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We are proposing a design methodology for a fault tolerant homogeneous MPSoC having additional design objectives that include
low hardware overhead and performance. We have implemented three di
erent FT methodologies on MPSoCs and compared
them against the de�ned constraints. 	e comparison of these FT methodologies is carried out by modelling their architectures in
VHDL-RTL, on Spartan 3 FPGA.	e results obtained through simulations helped us to identify the most relevant scheme in terms
of the given design constraints.

1. Introduction

	ere has always been an urge of high performance; subse-
quent to this, plenty of e
orts have beenmade to attain higher
levels in said aspect. In past, technology scaling was mainly
used for performance improvement.	is approach was quite
helpful in handling various applications with high processing
demands; however bottleneck of this approach has been
reached now [1]. Continuous transistor scaling resulted in
reduced nodal capacitances and low supply voltages making
the devices more prone to the transient faults caused by
external (alpha particles and neutrons) and internal (power
supply noise and cross talk noise) noises [2].

Transient faults are more likely to occur than permanent
faults [3]; that is, product monitoring shows that permanent
faults rate as a result of external events is notmore than 10 FIT
(failure in time) whereas the transient fault rate of 1Mbit of
SRAM is around 1,000 FIT for modern process technologies.
	us transient faults have major part in disturbing the
reliability of the system [4].

Methods such as rollback are considered e
ective in
rectifying transient errors. However in hard real time systems
such corrections have a huge inuence on the response time
of the system. A deadline miss in the task can result in the
failure of the system [5]. For example, ATM machines, cell
phones, and thumbprint scanners are some real time systems.

In last decade, to address high performance need there
has been a shi� towards multiple resource system. Di
erent
interconnect structures have been employed in such systems
including point to point (P2P) and bus based [6]. Both
these architectures were quite useful until we had only
few processors connected through them but as the number
of processing elements (P.E) increased several issues were
spotted and P2P has limited scalability due to increased
complexity [7] while, in buses, scalability is restrained due to
the fact that by raising the number of processing elements
the resulting propagation delay increases [8]. Bus based
architecture can be implemented conveniently if number of
processors are less than �ve [9].

To overcome the de�ciencies of the above mentioned
interconnect structures network on chip (NoC) communi-
cation architecture has been adopted. 	is approach has
the tendency to ful�l high performance requirements and it
provides the designers with several options to optimize their
design according to their requirement [10].

Multiple processors system on chips (MPSoCs) con-
nected through NoC have the ability to perform communi-
cation and computation separately.

MPSoCs featuring NoC can be used to perform various
complicated tasks in parallel such as multimedia streaming,
telecommunication protocols, and GPS [11]. A lot of e
ort
has been put into the improvement of NoC’s components.
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A exible and fault tolerant network interface for NoC have
been developed by Saponara et al. which can accomplish var-
ious functions including safety and security [12]. Moreover,
fast and redundant communication protocols like FF-LYNX
are another achievement in the �eld of NoC based designs
for implementation in harsh environments, for example,
in astrophysics, nuclear medicines, and space engineering.
Interfaces based on these protocols are tested and veri�ed
under di
erent circumstances before adoption [13, 14].

	e market share of embedded systems in di
erent
industries is increasing signi�cantly over the past few years.
MPSoCs based high performance embedded systems are
likely to replace these current embedded systems in future.
For instance, the share in the value of car contributed by
electronic embedded systems is 40% [15]. And it is believed
that these traditional electronics embedded systems in cars
would soon be completely substituted by MPSoCs [16].

In the last few decades, there has been a need for high
performance and improvements. Technology scaling is not
very e
ective in addressing high performance demands. So,
nowadays MPSoCs are being employed to perform tasks
which require intense computation and communication.

Our long term objective is to design a heterogeneous
MPSoC, forwhich the design objectives are already set in [17].
In the current work we are analysing di
erent fault tolerance
techniques on the basis of hardware overhead, performance,
and reliability to conclude the optimal scheme.

	e other sections of paper are summarized as follows.
Section 2 presents the related work; methodology is dis-
cussed in Section 3. Experimental setup is demonstrated in
Section 4, while experimental results and conclusions are
discussed in Section 5 and Section 6, respectively.

2. Related Work

Various techniques have been developed to make the system
fault tolerant. However, in general, there are threemajor types
of redundancies: hardware redundancy, information redun-
dancy, and temporal redundancy. All these techniques have
their own characteristics in terms of de�ned design objective.
Our concern is to make the system reliable with minimum
cost and it should have minimal impact on performance;
therefore a suitable technique is required to meet our design
constraints.

Dual modular redundancy (DMR) and triple modular
redundancy (TMR) are two well-known hardware redun-
dancy techniques. TMR is a fault masking technique that
has 3.7 times hardware overhead [18] and is intended to be
used in highly critical scenarios, for example, nuclear plants,
space applications, and avionics [19–21]. DMR has low area
overhead as compared to TMR when employed with SW
based rollbackmechanism [22].DMRalongwith rollback can
be used to perform error correction. Ziv and Bruck employed
check pointing technique with DMR for error correction and
determined the time consumed by a task under di
erent fault
models [23].

Information redundancy which is implemented by send-
ing extra informationwith data uses di
erent error correcting
and error detecting schemes. Error correcting codes have

less hardware overhead as compared to hardware redundant
techniques; however the latter is considered more reliable
[24]. Parity check code is one of the simplest error detecting
codes that can be used to detect single bit error and odd
number of bit ips [25]. Its advantage is that it can be
implemented with low hardware overhead [26]. Nicolaidis
employed parity prediction and double rail checking together
to devise a self-checking mechanism for ALUs and adders.
Furthermore, di
erent hardware reduction techniques were
used to minimize the cost [27].

	en comes temporal redundancy which requires reex-
ecution of the same task a�er certain amount of time; thus
there is prolonged fault recovery process as compared to
hardware redundancy [28]. A system with such redundancy
is only capable of detecting errors caused by transient faults
while errors due to permanent faults are not traceable.
However, fault tolerance can be achievedwith small hardware
overhead [29]. Mizan et al. purposed SITR (self-imposed
temporal redundancy) for pipelined functional units (FUs);
in this form of temporal redundancy there is consecutive exe-
cution of redundant tasks with reexecution and comparison
being done in the same cycle. 	e results show that area and
power overhead of SITR are less than conventional temporal
redundancy [30].

In [17], two di
erent self-checking mechanisms were
utilized in MPSoC.	ey employed DMR in some processors
and ECC coding with rollback in others to obtain results in
terms of area and error coverage.

It has been observed that not much work has been
done when it comes to determining a redundant scheme
which provides low hardware overhead and performance
at the same time. Considering this observation, this paper
is intended to identify a self-checking mechanism which
addresses these constraints simultaneously.

3. Methodology

	e methodology adopted to practice the de�ned approach
is as follows. We are comparing three di
erent redundancy
schemes on the basis of the results acquired by inducing
these schemes in a NoC based homogeneous MPSoC. 	e
�rst scheme is DMR, a hardware redundant technique in
which two processes are executed concurrently and outputs
are compared using comparator to check if fault has occurred
or not. 	is technique requires additional hardware and it
is meant to perform critical tasks. 	e second technique
employed is temporal redundancy (TR) in which two similar
processes are executed consecutively and then compared for
fault detection. 	is technique has least hardware overhead
but it cannot be employed in critical scenarios because of
time overhead. Parity code (ECC) is the third technique, it
compares the input and the generated output to detect fault.
It appears to have intermediate hardware as compared to
previously mentioned schemes.

	e basic working and timing diagrams of DMR, TR, and
ECC are illustrated in Figure 1.

All of the above techniques would be utilizing roll back
mechanism to perform correction, that is, reexecution of task
in case of fault.
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Figure 1: Basic working and timing diagram of (a) DMR, (b) TR, and (c) ECC.

4. Hypothesis

To reduce problem size in proposed application we have
assumed that only transient faults can occur during com-
putation while communication channels are fault free. 	e
bandwidth of each channel is “1.”Moreover, computations are
performed through static scheduling and static mapping.

We are considering faults due to single event upset (SEU)
andmultiple bit upset (MBU), which are injected through bit
ip.

5. Experimental Setup

Experimental setup is developed in VHDL at register transfer
level (RTL) and implemented on FPGA. 	ere is NoC based
MPSoC in which we have incorporated communication
intensive task graph consisting of 1200 small tasks and
a computation intensive task graph which consists of 700
larger tasks. To identify working of the system “application
model” is required. In application model as described earlier
we considered static mapping and static scheduling. System
level design is shown in Figure 2.

Time considered for each task is its worst case execution
time (WCET). 	e failure of task is considered if it violates
the overall deadline including slack time.

Since all processors are FT we considered that the errors
are detected usingmaximum of 2 execution clocks; therea�er
data available at output is fault-free. Otherwise, it will be
updated as a nondetected fault in the log �le.

Our interest is also to analyse impact of workload and
provide fast method for execution of tasks.

An experimental setup is shown in Figure 3 in which fault
generation circuitry injects fault randomly during execution
of task in any P.E. If fault is detected, then rollback is
called and task will be reexecuted. Reexecution has to be
done within slack time. As described in previous section
we are supposed to compare three FT techniques. 	ese
techniques are introduced to the P.Es and application is run
to generate output results. We will implement three di
erent
error detecting methodologies:

(i) parity based ECC coding (ECC);

(ii) temporal redundancy (TR);

(iii) dual modular redundancy (DMR).
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6. Benchmark and Application

We have designed NoC based homogenous MPSoC for real
time applications to be run on the system. Automobile
electronic control unit (ECU) is the considered application.
ECU is divided into two basic parts: (1) engine management
and control system and (2) transmission control system.

Two di
erent types of benchmarks are designed which
consist of set of general tasks in target application. 	e �rst
benchmark has communication intensive tasks and second
has computation intensive tasks.

(i) Benchmarks 1: in communication intensive bench-
mark, transmission control of ECU is considered that
requires more communication and less computation.

(ii) Benchmarks 2: computation intensive benchmark
considers engine management and control of ECU
which is meant to perform more calculations as
compared to communication.

7. Results

Overall results are divided into three categories: area over-
head, error coverage, and performance and power consump-
tion.

7.1. Hardware Analysis. All three FT mechanisms are mod-
elled in VHDL, implemented on XILINX, and RTL �le
is generated to determine the hardware overhead of each
mechanism.

Table 1 depicts that among all the mechanisms DMR has
the highest overhead, T-MR has moderate and parity check
has least hardware overhead.

7.2. Error Coverage. 	e error detection is monitored at
di
erent error injection rates to determine the error coverage
of each scheme. 	e injected errors are detected by the voter
while generating the output.

For instance, Figure 4 demonstrates the fault detection
and correction in DMR; marker “A” depicts that values are
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Table 1: Results shown by RTL �le.

Selected device: Xilinx Spartan-3S200 (�256-4)

Device Total Normal
Used (% age)

T-R D-MR ECC

Slices 1920 169 (8%) 354 (18%) 435 (22%) 272 (14%)

Slice ip ops 3824 122 (3%) 292 (7%) 337 (8%) 213 (5%)

4-input LUTs 3840 311 (8%) 643 (16%) 799 (20%) 483 (12%)

IOs 13 13 13 13

Bonded IOBs 173 12 (6%) 12 (6%) 12 (6%) 12 (6%)

IOB ip ops 8 8 8 8

GCLKs 8 2 2 (25%) 2 (25%) 2 (25%)

A

B

C

Figure 4: Fault detection and correction in DMR.

assigned to speci�ed processor and a�er processing the data
outputs (d out1, d out2) are compared; marker B suggests
that mismatch has occurred at outputs and roll back is called.
	erea�er similar task is reexecuted and marker C indicates
reexecution, hence, making the system fault tolerant.

Four di
erent simulated fault injection (based on bit ip)
techniques are conducted. In which, campaigns from 1-to-
4-bit ips are employed. 	e results in Figures 5, 6, 7, and
8 depict error coverage of proposed FT techniques. Error
coverage is 100% when odd numbers of bits were ipped.
When even numbers of bits were ipped, DMR and TR have
100% error coverage but it reduces to 52% for parity check.

7.3. Performance Analysis. Program is initiated with no fault
condition to get theminimum execution time for performing
speci�ed task. A�erwards the number of faults per clock is
increased and time for each execution is noted.

Performance is a
ected as more faults hit processor. As
fault injection rate increases more rollbacks are called. Hence
more time is taken by the processor to generate fault tolerant
output.

As application has two types of tasks, communication
intensive and computation intensive, implementation results
comply with our design constraints.

Application is time-critical, we can assume a reasonable
slack time; excess time to this will be considered as time-
failure of application. In Figures 9 and 10, horizontal continu-
ous line shows normal execution time and horizontal dotted
line shows maximum acceptable execution time. If 0.35 of
slack time is allowed, then DMR has highest performance.
Parity code shows a great di
erence in performance as
compared to TR.
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Figures 9 and 10 depict that for performance ECC and TR
can be regarded as suitable techniques for our application.

Table demonstrate �nding of our experimental setupwith
performance being evaluated on the basis of number of clocks
and hardware on the basis of LUT. And it is close to the
predicted values.

7.4. Power Consumption. Now-a-days power utilization is
very important parameter, especially for modern multicore
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Figure 7: 3-bit injection and detection.

battery driven applications. Designing the on-chip inter-
connects with battery considerations and reduced power
consumption is crucial. 	e ever increasing demand of the
battery operated devices has driven the research in the �eld
of low power system design. Saved power can be used to
increase battery life cycle and reduce cooling necessities.
	e focus of the previous researches was on the high level
analysis of NoC but they did not touch the issues on a
circuit level. However, little research has been done on the
circuit level issues as they were focusing on implementing
a limited set of topologies. For achieving the cost e�ciency,
high performance, and computational speed, it is necessary
to achieve energy optimization.
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To estimate power consumption of speci�ed redundant
techniques, power report is generated using Xilinx ISE,
XPower Analyzer (XPA) tool along withModelsim simulator.

XPA calculates static and dynamic power using (1) and
break the power into logic, signal, and output components
[31]:

� = ��2� × �, (1)

where frequency is kept constant; that is, � = 500MHz.
Results in Table 2 are extracted from XPower Analyser.

	e table enlists the power utilized by the corresponding
components of each scheme. 	e total power stated is
comprised of both static and dynamic power.

From the results in table it can be observed that power
consumption has a direct relation with the hardware. As
perceived from the results, DMR has highest and TR has
moderate while ECC has least power consumption
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Table 2: Results shown by XPower Analyser.

On-chip
Power (mW)

DMR TR ECC

Clocks 81.59 75.74 40.73

Logic 1.22 1.21 0.00

Signals 2.35 2.98 0.00

IOs 57.76 53.78 50.82

Quiescent 41.84 41.79 41.53

Total 184.77 175.50 133.08

8. Conclusion

Our long term goal is to design a low-cost fault tolerant
MPSoC and in this paper we analyzed three di
erent FT
methodologies and introduced them in NoC based homo-
geneous MPSoC. 	erea�er, we evaluated these schemes by
simulating their corresponding architectures under given set
of benchmarks. For each scheme, results are obtained in
terms of area overhead, error coverage, performance and
power consumption.

According to the de�ned design objectives and bench-
marks, the result of analysis shows that the parity code
is most suitable technique because it has least hardware
overhead along with reasonably high performance. DMR
can be employed if higher performance and error coverage
is required simultaneously; however it comes at the cost
of increased hardware. Temporal redundancy can only be
used in circumstances where we do not have hard real-time
constraints.
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