipelines in

Region 1, Region 2 and Region 4.

The throughput on frame lengths from 64 bytes to 256

bytes can be found in Fig. 7c. The architecture in [5] and

proposed non-SA can’t process multiple frames at the same

time; hence, only the architecture in [7] and proposed SA

are compared. The two architectures use 4096-bit bus width

and 64-bit segment wdith, therefore they have the same bus

efficiency. The proposed SA has a 80.2% higher frequency and

throughput than the architecture in [7]. The lowest throughput

of 1933.9Gbps is achieved when the frame length is 65 byte.

The complete dataset with frame lengths from 64 bytes to

1518 bytes can be accessed at [1].

Power consumption of two proposed architectures is illus-

trated in Fig. 7d. The power consumption is composed of static

power consumption and dynamic power consumption. The

static power consumption varys from 0.32 W to 0.48 W, and

the dynamic power consumption increases linearly with the

bus width. The power consumption of proposed SA has a faster

growth than that of the proposed non-SA. This is because the

resource consumption of the proposed SA increases faster than

that of the proposed non-SA.

B. Comparison with More Works

[21] presents an implementation and analysis of encoder

and checker of CRC8 which takes 16-bits of input data

to create 24-bits code-word and can detect errors up to 8-

bits. [22] introduce a hardware architecture for parallel CRC

computation. It can be configured for a different polynomial at

any time externally. [23] introduces a design and development

of parallel CRC algorithm for the hardware implementation

on FPGA to meet the specifications for FC. The algorithm

can process 128-bit parallel data in a block by broken it into

four 32-bit data and calculate their CRC, respectively, based

on the LFSR. The aim of [24] is to design and implement the

CRC5 and CRC8 systems that are used for USB token packet

and ATM protocols, respectively. A parallel pipelining method

is used to implement the proposed CRC architecture for both

CRC encoder and decoder systems to achieve high throughput

data with optimized hardware resources.

These works are suitable for embedded systems for their

low resource consumption. However, their performance is also

limited. Moreover, the padding zeros problem can’t be solved.

The comparison between the four works and the two proposed

architectures can be founded in Table I.

C. Board-Level Implementation Result

We have verified our design on the VC709 FPGA de-

velopment board. The system topology is shown in Fig. 8.

The polynomial of Ethernet CRC32 is adopted. The bus

width is 1024 bits. The clock frequency is 500 Mhz. The

maximum throughput of the system is 512 Gbps. The final

report generated by Vivado shows that the resource utilization

of the CRC computing block in Fig. 8a is the same as the

result in Fig. 7a. The reprogramming procedure will not be

discussed in detail due to space limitations, and all the codes

used here can be accessed at [1].

The correctness of the CRC computation and the system

throughput should be verified. Sprient TestCenter N4U is used
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TABLE I: Comparison with more works

Bus width Serial/Parallel CRC polynomial Frequency/Mhz Throughput/Gbps Resource/LUTs

[21] 16 parallel CRC-8 – – 13

[22] 16 parallel CRC-16 23.71 1.656 2771

[23] 128 parallel+ serial CRC-32 – – 390

[24] 11/64 parallel CRC-5/CRC-8 278.5 3.069/17.824 96/801

Proposed non-SA 64-4096 parallel CRC-32 508.0- 576.7 35.26- 2080.77 1074-19902

Proposed SA 512-4096 parallel CRC-32 518.9- 534.4 273.64- 2142.24 3658- 35912

TABLE II: Board-level test results

Frame length /Bytes 64 512 1518 random

L2 frames rate /Gbps 7.62 9.62 9.86 9.75

Bus occupancy ratio (non-SA) 2.98% 1.88% 1.94% 2.05%

Bus efficiency (non-SA) 49.94% 99.94% 99.26% 92.89%

Throughput (non-SA) /Gbps 255.7 511.7 508.2 475.6

Bus occupancy ratio (SA) 1.49% 1.88% 1.93% 1.91%

Bus efficiency (SA) 99.92% 99.98% 99.86% 99.64%

Throughput (SA) /Gbps 511.6 511.9 511.3 510.1

Error frames checked yes yes yes yes
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Fig. 7: Synthesis result.

to generate 10 Gbps test frames with some error frames in

them. The correctness can be verified if all the error frames

can be checked out. The L2 frame rate is lower than 10 Gbps

(L1 frame rate) for the 20 byte frame gap. The statistics of the

bus occupancy ratio are gathered. The L2 frame rate and bus

occupancy ratio can be used to compute the bus efficiency,

and the throughput can be inferred using the bus efficiency.

The test result is shown in Table II. It can be found that

the SA can achieve a higher throughput than the non-SA,

especially for the 64-byte frames. This is because the SA

can achieve a higher bus efficiency. If the short or misaligned

frames have a large share in the network traffic, SA should be

adopted for a guaranteed throughput. Otherwise, non-SA is a

better choice for its lower resource utilization.

TestCenter-10G

10G MAC

Virtex-7 

FPGA

BusConvert

64 to 1024

BusConvert

1024 to 64

CRC Computing

(CRC32-D1024)

Error Frame 

Statistics

64 bit

1024 bit

1024 bit

64 bit

Bus Occupancy

Statistics

(a) System architecture.

VC709

Test Center-10G

(b) VC709 and TestCenter.

Fig. 8: Board-level implementation.

V. CONCLUSION AND FUTURE WORK

Two algorithms and a method are proposed to realize low-

cost, high performance, and programmable CRC computation.

These algorithms and method can be used in segmented or

non-segmented architectures. The synthesis results show that

proposed architectures can achieve a lower resource utilization

and higher throughput compared with two of the state-of-the-

art architectures. The board-level implementation results show

that the theoretical low resource utilization, high throughput,

and programmability can be achieved. The source code can

be accessed at [1]. Our future work will focus on making

the hardware reconfiguration method (HWICAP) technology-

independent.
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