
Low-Cost, High-Speed Computer Vision  

Using NVIDIA’s CUDA Architecture 
Seung In Park, Sean P. Ponce, Jing Huang, Yong Cao and Francis Quek† 

Center of Human Computer Interaction,  

Virginia Polytechnic Institute and University 

Blacksburg, VA 24060, USA 
†quek@vt.edu 

Abstract— In this paper, we introduce real time image processing 

techniques using modern programmable Graphic Processing Units 

(GPU). GPUs are SIMD (Single Instruction, Multiple Data) device 

that is inherently data-parallel. By utilizing NVIDIA’s new GPU 

programming framework, “Compute Unified Device Architecture” 

(CUDA) as a computational resource, we realize significant 

acceleration in image processing algorithm computations. We show 

that a range of computer vision algorithms map readily to CUDA 

with significant performance gains. Specifically, we demonstrate 

the efficiency of our approach by a parallelization and optimization 

of Canny’s edge detection algorithm, and applying it to a 

computation and data-intensive video motion tracking algorithm 

known as “Vector Coherence Mapping” (VCM). Our results show 

the promise of using such common low-cost processors for 

intensive computer vision tasks.  

Keywords: General Purpose GPU processing, Dynamic Vision, 

Motion Tracking, Parallel Computing, Video Processing 

1 Introduction 
Image processing is important to such fields as computer 

vision and human computer interaction. For example, real-

time motion tracking is required for applications such as 

autonomous vehicle control and gesture interaction. 

However, a long standing challenge to the field of image 

processing is that intensive computational power is required 

in order to achieve higher speed. Real-time image processing 

on video frames is difficult to attain even with the most 

powerful modern CPUs. Increasing resolution of video 

capture devices and increased requirement for accuracy 

make it is harder to realize real-time performance. 

Recently, graphic processing units have evolved into an 

extremely powerful computational resource. For example, 

The NVIDIA GeForce GTX 280 is built on a 65nm process, 

with 240 processing cores running at 602 MHz, and 1GB of 

GDDR3 memory at 1.1GHz running through a 512-bit 

memory bus. Its processing power is theoretically 933 

GFLOPS [1], billions of floating-point operations per second, 

in other words. As a comparison, the quad-core 3GHz Intel 

Xeon CPU operates roughly 96 GFLOPS [2]. The annual 

computation growth rate of GPUs is approximately up to 

2.3x. In contrast to this, that of CPUs is 1.4x [3]. At the same 

time, GPU is becoming cheaper and cheaper. 

As a result, there is strong desire to use GPUs as alternative 

computational platforms for acceleration of computational 

intensive tasks beyond the domain of graphics applications. 

To support this trend of GPGPU (General-Purpose 

Computing on GPUs) computation, graphics card vendors 

have provided programmable GPUs and high-level 

languages to allow developers to generate GPU-based 

applications. 

This research aimed at accomplishing efficient and cheaper 

application of image processing for intensive computation 

using GPUs. We show that a range of computer vision 

algorithms map readily to CUDA by using edge detection 

and motion tracking algorithm as our example application. 

The remainder of the paper is organized as follows. In 

Section 2, we describe the recent advances in GPU hardware 

and programming framework, discuss previous efforts on 

application acceleration using CUDA framework, and the 

use of GPUs in computer vision applications. In Section 3, 

we detail the implementation of the Canny algorithm and 

various design and optimization choices we made. Then we 

demonstrate the efficiency of our approach by applying it to 

a data-intensive motion tracking algorithm, Vector 

Coherence Mapping, in Section 4. Finally we present our 

conclusion and future work in Section 5. 

2 Background   

2.1 The NVIDIA CUDA Programming Framework  

Traditionally, general-purpose GPU programming was 

accomplished by using a shader-based framework [4]. The 

shader-based framework has several disadvantages. This 

framework has a steep learning curve that requires in-depth 

knowledge of specific rendering pipelines and graphics 

programming. Algorithms have to be mapped into vertex 

transformations or pixel illuminations. Data have to be cast 

into texture maps and operated on like they are texture data. 

Because shader-based programming was originally intended 

for graphics processing, there is little programming support 

for control over data flow; and, unlike a CPU program, a 

shader-based program cannot have random memory access 

for writing data. There are limitations on the number of 

branches and loops a program can have. All of these 

limitations hindered the use of the GPU for general-purpose 

computing. NVIDIA released CUDA, a new GPU 

programming model, to assist developers in general-purpose 

computing in 2007 [5]. In the CUDA programming 



framework, the GPU is viewed as a compute device that is a 

co-processor to the CPU. The GPU has its own DRAM, 

referred to as device memory, and execute a very high 

number of threads in parallel. More precisely, data-parallel 

portions of an application are executed on the device as 

kernels which run in parallel on many threads. In order to 

organize threads running in parallel on the GPU, CUDA 

organizes them into logical blocks. Each block is mapped 

onto a multiprocessor in the GPU. All the threads in one 

block can be synchronized together and communicate with 

each other. Because there is a limited number of threads that 

a block can contain, these blocks are further organized into 

grids allowing for a larger number of threads to run 

concurrently as illustrated in Figure 1. Threads in different 

blocks cannot be synchronized, nor can they communicate 

even if they are in the same grid. All the threads in the same 

grid run the same GPU code.  

CUDA has several advantages over the shader-based model. 

Because CUDA is an extension of C, there is no longer a 

need to understand shader-based graphics APIs. This reduces 

the learning curve for most of C/C++ programmers. CUDA 

also supports the use of memory pointers, which enables 

random memory-read and write-access ability. In addition, 

the CUDA framework provides a controllable memory 

hierarchy which allows the program to access the cache 

(shared memory) between GPU processing cores and GPU 

global memory. As an example, the architecture of the 

GeForce 8 Series, the eighth generation of NVIDIA’s 

graphics cards, based on CUDA is shown in Figure 2.  

The GeForce 8 GPU is a collection of multiprocessors, each 

of which has 16 SIMD (Single Instruction, Multiple Data) 

processing cores. The SIMD processor architecture allows 

each processor in a multiprocessor to run the same 

instruction on different data, making it ideal for data-parallel 

computing. Each multiprocessor has a set of 32-bit registers 

per processors, 16KB of shared memory, 8KB of read-only 

constant cache, and 8KB of read-only texture cache. As 

depicted in Figure 2, shared memory and cache memory are 

on-chip. The global memory and texture memory that can be 

read from or written to by the CPU are also in the regions of 

device memory. The global and texture memory spaces are 

persistent across all the multiprocessors. 

2.2 GPU computation in image processing  

Most computer vision and image processing tasks perform 

the same computations on a number of pixels, which is a 

typical data-parallel operation. Thus, they can take advantage 

of SIMD architectures and be parallelized effectively on 

GPU. Several applications of GPU technology for vision 

have already been reported in the literature. 

 De Neve et al. [6] implemented the inverse YCoCg-R 

color transform by making use of pixel shader. To track a 

finger with a geometric template, Ohmer et al. [7] 

constructed gradient vector field computation and Canny 

edge extraction on a shader-based GPU which is capable of 

30 frames per second performance. Sinha et al. [8] 

constructed a GPU-based Kanade-Lucas-Tomasi feature 

tracker maintaining 1000 tracked features on 800x600 pixel 

images about 40 ms on NVIDIA GPUs. Although all these 

applications show real-time performance at intensive image 

processing calculations, they do not scale well on newer 

generation of graphics hardware including NVIDIA’ CUDA. 

Mizukami and Tadamura [9] proposed implementation of 

Horn and Schunck's [10] regularization method for optical 

flow computation based on the CUDA programming 

framework. Making use of on-chip shared memory, they 

were able to get approximately 2.25 times speed up using a 

NVIDIA GeForce 8800GTX card over a 3.2-GHz CPU on 

Windows XP. 

3 Canny Edge Detection 

3.1 Problem Decomposition  

In the context of GPU computation, Canny algorithm 

consists of set of convolution operation which is just the 

scalar product of the filter weights with the input pixels and 

thresholding operation. These operations map well to 

computation on GPUs because it follows the SIMD paradigm. 

As shown on Figure 3, a series of steps must be followed to 

implement the Canny edge detector. The first step is 

applying 5x5 Gaussian blur filter to the original image to 

filter out noise, then 3x3 step edge operator is used to 

determine edge gradient and direction. In the third stage, 

non-maximum suppression is carried out to find a local 

maximum in the gradient direction to generate thin edges in 

 
Figure 1.Thread and Block Structure of CUDA 

 

Figure 2. GeForce 8 series GPU architecture 



the image. Finally, thresholding with hysteresis is processed 

to determine continuous edges without streaking [11]. 

3.2 GPU implementation Details  

To characterize the effects of various CUDA-based 

programming optimization strategies for image processing 

algorithm, we implement Canny algorithm using different 

memory regions and access patterns.  

Texture memory The result of each step is an image itself 

that can readily be mapped to texture for the use in next 

phase of computation. The texture memory space are cached, 

a texture fetch costs just one texture cache read on a cache 

hit, otherwise costs one device memory read on a cache miss. 

Since neighboring pixel data are required to work on a pixel, 

convolution operations are of high reference of locality in 

terms of memory access. This means that GPUs are able to 

exploit texture memory for high performance in convolution 

operations. Another advantageous point of using texture 

memory is that the hardware provides automatic handling of 

boundary cases of the image. When the referenced 

coordinate of texture is out of valid range, the hardware 

clamps the coordinate to the valid range or wraps to the valid 

range depending on the addressing mode set.  

Kernel code is not able to write data into texture memory 

though it can read from texture memory. It means execution 

should be switched between CPU code and GPU kernel code 

repeatedly whenever it generates a texture with the 

calculation results at each step. Therefore four times data 

transferring between host (CPU) and device accompanies in 

the implementation using texture memory. This is costly 

because the bandwidth between the device memory and the 

host memory (CPU’s own DRAM) is much lower compared 

to the bandwidth between the device and the device memory. 

The transfer of data between the host and the device is 

limited by the bus; for most setups, this is limited by the 

PCI-Express x16 maximum theoretical bandwidth of 4GB/s. 

Memory transfer speeds within the device has a theoretical 

maximum of 86GB/s [5].  

Global memory Device memory reads through texture 

fetching present several benefits over reads from global or 

constant memory; 1. Texture memory are cached, potentially 

exhibiting higher bandwidth if there is high locality in the 

texture fetches. 2. The method of addressing is much easier 

because they are not subject to the constraints on memory 

access pattern that global or constant memory reads have to 

obey to get good performance. 3. The latency of addressing 

calculations is better hidden. However, performance trade-

offs are not yet fully understood, especially in the case; 

switching between device and host in order to write data into 

texture memory versus no switching between device and host 

but using global memory for manipulating data.  

In this approach, a video image is loaded into a global 

memory instead of texture memory, a region of the image 

block is multiplied pixel-wise with the convolution filter, the 

results are summed, and then output pixel is written back to 

global memory for next step. Since whole image is loaded 

into the global memory, we only need to handle boundary 

cases of when a pixel is at the edge of the image. Then the 

video image is segmented into 16×16 sub-windows and a set 

of CUDA blocks process these sub-windows for convolution 

operations until all the sub-windows are completed. However, 

memory access patterns should be carefully chosen to get 

good performance.  In order to hide the high latency to 

access global memory, the access pattern for all threads 

should follow a coalesced fashion as depicted in Figure 4.  

Shared memory Shared memory access is faster than global 

memory access since it is on-chip. To explore how much of 

performance gain we can achieve by using shared memory, 

we implement Canny algorithm with shared memory. A 

block of pixels from the image is loaded into an array in 

shared memory, convolution or thresholding operation is 

 

Figure 3. Four steps on Canny algorithm computation 

Top-Left: Image with Gaussian filter; Top-Right: Image with Sobel filter; 

Bottom-Left: Image with non- maximum suppression; Bottom-Right: 

image with Hysteresis 

 
(a) Example of a coalesced memory access pattern

 
( b) Example of a non-coalesced memory access pattern 

Figure 4. Memory access pattern constraint 



applied to the pixel block, then the output image is written 

into shared memory array for the use on the next step. In this 

approach, the pixels at the edge of the shared memory array 

will depend on pixels not in shared memory. Therefore, 

padding pixels of the mask radius is required around the 

image block within a thread block as shown on Figure 5.  

In order to achieve high memory throughput, shared memory 

is divided into successive 16 memory modules of 32-bit 

words, called banks, which can be serviced in a single 

memory transaction. If all threads within a half warp (16 

threads) simultaneously access consecutive words then single 

large read of the 16 values can be performed at maximum 

speed, or if memory requests from several threads fall in the 

same memory bank, performance will be much lower. It is 

therefore important to have threads access a single 32-bit 

word at a time, with each word being assigned to one thread. 

3.3 Optimization Strategies  

Memory Space We explored different memory space for 

source image location and intermediate calculation results 

storage in order to propose optimization strategies. In all 

cases of implementation, the kernel configuration is of 

16×16 threads of each block and 32 of blocks on 512x512 

pixel image. The convolution is parallelized across the 

available computational threads where each thread computes 

the convolution result of its assigned pixels sequentially. 

Pixels are distributed evenly across the threads. The result is 

shown on Figure 6. On 8800GTS-512, the average 

processing time per frame is 1.818ms with shared memory,. 

It takes 2.344ms per frame to perform Canny algorithm with 

texture memory. Performance time per frame is 5.433ms in 

average using global memory for data manipulation without 

execution switching between CPU code and GPU kernel 

code. 

Threads Configuration Number of blocks each 

multiprocessor can process depends on how many registers 

per thread and how much shared memory per block is 

required for a given kernel. Since shared memory is not used 

in the implementation with texture memory, we only need to 

be concerned about the number of registers used and we can 

maximize the size of block and grid as much as possible. 

With 348 threads per block and 512 blocks per image, we 

could enhance the performance up to 1.978ms per frame in 

average. This demonstrates that when the data come from 

global memory, high-latency memory access cost can be 

hidden by increasing the number of concurrently running 

blocks.  

Switching Between CPU and GPU To further explore on 

performance trade-offs, we also implemented the algorithm 

separated as two kernel codes with global memory, and the 

average calculation time is 6.676ms per frame. Switching 

between CPU and GPU can severely harm the performance.  

4 Vector Coherence Mapping 

4.1 Vector Coherence Mapping 

VCM algorithm is for the computation of an optical flow 

field from a video image sequence first introduced by Quek 

et al [12][13]. By applying spatial and temporal coherence 

constraints with fuzzy image processing operation, it tracks 

sets of interest points in the frame in parallel. A voting 

scheme is featured to enforce the constraints on vector fields.  

Figure 7 describes how VCM incorporates spatial coherence 

constraints with the correlation for tracking interest points in 

a flow field. Three detected points are shown at the left of 

the picture where the shaded squares represent the position 

of the three interest points at time t and the shaded circles 

represent the corresponding position of those points at t + 1. 

Correlation matching results for each point, which is labeled 

N( ), N( ) and N( ), provide three hotspots as shown at 

middle of picture. (The correlation matching result is called 

 
 

Figure 7: Algorithm illustration for Vector Coherence Mapping 

 
Figure 5. Image block with pad pixels 

 
 

Figure 6. Total execution time vs. GPU time 



Normal Correlation Map (NCM).) By using weighted 

summation of these neighboring NCMs, we can obtain 

Vector Coherence Map of point  with minimizing the 

local variance of the vector field as shown at the right of 

figure. VCM algorithm is inherently parallel since it employs 

convolution and pixel-wise summation as its dominant 

operations.  

4.2 Problem Decomposition 

Computational processing in VCM can be decomposed to 

three phases by their data dependencies on calculation and 

pattern of computation: 1. Interest Point (IP) extraction, 2. 

Normal Correlation Map (NCM) computation, and 3. Vector 

Coherence Map (VCM) computation. These phases repeat 

for each video frame processed. The output of each iteration 

is a list of vectors of interest point motion across the two 

frames. For the purposes of studying the mapping of vision 

algorithms and their efficiency on GPU architectures, we 

divided our task into three test components corresponding to 

the three VCM phases. Each of these components exhibits 

different memory access and algorithmic profiles. The 

characteristics of each phase are over the input image, image 

differencing, and IP sorting and selection. These are typical 

image processing requirements. NCM computation performs 

image correlations and produces a 2D correlation map for 

each IP. This phase also requires that the 2D correlation 

array be instantiated within the parallel computational 

module, and for the entire array to be returned to main 

graphics memory. VCM computation involves the summing 

of values from multiple NCMs. As such, the parallel 

computation module must make multiple memory accesses 

to the IP list and NCMs in main graphics memory. It 

allocates memory for the VCM, performs array value 

summation and scans the resulting VCM for the ‘vote 

maximum’ and returns the ‘best vector’. Apart from the three 

computational phases, we also address the issues of loading 

the video frames to graphics memory as this is potentially 

quite time consuming. The computational phases and data 

flow are summarized in Table 1. 

4.3 GPU Implementation Detail 

4.3.1 Interest Point Extraction  

We segment the video image into 16×16 sub-windows for IP 

extraction. A set of CUDA blocks process these sub-

windows until all the sub-windows are completed. Within 

the block, a 16×16 ‘result array’ each processing thread is 

responsible for a pixel, computing the Sobel gradients, image 

difference, and fuzzy-And operation. The resulting spatio-

temporal (s-t) gradient is entered into a16×16 array in shared 

memory. Since we keep the source video images in texture 

memory, most of the memory access to the images are cache 

hits. Once all the pixels have been processed, they are sorted 

to find the best n IPs subject to a minimum s-t threshold (we 

don’t want IPs beneath a minimum s-t variance). n is a 

parameter of our system that can be tuned to ensure a good 

IP distribution. We implemented a novel sorting algorithm 

where a thread picks up a value in the 16×16 array and 

compares it sequentially with other values within the array. 

Once more than n other points with higher s-t variance are 

encountered, the thread abandons the point. Hence only up to 

n points will run to termination on their threads and be 

returned as detected IPs to global GPU memory. 

4.3.2 NCM Computation  

NCM computation does the real work of image correlation to 

extract correspondences. We choose 64×64 as the NCM size 

on the assumption that no object of interest will traverse the 

breadth of a typical 640×480 video frame in less than 20 

frames (667 ms). We segment NCM computation by IP. 

Each IP is assigned to a computational block. The block 

allocates a 64×64 convolution array for the NCM. Since we 

use a 5×5 correlation template, the block also allocates 

memory for, and reads a 68×68 sub-window from the source 

video frame , and constructs the 5×5 correlation template 

from the region around the IP in frame . The correlation is 

parallelized across the available computational threads where 

each thread computes the correlation result of its assigned 

pixels sequentially. The pixels are distributed evenly across 

the threads. The resulting NCM is returned to global GPU 

memory. Since reading/writing to global memory is costly 

(400-600 cycles per read/write, as opposed to approx 10 

cycles for shared memory), we use a parallel writing 

mechanism known as ‘coalesced access’ mode where 

multiple threads can access global memory in parallel in a 

single read/write process. 

4.3.3 VCM Computation  

VCM computation is also segmented by IP. Each IP is 

assigned to a block, which instantiates a 64×64 array for 

maintaining the VCM being accumulated. Similar to NCM 

computation, every thread is in charge of the accumulation 

results of its assigned VCM pixels. To enable caching 

between global and shared memory, the IPs were cast into 

texture memory and unpacked in the block. The threads read 

relevant NCM pixels from global memory in a coalesced 

manner for the reason we discussed in the last section. After 

the accumulation of all the VCM pixels are complete, we 

select the highest VCM point and return the vector starting at 

the IP being processed and ending at this point. 

4.3.4 Data Access and Pipelining  

The CPU is capable of running concurrently with the GPU. 

The overall running time can be reduced if expensive CPU 

operations are run during GPU kernel execution. In our 

Table 1. Computation phases in the VCM algorithm 

 



implementation, disk access requires the most CPU time. 

The best opportunity to load the next video frame is during 

the VCM phase. This phase requires only the NCMs from 

the previous phase, not the video frames. Therefore, 

modifying a video frame during calculation will not affect 

the result. Also, the VCM phase requires the most time, 

which leaves the CPU idle longer than any other phase. On 

one of our test computers, loading a single frame of video 

requires 0.0521 seconds. When frame loading occurs 

sequentially after the VCM phase is complete, the average 

overall running time per frame was 0.177 seconds. When 

frame loading occurs concurrently with the VCM phase, the 

average loading time decreases to 0.125 seconds. This shows 

that using the GPU allows opportunities for concurrent 

execution, resulting in a significant speedup.  

4.3.5 Results  

In this section we present the results of video stream analysis 

with GPU implementation of VCM algorithm. Figure 8 

shows the VCM results on four different videos computed 

using our CUDA code. The computed vectors are rendered 

on top of the respective image. At the top-left, the camera is 

rotated on its optical axis. Even fair amount of motion is 

blurred, camera movement detected precisely. The top-right 

shows the results of zoom-out video stream. The result 

shows VCM’s ability to track the motion exactly though 

image is grainy and movement is very subtle (Small vectors 

that converges at the center of scene). At the bottom-left, the 

sequence of hand moving is analyzed. The subject is dancing 

while camera is zooming in the subject at the bottom-right. 

VCM correctly extracted both the motion vectors on the 

subject and the zooming vectors elsewhere. 

To evaluate effectiveness of our approach for utilizing GPUs 

as massive data-parallel processor, we used two different 

implementation of VCM algorithm; one supports utilizing 

GPU and the other is based on CPU. For the comparison, 

two different GPUs executed the GPU version code: a 

8600MGT which is equipped on Apple MacBookPro, and a 

8800GTS-512. The CPU version is executed on 2.4 GHz 

Inter Core 2 with Windows XP. The algorithm is 

implemented in the similar way as much as possible; both of 

them used the same data structure for IP, NCM, and VCM. 

The same number and size of sub-windows and the same size 

of IP list, NCM, and VCM were used.  

Graph 9(a) and 9(b) show experiment results with 2048 IPs. 

In the time graph, 8600MGT operation time had to be 

multiplied by 2 and 8800GTS-512 operation had to be 

multiplied 8 for visibility. The speed of CPU operation was 

used as the base comparison in the speed up graph. 

8600MGT showed 3.15 times speed enhancement, and 

8800GTS-512 showed 22.96 times performance 

enhancement. 

5 Conclusion and future work 
In this paper, we analyze fundamental image processing 

operations: Canny Edge detection, with respect to the CUDA 

enabled GPU implementation. We identify general GPU 

optimization strategies, memory latency hiding and 

CPU/GPU switching avoidance. Based on the experiment 

results, we present a CUDA-based GPU implementation of 

the parallel VCM algorithm. We show that common desktop 

graphics hardware can accelerate the algorithm more than 22 

times over a state-of-the-art CPU. To achieve such a 

performance gain, care has to be taken in optimization to 

map computation to the GPU architecture. Since VCM is a 

 

Figure 8. VCM Processing Results with GPU implementation. 

Top-Left: Camera rotating on its optical axis; Top-Right: Camera zooming 

out; Bottom-Left: Hand moving up; Bottom-Right: Girl dancing with 

camera zooming in 

 

 
 

Figure 9. (a) Time Comparison between GPU and CPU operation: The 

8600 MGT tie was multiplied by 2, and the 8800 GTS-512 was 

multiplied by 8 for visibility. (b) Speed Comparison between GPU and 

CPU operation: The speed of CPU was set at 1.0 for to be base 

comparison 



more computationally and data intensive algorithm, we 

believe that we have demonstrated the viability of applying 

GPUs to general computer vision processing. We have also 

shown that the CUDA programming framework is amenable 

to coding vision algorithms. We expect to test this premises 

against a broader array of computer vision algorithms, and to 

test more optimization strategies to gain insights on how 

these affect computation efficiency. 
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