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Abstract

A simple and inexpensive (low-power and low-

bandwidth) modification is made to a conventional off-the-

shelf color video camera, from which we recover multiple

color frames for each of the original measured frames, and

each of the recovered frames can be focused at a different

depth. The recovery of multiple frames for each measured

frame is made possible via high-speed coding, manifested

via translation of a single coded aperture; the inexpensive

translation is constituted by mounting the binary code on

a piezoelectric device. To simultaneously recover depth in-

formation, a liquid lens is modulated at high speed, via a

variable voltage. Consequently, during the aforementioned

coding process, the liquid lens allows the camera to sweep

the focus through multiple depths. In addition to design-

ing and implementing the camera, fast recovery is achieved

by an anytime algorithm exploiting the group-sparsity of

wavelet/DCT coefficients.

1. Introduction
A variety of techniques have been developed to extract

information from a single image. For example, the depth-

from-focus method [11, 23, 24] allows estimation of a 3D

scene (depth-dependent focus) from a single 2D image. The

mosaic and demosaic technique [2] allows recovery of col-

or information from a gray-scale image. Recently, inspired

by compressive sensing (CS) [6], video has been extracted

from a single image [8, 9, 14, 16]. In this setting the mea-

sured data are acquired at a low frame rate, with coding at

a faster rate, and high-frame-rate video is computationally

recovered subsequently.

In this paper we develop a new method that borrows and

extends ideas from this previous work. Specifically, like

[8, 9, 14, 16] we perform high-frequency coding of video

collected at a low frame rate, with CS-based inversion. Our

coding strategy differs from previous work in that we use a

single code that is inexpensively translated via a piezoelec-

tric device. We recover color via a hardware mosaicing and

computational demosaicing procedure like in conventional

cameras. The newest aspect of the proposed approach is

that we use a lens with voltage-dependent index of refrac-

tion (a liquid lens), and by varying the voltage at high rate,

the recovered high-rate video corresponds to capturing data

at varying focus points (depths). For each of the measured

frames, we recover multiple color frames, and these multi-

ple frames capture variable focus depths.

We here show example results that summarize the three

key aspects of the approach: mosaicing for color, high-

speed coding for video, and fast time-dependent focus for

depth, with the data measured at a low frame rate. We first

consider mosaicing and high-speed coding, with the focus

held constant. In Figure 1 two compressive measurements

(real data from our camera) are shown at left. These are two

consecutive frames collected at frame rate 30 frames/sec,

using an off-the-shelf Guppy Pro camera [1], with a high-

speed coding element, as summarized in Figure 2. At right

in Figure 1, are shown nt = 22 recovered frames from each

of the compressive measurements: 22 color video frames

recovered from a single monochromatic coded image. Each

measurement in Figure 1 employs a high-speed code (here

a shifting mask) to modulate the light during the integration

time-period ∆t; see Figure 2(a).

In Figure 3 we now consider results in which the focus

(observed depth) is varied at a rate that is fast relative to the

rate of the video camera collecting the data (now the mea-

surements employ mosaicing, high-speed coding, and vari-

ation of the focal depth). The variable focus is manifested

by varying the voltage on a liquid lens (see Figure 4). The

coded data, with subsequent CS inversion, allows recovery

of multiple frames for each measured frame. Since the fo-

cus has been adjusted at a fast rate, these high-frequency

recovered frames also capture multiple depths.

In Figure 3, the top figure depicts the camera and scene,

composed of multiple objects at varying depths. At the bot-

tom in this figure, we depict one of the measured gray-scale

frames (here measured at a frame rate of 30 frames/sec),

and at bottom right is depicted the recovered color video

from this single frame. Note that because of the high-speed

time-varying focus, we effectively recover multiple depths,

defined by the focus for which a given region of the image

is sharpest.

In this paper, we describe in detail how the camera that
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Measurement 1

Measurement 2

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

#12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

#12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22

Figure 1. Reconstruction of real measurement with frame size 512×512. Two plastic fruits dropping, touch a surface at the bottom, and then

rebound. Left-most are two contiguous measurements, and the right part shows 44 corresponding reconstructed video frames (nt = 22
recovered video frames from each compressive measurement). We can see clear motion and color information from the reconstructed

frames (video online at [18]). Note in this dataset we did not change the focal plane during the capture of the measurement.

took these measurements was implemented, with a summa-

ry provided in Figure 2 for the coding and mosaicing com-

ponents, and in Figure 4 for the camera setup. We also dis-

cuss a new CS inversion algorithm, that is endowed with a

guarantee that upon every iteration the residual between the

true video and the estimate is assured to be reduced (with

technical requirements, that are discussed). This is an “any-

time” algorithm, in that the estimated underlying video may

be approximated at any time based upon computations thus

far, and the quality of the inversion is guaranteed to improve

with additional computations.

The contributions of this paper are: i) development of a

new low-cost and low-power CS camera, that for each low-

frame-rate measured image allows recovery of multiple col-

or frames focused at different depths (at high-frame-rate);

and ii) application of an anytime CS inversion algorithm

to data measured by the camera, providing fast recovery of

high-speed motion, color and depth information from the

scene.

2. Hardware Design

The proposed imaging system is built with an off-the-

shelf camera, specifically a Guppy Pro camera [1], by

adding a liquid lens to change the focal plane, and by mov-

ing a single mask to modulate the high speed frames during

one integration time-period, both extremely low-power ad-

ditions (in contrast with common alternatives in the litera-

ture, as detailed in Section 2.3). The main challenge is to

synchronize temporal modulation (coding) with time vari-

ation of the focus location (for capture of variable depth).

Figure 4 depicts the setup of our camera, and Figure 5(b)

shows the synchronized control of the mask and liquid lens.

2.1. Coding strategy

The focal plane of the liquid lens used in the camer-

a is controlled by the voltage of the input signal, which

also controls the pizeoelectronic translator to shift the

mask. The control signal (a triangular wave) is generat-
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Figure 2. Illustration of the proposed method. (a) First row shows

nt color (RGB) frames of the original high-speed video; second

shows each color frame rearranged into a Bayer-filter mosaic; third

row depicts the (horizontally) moving mask used to modulate the

high-speed frames (black is zero, white is one); fast translation

manifested by a pizeoelectronic translator. Fourth row shows the

modulated frames, whose sum gives a single coded capture. (b)

Recovered RGB frames arranged into a Bayer-filter mosaic (sec-

ond row), which is de-mosaicked to give the color frames (first

row). (c) The demosaicing process [1].

ed by a function generator and then we use power divider

to distribute the signal (Figure 5) to the liquid lens and

the pizeoelectronic translator to achieve the synchroniza-

tion. The shifting (through the pizeoelectronic translator)

of the same mask (Figure 2(a)) is utilized to modulate the

high-speed frames. This modulation enjoys advantages of

low-power (∼ 0.2W ), low-cost and low-bandwidth imple-

mentation, compared for example with the modulation by

liquid-crystal-on-silicon (LCoS) in [8, 16] (power > 3W ,

and high-bandwidth electronic switching/coding). In the

experiments, we show that the proposed efficient coding

mechanism yields similar results to that of the relatively

expensive LCoS-type coding. During the calibration, we

approximate the continuous moving of the mask by discrete

patterns (Figure 5(a)).

We record temporally (and depth) compressed measure-

ments for RGB colors on a Bayer-filter mosaic, where the
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Camera Three Layers Scene
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in best focus

Chopper wheel 
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Measurement

Figure 3. Experimental scene (top), three objects are placed at

three depths. 6 selected recovered frames (bottom right) recon-

structed all from the real single measurement (bottom left) are

shown as examples. The focal plane varies from the newspaper

(near) to the chopper-wheel (far) during the integration time peri-

od. Note how chopper-wheel goes from blur (two left columns)

to sharp (refer to the number “2”). Note the motion of the moving

chopper-wheel (video online at [18]).

Figure 4. Setup of the camera.
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Figure 5. Control signal: (a) triangular wave and (b) distributed

control.

three colors are arranged in the pattern shown in the right

bottom of Figure 2. The single coded image is partitioned

into four components, one for R and B and two for G (each

is 1/4 the size of the original spatial image). The CS recov-

ery (video from a single measurement) is performed sep-

arately on these four mosaiced components, and then the

demosaicing process in Figure 2(b) is employed to mani-

fest the final color video. One may also jointly perform

CS inversion on all 4 components, with the hope of sharing

information on the importance of (here wavelet and DCT)

components; this was also done, and the results were very

similar to processing R, B, G1 and G2 separately.

2.2. Measurement model
Let f(x, y, z, t) denote the continuous/analog spatio-

temporal volume of the video being measured, with (x, y, z)
symbolizing the 3D space coordinate and t denoting time.

Note the depth of the scene is defined by z. Addition-

ally, let object-space and image-space coordinates be re-

spectively designated with unprimed and primed variables.

Given an nx × ny-pixel sensor with pixel size ∆ and in-

tegration time ∆t, space-time compressive measurements

g(x′, y′, t′) ∈ R
2 are formed on the detector, with t′ < t.

The digital data used to represent the scene consists of dis-

crete samples of the continuous transformation

g(x′, y′, t′) =
∫ ∫ ∫ ∫

f(x, y, z, t)T (x−r(t), y−s(t))

×rect
(

x−x′

∆ , y−y′

∆

)

rect
(

t−t′

∆t

)

dydxdtdz,(1)

where T (x − r(t), y − s(t)) represents a random binary

transmission pattern that translates with periodic transverse

(x, y) motion parameterized by (r(t), s(t)). The spatial

and temporal pixel sampling functions, rect
(

x−x′

∆ , y−y′

∆

)

and rect
(

t−t′

∆t

)

, bandlimit the incident optical datastream,

which is equivalently represented as f = c∗b, with ∗ denot-

ing the convolution operator. Here, c(x, y, z, t) denotes an

instantaneous all-in-focus representation of the spatiotem-

poral scene and b(x, y, z(t)) is a time and depth varying

(blur) kernel imparted by the liquid lens on the focal vol-

ume.

The discrete formulation of the model can be simplified.

The frame at each depth (nt depths in Figure 5(a)) is ap-

proximated as being modulated by a single unique code

(approximated by the shifting mask, Figure 5(a)); in real-

ity the code/mask is always moving continuously. At each

depth, the (physical/continuous) frame can be denoted by

f̃(x, y, t) (z is now manifested by t), and after digitization,

we represent it as Xk ∈ R
nx×ny , ∀k = 1, . . . , nt. Denot-

ing the coding pattern of the mask by Hk ∈ R
nx×ny , the

measurement Y ∈ R
nx×ny is yi,j =

∑nt

k=1 xi,j,khi,j,k +
ei,j , ∀i = 1, . . . , nx; j = 1, . . . , ny; or

Y =
∑

k

Xk ⊙Hk +E, (2)

where E denotes the noise and ⊙ symbolizes the

Hadamard (element-wise) product. By vectorizing each

frame and then concatenating them, we have x =
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[(vec(X1))
T , . . . , (vec(Xnt

))T ]T ∈ R
nxnynt , and (2) can

be written as:
y = [diag(vec(H1)), . . . , diag(vec(Hnt

))]x+ e

= Ψx+ e, (3)

where Ψ = [diag(vec(H1)), . . . , diag(vec(Hnt
))]. The

imaging process may therefore be modeled as in the stan-

dard CS problem. The goal is to estimate x, given y and

Ψ. Before presenting how we address this, we further com-

ment on related work, now in that we have introduced the

proposed hardware.

2.3. Related work
Video compressive sensing has been investigated in

[8, 9, 14, 16, 19], by capturing low frame-rate video to re-

construct high frame-rate video. The LCoS used in [8, 16]

can modulate as fast as 3000 fps by pre-storing the expo-

sure codes, but, because the coding pattern is continuously

changed at each pixel throughout the exposure, it requires

considerable energy consumption (> 3W ) and bandwidth

compared with the proposed modulation, in which a single

mask is translated using a pizeoelectronic translator (requir-

ing ∼ 0.2W ). Similar coding was used in [14]. However,

we investigate color video here, and thus demosaicing is

needed; because of the R, G and B channels, we need to

properly align (in hardware of course) the mask more ac-

curately compared with the monochromatic video in [14].

Therefore, [14] can be seen as a special case of the proposed

camera. Furthermore, we also extract the depth information

from the defocus phenomenon of the reconstructed frames,

which has not been considered in the above papers.

Coded apertures have been used often in computational

imaging for depth estimation [11, 12, 23]. However, these

only consider still images. From the algorithms investigat-

ed therein, one can get the depth map from a still image. In

[10] an imaging system was presented that enables one to

control the depth of field by varying the position and/or ori-

entation of the image detector, during the integration time

of a single photograph. However, moving the detector costs

more energy than controlling the liquid lens in the proposed

design (almost no power consumption), and the camera de-

veloped in [10] can only provide a single all-in-focus im-

age without the depth information. Furthermore, no motion

information is considered in the above coded-aperture cam-

eras, while here we consider video (allowing depth estima-

tion on moving scenes).

3. Reconstruction algorithm
We reconstruct high-frame-rate video from low-frame-

rate measurements via an anytime algorithm, the general-

ized alternating projection (or GAP) algorithm, first devel-

oped in [13] for other applications. GAP produces a se-

quence of partial solutions that monotonically converge to

the true signal (thus, anytime). In [13], the authors did not

mention how to select group weights and no real data or ap-

plication was considered. The manner in which the GAP

algorithm is employed here, as well as the application con-

sidered, is significantly different from [13]. In the follow-

ing, we first review the underlying GAP algorithm and then

show how to improve it to get better results for the data con-

sidered here.

GAP is used to investigate the group-sparsity of

wavelet/DCT coefficients of the video to be reconstruct-

ed. Let Tx ∈ R
nx×nx , Ty ∈ R

ny×ny , Tt ∈ R
nt×nt

be orthonormal matrices defining bases such as wavelet-

s or DCT [15]. Define w =
(

TT
t ⊗TT

y ⊗TT
x

)

x, and

Φ = Ψ (Tt ⊗Ty ⊗Tx), where ⊗ denotes Kroneck-

er product [15]. Then we can write (3) concisely as

y = Φw + e, where Φ ∈ R
nxny×nxnynt with ΦΦT =

diag (vec (
∑nt

k=1 Hk ⊙Hk)). For simplification, from

now we ignore possible noise e. Note that y reflects one

nx × ny compressively measured image, as denoted at left

in Figure 1, and x = (Tt ⊗Ty ⊗Tx)w is the nx×ny×nt

video we wish to recover (Figure 1 right, for nt = 22).

3.1. GAP for CS inversion

Let Φ ∈ R
n1×n, w ∈ R

n, and y ∈ R
n1 , with n1 < n.

Assume Φ has full row rank. Let G = {G1,G2, · · · ,Gm}
be a set of nonempty mutually-disjoint and collectively ex-

haustive subsets of {1, 2, · · · , n}. Let β = [β1, · · · , βm]T

be a column of constant positive weights with βk associated

with Gk. We solve the weighted-ℓ2,1 minimization problem

min
w

‖w‖
ℓ
Gβ
2,1

, subject to Φw = y, (4)

with ‖w‖
ℓ
Gβ
2,1

=
∑m

k=1 βk‖wGk
‖2, where wGk

is a sub-

vector of w containing components indexed by Gk, and ‖·‖2
denotes ℓ2 norm; ‖·‖

ℓ
Gβ
2,1

is referred as a weighted-ℓ2,1 norm

or ℓGβ2,1 norm. The groups and weights are below related to

the anticipated importance of wavelet/DCT coefficients; the

larger βk, the more importance is placed on the kth group

of coefficients being sparse.

The problem in (4) can be equivalently rewritten as
min
w,C

C subject to ‖w‖
ℓ
Gβ
2,1

≤ C and Φw = y (5)

Denote BGβ
2,1(C) = {w : ‖w‖

ℓ
Gβ
2,1

≤ C} and SΦ,y =

{w : Φw = y}, where SΦ,y is a given linear manifold and

BGβ
2,1(C) is a weighted-ℓ2,1 ball with radius C. Geometri-

cally, the problem in (5) is to find the smallest weighted-ℓ2,1
ball that has a nonempty intersection with the given linear

manifold; we refer to this ball as the critical ball and de-

note its radius as C∗. When the smallest intersection is a

singleton, the solution to (5) is unique.

We solve (5) as a series of alternating projection prob-

lems, (

w(t),θ(t)
)

= argmin
w,θ

‖w − θ‖22,

subject to ‖θ‖
ℓ
Gβ
2,1

≤ C(t) and Φw = y, (6)

where a special rule is used to update C(t) to ensure that

limt→∞ C(t) = C∗. For each C(t), we solve an equivalent

problem
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Figure 6. (a) Demonstration of groups of the wavelet/DCT coefficients of the video. The large 3D cube represents the wavelet/DCT

coefficients and the small 3D cubes in different color denote different groups, with the size {bx, by, bt} shown by one example group on

the top-left. (b) DCT block structure time-weight. Each bt (here bt = 2) frames in time share the same weight. (c) Wavelet-tree structure

scale-weight in space. The groups in the same wavelet level (shown in the same color) share the same weight.
(

w(t),θ(t)
)

= argmin
w,θ

‖w − θ‖22 + λ(t)‖θ‖
ℓ
Gβ
2,1

subject to Φw = y, (7)

where λ(t) ≥ 0 is the Lagrangian multiplier uniquely as-

sociated with C(t). Denote by λ∗ the multiplier associated

with C∗. It suffices to find a sequence {λ(t)}t≥1 such that

limt→∞ λ(t) = λ∗.

We solve (7) by alternately projection between w and

θ. Given one, the other is solved analytically: w is an Eu-

clidean projection of θ on the linear manifold, while θ is

the result of applying group-wise shrinkage to w. An at-

tractive property of GAP is that, by using a special rule of

updating λ(t), we only need to run a single iteration of (7)

for each λ(t) to make {λ(t)}t≥1 converge to λ∗. In particu-

lar, GAP starts from θ(0) = 0 and computes two sequences,

{θ(t)}t≥1 and {w(t)}t≥1:

w(t) =θ(t−1) +ΦT (ΦΦT )−1(y −Φθ(t−1)), (8)

θ
(t)
Gk

=w
(t)
Gk

max







1−
λ(t)βk
∥

∥

∥
w

(t)
Gk

∥

∥

∥

2

, 0







, ∀k = 1, . . . ,m(9)

where λ(t) =

∥

∥

∥

∥

∥

w
(t)
G
j
(t)
m⋆+1

∥

∥

∥

∥

∥

2

β−1

j
(t)

m⋆+1

, m⋆ < m (10)

with
(

j
(t)
1 , j

(t)
2 , · · · , j

(t)
m

)

a permutation of (1, 2, · · · ,m)

such that

∥

∥

∥

∥

w
(t)
G
j
(t)
1

∥

∥

∥

∥

2

β−1

j
(t)
1

≥

∥

∥

∥

∥

w
(t)
G
j
(t)
2

∥

∥

∥

∥

2

β−1

j
(t)
2

≥ · · · ≥
∥

∥

∥

∥

w
(t)
G
j
(t)
m

∥

∥

∥

∥

2

β−1

j
(t)
m

.

The algorithm (8)-(9) is referred as generalized alter-

nating projection (or GAP) [13] to emphasize its differ-

ence from alternating projection (AP) in the conventional

sense: conventional AP produces a sequence of projections

between two fixed convex sets, while GAP produces a se-

quence of projections between two convex sets that under-

go systematic changes over the iterations. In the GAP algo-

rithm as shown in (8)-(9), the alternating projection is per-

formed between a fixed linear manifold SΦ,y and a chang-

ing weighted-ℓ2,1 ball, i.e., BGβ
2,1(C

(t)) whose radius C(t) is

a function of the iteration number t.
By interpreting 1

λ(t) ‖θ − w‖22 as a penalty to enforce

θ = w, one may view that iteration of (7) with t constitut-

ing a penalty method for solving the following constrained

problem,

min
θ

‖θ‖
ℓ
Bβ
2,1

subject to θ = w and Φw = y, (11)

which is an ADMM [5] equivalent formulation of (4). The

GAP algorithm in (8)-(10) is a special penalty method

for solving (11), using (10) to adjust the penalty strength
{

λ(t)
}

. Bregman iteration [21] can also solve (4) or (11).

However, Bregman penalizes ‖y−Φw‖22, while GAP keep-

s y = Φw as a constraint and fulfills it via the orthogonal

projection in (8). Under a set of group-restricted isome-

try property (group-RIP) conditions, the use of (8)-(10) en-

sures monotonic decrease of the reconstruction error to ze-

ro and makes GAP an anytime algorithm [13]. By contrast,

Bregman iteration and classic penalty method (which ad-

justs λ(t) differently) do not have the anytime property, nor

do other popular algorithms such as TwIST and ADMM.

3.2. Extension of GAP for the proposed camera
The diagonalization of ΦΦT is the key to fast GAP re-

covery of video. The inversion of ΦΦT in (8) now just

requires computation of the reciprocals of the diagonal el-

ements, as a result of the hardware implementation of the

proposed camera. Best results were found when Tx and

Ty correspond to a wavelet basis (here the Daubechies-8

[15]), and Tt corresponds to a DCT. The basis-function

weights (β) are defined with respect to these bases, and the

groups are manifested in the domain of these wavelet-DCT

coefficients (see Figure 6(a) for a depiction of the group-

s). For Tt the coefficients are arranged from low frequen-

cies to high frequencies in Figure 6(b), and for Tx and Ty

the 2D arrangement of coefficients is as is done typical-

ly with wavelets [15], and illustrated in Figure 6(c). Let

{bx, by, bt} represent the edge lengths of each group of co-

efficients (Figure 6(a)). In all experiments, bx = by = 2
and bt =

[

nt

4

]

, where [ ] denotes the closest integer of the
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number inside [ ]. The weight is constituted by the product

of a time-weight associated with the DCT (Figure 6(b)) and

a scale-weight associated with the wavelets (Figure 6(c)).

We show the details of the weight design in the following.

Let {gx, gy, gt} index each group with gx =
1, . . . , nx

bx
, gy = 1, . . . ,

ny

by
, gt = 1, . . . , nt

bt
. The time

weights are defined by βt(gt) = a(gt−1). For the scale

weights, we exploit the wavelet-tree structure (Figure 6(c)),

and enforce the groups in the ℓth level (assuming L lev-

els in total, and ℓ = 1, . . . , L) of the wavelet coefficients

sharing the same weight, determined by βx,y(g
ℓ
x, g

ℓ
y) =

a(ℓ−1), ∀ gℓx =
n(ℓ−1)
x

bx
+1, . . . ,

nℓ
x

bx
, gℓy =

n(ℓ−1)
y

by
+1, . . . ,

nℓ
y

by
,

with
{

nℓ
x, n

ℓ
y, n

ℓ
t

}

denoting the end points of wavelet coef-

ficients at the ℓth level, and n0
x = n0

y = 0. The weight

for each 3D group is β(gℓx, g
ℓ
y, gt) = βx,y(g

ℓ
x, g

ℓ
y)βt(gt).

Setting a = 1.5 was found to yield good results. After

constructing the groups and weights as above, the GAP per-

formance is improved significantly in the application here.

3.3. Temporal overlap in inversion

In Section 3.1, each coded CS measurement Yl is em-

ployed to recover nt frames of video. This may lead to

discontinuities in the video recovered from consecutive C-

S measurements. To mitigate this, we also consider the

joint inversion of two consecutive CS measurements, Yl

and Yl+1, from which 2nt consecutive frames are recov-

ered at once. Therefore the nt frames associated with Yl

are estimated jointly from Yl−1 ∪ Yl and (separately) from

Yl∪Yl+1. The final recovered video within a particular con-

tiguous set of nt frames is taken as the average of the results

inferred from Yl−1∪Yl and Yl∪Yl+1. As demonstrated be-

low, this tends to improve the quality of the recovered video

(yields smoother results).
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Figure 7. PSNR comparison of weighted group (average PSNR:

22.13dB), no weight, no group (average PSNR: 19.92dB), and

temporal overlapping weighted group (average PNSR: 22.80dB).
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Figure 8. PSNR comparison of GAP, TwIST, linearized Bregman,

K-SVD, and GMM algorithms with the simulation dataset.

4. Simulation results
To demonstrate the performance of the reconstruction al-

gorithm, we start with simulated data (see Section 5 for real

data from the proposed camera), and employ a color video

sequence in which a basketball player performs a dunk [18];

this video is challenging due to the complicated motion of

the basketball players and the varying lighting conditions

and multiple depths scene; see the example video frames

in Figure 2(a). We consider a binary mask, with 1/0 coding

drawn at random Bernoulli(0.5); the code is shifted spatially

via the coding mechanism in Figure 2(a)), as in our physical

camera. The video frames are 256 × 256 spatially, and we

choose nt = 8.

We first investigate the efficacy of weighted groups

in the proposed GAP algorithm. Figure 7 demonstrates

the improvement by the weighting and grouping of the

wavelet/DCT coefficients; these parameters (weights and

groups) were not optimized, and many related settings yield

similar results – there is a future opportunity for optimiza-

tion. In Figure 7 we also demonstrate the performance im-

provement manifested by temporal overlapping and aver-

aging results from two consecutive measurements. Note

that without temporal overlapping, the PSNR degrades for

frames at the beginning (e.g., 1, 9, 17, ...) and end (8, 16,

24, ...) of a given measurement, while the PSNR curve with

temporal overlapping (red curve) is much smoother. The

experiments with (real) measured data consider temporal

overlapping when performing inversion.
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Figure 9. (a) Convergence comparison of GAP, TwIST, and lin-

earized Bregman. (b) PSNR of reconstructed video frames with

three different coding scenarios. “Shifting binary mask” means

the coding mechanism proposed in our camera. “Random binary

mask” denotes that for every frame, each element of the mask is

randomly drawn from Bernoulli(0.5). “Random grayscale mask”

symbolizes each element of the mask is randomly drawn from

[0, 1] for every frame.
4.1. Reconstruction performance and convergence

The developed GAP algorithm is compared with the

following: i) two-step iterative shrinkage/thresholding

(TwIST) [4] (with total variation norm), ii) K-SVD [3] with

orthogonal matching pursuit (OMP) [17] used for inversion,

iii) a Gaussian mixture model (GMM) based inversion al-

gorithm [7, 20, 22], and iv) the linearized Bregman algo-

rithm [21]. The ℓ1-norm of DCT or wavelet coefficients

is adopted in linearized Bregman algorithm with the same

transformation as GAP. GMM and K-SVD are patch-based

algorithms and we used a separate dataset for training. A
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batch of training videos were used (shown in the website

[18]) to pre-train K-SVD and GMM, and we selected the

best reconstruction results for presentation here. The PSNR

curves of videos reconstructed by GAP and the four alter-

native algorithms are shown in Figure 8, demonstrating the

GAP algorithm outperforms the other algorithms by 0.7-

2dB higher in PSNR. In this simulation, the temporal over-

lap was not used. The readers can refer to the reconstructed

videos on the website [18].

We further investigate the convergence properties of

GAP, TwIST and linearized Bregman, as they are each

solved iteratively. We run each algorithm a total of 100 it-

erations and compute the relative mean square error (MSE)

of the estimate compared with the ground truth for each it-

eration. Relative MSE versus iteration number are plotted

in Figure 9(a). It can be seen that GAP and linearized Breg-

man converge much faster than TwIST, while GAP provides

the smallest relative MSE in every iteration. We also verify

the anytime property of GAP by computing the first-order

difference of the MSE for each iteration (compared with

TwIST and Bregman); see Supplementary Material [18].

4.2. Comparison with other coding mechanisms
One advantage of the proposed coded aperture compres-

sive camera (manifested by spatially shifting a single bina-

ry mask), compared with others [8, 16], is its low-power,

low-bandwidth characteristics. However, the use of a single

shifted binary mask to yield temporal coding may appear

limiting, and therefore it is of interest to compare to other

strategies. In Figure 9(b) we compare the proposed trans-

lated coding mechanism in our hardware system with even

more general coding strategies than in [8, 16]. Specifically,

we compare to a unique random binary mask at each time

point, for which each of the nt codes is a distinct i.i.d. draw

Bernoulli(0.5). We also consider the case for which each

code/mask element, for each of the nt codes, is drawn uni-

formly at random from [0,1], reflecting the degree of code

transmission (each of the nt codes is distinct, and each is

not restricted to be binary). Summarizing Figure 9(b), the

simple shifted binary code in the proposed system yields

similar results (even a little higher PSNR for some datasets)

compared to these alternative coding strategies, at an order

of magnitude less power. We found similar results when

comparing to the coding strategies in [8, 16].

5. Experimental results: real data
The physical camera we have developed captures the

measurements (coded capture) at 1/∆t = 30 fps, and the

reconstructed video has 660 fps (nt = 22, although dif-

ferent nt may be considered in the inversion). One result

from this camera was shown in Figure 1 (recovery of high-

speed motion). From the reconstructed frames in Figure 1,

one can clearly identify the spin of the red apple and the re-

bound of the yellow orange; the full video is at [18], along

with many addition examples. At [18], we show compar-

isons to a diverse set of alternative algorithms, for example

via [21].

All algorithms considered here were implemented in

Matlab 2012(a), and the experiments are conducted on a PC

with a CPU@3.30 GHz and 16GB RAM. For the real data

(512×512×22), GAP, TwIST, and linearized Bregman use

50, 100, and 500 iterations, respectively (required to yield

good results). Each iteration in these three algorithms are

similar (around 0.8 seconds). Hence, TwIST and linearized

Bregman cost much longer (> 2×) time than GAP, but typ-

ically provide worse results, and do not have an anytime

property. K-SVD and GMM may be made fast if parallel

computing is used (processing the multiple patches in par-

allel with GPU or networks), but for serial computing on a

PC like that considered here these methods are slower than

GAP.
5.1. Recovery of depth and motion simultaneously

Figure 3 shows the reconstruction frames (6 out of 14

frames are shown for demonstration) recovered from one

measurement. The three objects, “newspaper,” “smile-face”

and “chopper-wheel” are in three different depths. The mo-

tion of the rotating chopper-wheel is also recovered from

the reconstructed frames. The first column of the recov-

ered frames (bottom right of Figure 3) shows the newspa-

per is in focus; the second column shows the smile-face is

in focus, and finally, the chopper-wheel is in focus at col-

umn three. We have built a depth-frames relationship table

with calibration. The newspaper is best in focus in frame

3, which corresponds to 14cm away from the objective lens

(truth 15cm). The smile-face is best in focus in frame 8,

corresponding to 40cm (truth 38cm). The chopper-wheel is

best in focus in frame 12, which corresponds to 64cm (truth

65cm). It can be seen the depths of these objects are esti-

mated correctly.
5.2. Recovery of high­speed motion

As one additional example of high-speed motion recov-

ery (assuming all the objects are in focus, i.e., here without

the liquid lens), Figure 10 shows the results of a purple ham-

mer quickly hitting a red apple. In this dataset, 44 frames

are reconstructed from 2 measurements (left part) showing

the entire process of hitting (full video is at [18]), and 5 ex-

ample frames out of 44 are plotted in the right part of Figure

10. To demonstrate the anytime property of GAP, we show

the results after 2, 10, 20 and 50 iterations. Note that good

results are manifested with as few as 10 iterations, with con-

vergence after about 20.

5.3. Recovery of depth
When the scene is not moving, we can get space-depth-

color information from the reconstructed data. An example

is shown in Figure 11. We can see that the smile-face is first

out-of-focus, then in-focus and finally out-of-focus again.

6. Conclusions
This paper proposes a means of recovering depth, time,

and color information from a single coded image, via de-
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Measurement 1

2 iterations

10 iterations

Measurement 2

20 iterations

50 iterations

#1 #11 #21 #31 #41

#1 #11 #21 #31 #41

#1 #11 #21 #31 #41

#1 #11 #21 #31 #41

Figure 10. Reconstruction from two real measurements (left part).

Five selected frames out of the 44 reconstructed video frames

(nt = 22 recovered video frames from each compressive mea-

surement) after 2, 10, 20, and 50 iterations of GAP are shown in

the right part.

out of 

focus

(nearly) 

in focus

out of 

focus

Measurement

Reconstruction

#1 #2 #3 #4

#5 #6 #7 #8

#9 #10 #11 #12

Figure 11. Reconstruction from a real single measurement (left

part). 12 selected frames are shown in the right part to demonstrate

the process of the smile-face from out-of-focus to in focus and then

out-of-focus again.

velopment of a new color CS camera for high-speed depth-

video reconstruction. In the presented computational time

comparisons, GAP was run in MATLAB, since that was

the language in which all of the comparison algorithms had

available code, and therefore provided a good comparison

point for relative speed. In the context of absolute speed,

we have implemented GAP in C++ on a GPU, and the total

time for reconstructing a 512×512×22 video from a single

CS measurement is less than 0.5 seconds, opening the door

for real-time fast (3D) video capturing and reconstruction.
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