
Low-Cost, High-Speed Computer Vision

Using NVIDIA’s CUDA Architecture
Seung In Park, Sean P. Ponce, Jing Huang, Yong Cao and Francis Quek†

Center of Human Computer Interaction,

Virginia Polytechnic Institute and University

Blacksburg, VA 24060, USA
†quek@vt.edu

Abstract— In this paper, we introduce real time image processing

techniques using modern programmable Graphic Processing Units

(GPU). GPUs are SIMD (Single Instruction, Multiple Data) device

that is inherently data-parallel. By utilizing NVIDIA’s new GPU

programming framework, “Compute Unified Device Architecture”

(CUDA) as a computational resource, we realize significant

acceleration in image processing algorithm computations. We show

that a range of computer vision algorithms map readily to CUDA

with significant performance gains. Specifically, we demonstrate

the efficiency of our approach by a parallelization and optimization

of Canny’s edge detection algorithm, and applying it to a

computation and data-intensive video motion tracking algorithm

known as “Vector Coherence Mapping” (VCM). Our results show

the promise of using such common low-cost processors for

intensive computer vision tasks.

Keywords: General Purpose GPU processing, Dynamic Vision,

Motion Tracking, Parallel Computing, Video Processing

1 Introduction 
Image processing is important to such fields as computer

vision and human computer interaction. For example, real-

time motion tracking is required for applications such as

autonomous vehicle control and gesture interaction.

However, a long standing challenge to the field of image

processing is that intensive computational power is required

in order to achieve higher speed. Real-time image processing

on video frames is difficult to attain even with the most

powerful modern CPUs. Increasing resolution of video

capture devices and increased requirement for accuracy

make it is harder to realize real-time performance. 

Recently, graphic processing units have evolved into an

extremely powerful computational resource. For example,

The NVIDIA GeForce GTX 280 is built on a 65nm process,

with 240 processing cores running at 602 MHz, and 1GB of

GDDR3 memory at 1.1GHz running through a 512-bit

memory bus. Its processing power is theoretically 933

GFLOPS [1], billions of floating-point operations per second,

in other words. As a comparison, the quad-core 3GHz Intel

Xeon CPU operates roughly 96 GFLOPS [2]. The annual

computation growth rate of GPUs is approximately up to

2.3x. In contrast to this, that of CPUs is 1.4x [3]. At the same

time, GPU is becoming cheaper and cheaper. 

As a result, there is strong desire to use GPUs as alternative

computational platforms for acceleration of computational

intensive tasks beyond the domain of graphics applications.

To support this trend of GPGPU (General-Purpose

Computing on GPUs) computation, graphics card vendors

have provided programmable GPUs and high-level

languages to allow developers to generate GPU-based

applications. 

This research aimed at accomplishing efficient and cheaper

application of image processing for intensive computation

using GPUs. We show that a range of computer vision

algorithms map readily to CUDA by using edge detection

and motion tracking algorithm as our example application.

The remainder of the paper is organized as follows. In

Section 2, we describe the recent advances in GPU hardware

and programming framework, discuss previous efforts on

application acceleration using CUDA framework, and the

use of GPUs in computer vision applications. In Section 3,

we detail the implementation of the Canny algorithm and

various design and optimization choices we made. Then we

demonstrate the efficiency of our approach by applying it to

a data-intensive motion tracking algorithm, Vector

Coherence Mapping, in Section 4. Finally we present our

conclusion and future work in Section 5.

2 Background   

2.1 The NVIDIA CUDA Programming Framework

Traditionally, general-purpose GPU programming was

accomplished by using a shader-based framework [4]. The

shader-based framework has several disadvantages. This

framework has a steep learning curve that requires in-depth

knowledge of specific rendering pipelines and graphics

programming. Algorithms have to be mapped into vertex

transformations or pixel illuminations. Data have to be cast

into texture maps and operated on like they are texture data.

Because shader-based programming was originally intended

for graphics processing, there is little programming support

for control over data flow; and, unlike a CPU program, a

shader-based program cannot have random memory access

for writing data. There are limitations on the number of

branches and loops a program can have. All of these

limitations hindered the use of the GPU for general-purpose

computing. NVIDIA released CUDA, a new GPU

programming model, to assist developers in general-purpose

computing in 2007 [5]. In the CUDA programming

framework, the GPU is viewed as a compute device that is a

co-processor to the CPU. The GPU has its own DRAM,

referred to as device memory, and execute a very high

number of threads in parallel. More precisely, data-parallel

portions of an application are executed on the device as

kernels which run in parallel on many threads. In order to

organize threads running in parallel on the GPU, CUDA

organizes them into logical blocks. Each block is mapped

onto a multiprocessor in the GPU. All the threads in one

block can be synchronized together and communicate with

each other. Because there is a limited number of threads that

a block can contain, these blocks are further organized into

grids allowing for a larger number of threads to run

concurrently as illustrated in Figure 1. Threads in different

blocks cannot be synchronized, nor can they communicate

even if they are in the same grid. All the threads in the same

grid run the same GPU code.

CUDA has several advantages over the shader-based model.

Because CUDA is an extension of C, there is no longer a

need to understand shader-based graphics APIs. This reduces

the learning curve for most of C/C++ programmers. CUDA

also supports the use of memory pointers, which enables

random memory-read and write-access ability. In addition,

the CUDA framework provides a controllable memory

hierarchy which allows the program to access the cache

(shared memory) between GPU processing cores and GPU

global memory. As an example, the architecture of the

GeForce 8 Series, the eighth generation of NVIDIA’s

graphics cards, based on CUDA is shown in Figure 2.

The GeForce 8 GPU is a collection of multiprocessors, each

of which has 16 SIMD (Single Instruction, Multiple Data)

processing cores. The SIMD processor architecture allows

each processor in a multiprocessor to run the same

instruction on different data, making it ideal for data-parallel

computing. Each multiprocessor has a set of 32-bit registers

per processors, 16KB of shared memory, 8KB of read-only

constant cache, and 8KB of read-only texture cache. As

depicted in Figure 2, shared memory and cache memory are

on-chip. The global memory and texture memory that can be

read from or written to by the CPU are also in the regions of

device memory. The global and texture memory spaces are

persistent across all the multiprocessors.

2.2 GPU computation in image processing

Most computer vision and image processing tasks perform

the same computations on a number of pixels, which is a

typical data-parallel operation. Thus, they can take advantage

of SIMD architectures and be parallelized effectively on

GPU. Several applications of GPU technology for vision

have already been reported in the literature.

 De Neve et al. [6] implemented the inverse YCoCg-R

color transform by making use of pixel shader. To track a

finger with a geometric template, Ohmer et al. [7]

constructed gradient vector field computation and Canny

edge extraction on a shader-based GPU which is capable of

30 frames per second performance. Sinha et al. [8]

constructed a GPU-based Kanade-Lucas-Tomasi feature

tracker maintaining 1000 tracked features on 800x600 pixel

images about 40 ms on NVIDIA GPUs. Although all these

applications show real-time performance at intensive image

processing calculations, they do not scale well on newer

generation of graphics hardware including NVIDIA’ CUDA.

Mizukami and Tadamura [9] proposed implementation of

Horn and Schunck's [10] regularization method for optical

flow computation based on the CUDA programming

framework. Making use of on-chip shared memory, they

were able to get approximately 2.25 times speed up using a

NVIDIA GeForce 8800GTX card over a 3.2-GHz CPU on

Windows XP.

3 Canny Edge Detection 

3.1 Problem Decomposition

In the context of GPU computation, Canny algorithm

consists of set of convolution operation which is just the

scalar product of the filter weights with the input pixels and

thresholding operation. These operations map well to

computation on GPUs because it follows the SIMD paradigm.

As shown on Figure 3, a series of steps must be followed to

implement the Canny edge detector. The first step is

applying 5x5 Gaussian blur filter to the original image to

filter out noise, then 3x3 step edge operator is used to

determine edge gradient and direction. In the third stage,

non-maximum suppression is carried out to find a local

maximum in the gradient direction to generate thin edges in

Figure 1.Thread and Block Structure of CUDA

Figure 2. GeForce 8 series GPU architecture

the image. Finally, thresholding with hysteresis is processed

to determine continuous edges without streaking [11].

3.2 GPU implementation Details

To characterize the effects of various CUDA-based

programming optimization strategies for image processing

algorithm, we implement Canny algorithm using different

memory regions and access patterns.

Texture memory The result of each step is an image itself

that can readily be mapped to texture for the use in next

phase of computation. The texture memory space are cached,

a texture fetch costs just one texture cache read on a cache

hit, otherwise costs one device memory read on a cache miss.

Since neighboring pixel data are required to work on a pixel,

convolution operations are of high reference of locality in

terms of memory access. This means that GPUs are able to

exploit texture memory for high performance in convolution

operations. Another advantageous point of using texture

memory is that the hardware provides automatic handling of

boundary cases of the image. When the referenced

coordinate of texture is out of valid range, the hardware

clamps the coordinate to the valid range or wraps to the valid

range depending on the addressing mode set.

Kernel code is not able to write data into texture memory

though it can read from texture memory. It means execution

should be switched between CPU code and GPU kernel code

repeatedly whenever it generates a texture with the

calculation results at each step. Therefore four times data

transferring between host (CPU) and device accompanies in

the implementation using texture memory. This is costly

because the bandwidth between the device memory and the

host memory (CPU’s own DRAM) is much lower compared

to the bandwidth between the device and the device memory.

The transfer of data between the host and the device is

limited by the bus; for most setups, this is limited by the

PCI-Express x16 maximum theoretical bandwidth of 4GB/s.

Memory transfer speeds within the device has a theoretical

maximum of 86GB/s [5].

Global memory Device memory reads through texture

fetching present several benefits over reads from global or

constant memory; 1. Texture memory are cached, potentially

exhibiting higher bandwidth if there is high locality in the

texture fetches. 2. The method of addressing is much easier

because they are not subject to the constraints on memory

access pattern that global or constant memory reads have to

obey to get good performance. 3. The latency of addressing

calculations is better hidden. However, performance trade-

offs are not yet fully understood, especially in the case;

switching between device and host in order to write data into

texture memory versus no switching between device and host

but using global memory for manipulating data.

In this approach, a video image is loaded into a global

memory instead of texture memory, a region of the image

block is multiplied pixel-wise with the convolution filter, the

results are summed, and then output pixel is written back to

global memory for next step. Since whole image is loaded

into the global memory, we only need to handle boundary

cases of when a pixel is at the edge of the image. Then the

video image is segmented into 16×16 sub-windows and a set

of CUDA blocks process these sub-windows for convolution

operations until all the sub-windows are completed. However,

memory access patterns should be carefully chosen to get

good performance. In order to hide the high latency to

access global memory, the access pattern for all threads

should follow a coalesced fashion as depicted in Figure 4.

Shared memory Shared memory access is faster than global

memory access since it is on-chip. To explore how much of

performance gain we can achieve by using shared memory,

we implement Canny algorithm with shared memory. A

block of pixels from the image is loaded into an array in

shared memory, convolution or thresholding operation is

Figure 3. Four steps on Canny algorithm computation

Top-Left: Image with Gaussian filter; Top-Right: Image with Sobel filter;

Bottom-Left: Image with non- maximum suppression; Bottom-Right:

image with Hysteresis

(a) Example of a coalesced memory access pattern

(b) Example of a non-coalesced memory access pattern

Figure 4. Memory access pattern constraint

applied to the pixel block, then the output image is written

into shared memory array for the use on the next step. In this

approach, the pixels at the edge of the shared memory array

will depend on pixels not in shared memory. Therefore,

padding pixels of the mask radius is required around the

image block within a thread block as shown on Figure 5.

In order to achieve high memory throughput, shared memory

is divided into successive 16 memory modules of 32-bit

words, called banks, which can be serviced in a single

memory transaction. If all threads within a half warp (16

threads) simultaneously access consecutive words then single

large read of the 16 values can be performed at maximum

speed, or if memory requests from several threads fall in the

same memory bank, performance will be much lower. It is

therefore important to have threads access a single 32-bit

word at a time, with each word being assigned to one thread.

3.3 Optimization Strategies

Memory Space We explored different memory space for

source image location and intermediate calculation results

storage in order to propose optimization strategies. In all

cases of implementation, the kernel configuration is of

16×16 threads of each block and 32 of blocks on 512x512

pixel image. The convolution is parallelized across the

available computational threads where each thread computes

the convolution result of its assigned pixels sequentially.

Pixels are distributed evenly across the threads. The result is

shown on Figure 6. On 8800GTS-512, the average

processing time per frame is 1.818ms with shared memory,.

It takes 2.344ms per frame to perform Canny algorithm with

texture memory. Performance time per frame is 5.433ms in

average using global memory for data manipulation without

execution switching between CPU code and GPU kernel

code.

Threads Configuration Number of blocks each

multiprocessor can process depends on how many registers

per thread and how much shared memory per block is

required for a given kernel. Since shared memory is not used

in the implementation with texture memory, we only need to

be concerned about the number of registers used and we can

maximize the size of block and grid as much as possible.

With 348 threads per block and 512 blocks per image, we

could enhance the performance up to 1.978ms per frame in

average. This demonstrates that when the data come from

global memory, high-latency memory access cost can be

hidden by increasing the number of concurrently running

blocks.

Switching Between CPU and GPU To further explore on

performance trade-offs, we also implemented the algorithm

separated as two kernel codes with global memory, and the

average calculation time is 6.676ms per frame. Switching

between CPU and GPU can severely harm the performance.

4 Vector Coherence Mapping 

4.1 Vector Coherence Mapping

VCM algorithm is for the computation of an optical flow

field from a video image sequence first introduced by Quek

et al [12][13]. By applying spatial and temporal coherence

constraints with fuzzy image processing operation, it tracks

sets of interest points in the frame in parallel. A voting

scheme is featured to enforce the constraints on vector fields.

Figure 7 describes how VCM incorporates spatial coherence

constraints with the correlation for tracking interest points in

a flow field. Three detected points are shown at the left of

the picture where the shaded squares represent the position

of the three interest points at time t and the shaded circles

represent the corresponding position of those points at t + 1.

Correlation matching results for each point, which is labeled

N(), N() and N(), provide three hotspots as shown at

middle of picture. (The correlation matching result is called

Figure 7: Algorithm illustration for Vector Coherence Mapping

Figure 5. Image block with pad pixels

Figure 6. Total execution time vs. GPU time

Normal Correlation Map (NCM).) By using weighted

summation of these neighboring NCMs, we can obtain

Vector Coherence Map of point with minimizing the

local variance of the vector field as shown at the right of

figure. VCM algorithm is inherently parallel since it employs

convolution and pixel-wise summation as its dominant

operations.

4.2 Problem Decomposition

Computational processing in VCM can be decomposed to

three phases by their data dependencies on calculation and

pattern of computation: 1. Interest Point (IP) extraction, 2.

Normal Correlation Map (NCM) computation, and 3. Vector

Coherence Map (VCM) computation. These phases repeat

for each video frame processed. The output of each iteration

is a list of vectors of interest point motion across the two

frames. For the purposes of studying the mapping of vision

algorithms and their efficiency on GPU architectures, we

divided our task into three test components corresponding to

the three VCM phases. Each of these components exhibits

different memory access and algorithmic profiles. The

characteristics of each phase are over the input image, image

differencing, and IP sorting and selection. These are typical

image processing requirements. NCM computation performs

image correlations and produces a 2D correlation map for

each IP. This phase also requires that the 2D correlation

array be instantiated within the parallel computational

module, and for the entire array to be returned to main

graphics memory. VCM computation involves the summing

of values from multiple NCMs. As such, the parallel

computation module must make multiple memory accesses

to the IP list and NCMs in main graphics memory. It

allocates memory for the VCM, performs array value

summation and scans the resulting VCM for the ‘vote

maximum’ and returns the ‘best vector’. Apart from the three

computational phases, we also address the issues of loading

the video frames to graphics memory as this is potentially

quite time consuming. The computational phases and data

flow are summarized in Table 1.

4.3 GPU Implementation Detail

4.3.1 Interest Point Extraction

We segment the video image into 16×16 sub-windows for IP

extraction. A set of CUDA blocks process these sub-

windows until all the sub-windows are completed. Within

the block, a 16×16 ‘result array’ each processing thread is

responsible for a pixel, computing the Sobel gradients, image

difference, and fuzzy-And operation. The resulting spatio-

temporal (s-t) gradient is entered into a16×16 array in shared

memory. Since we keep the source video images in texture

memory, most of the memory access to the images are cache

hits. Once all the pixels have been processed, they are sorted

to find the best n IPs subject to a minimum s-t threshold (we

don’t want IPs beneath a minimum s-t variance). n is a

parameter of our system that can be tuned to ensure a good

IP distribution. We implemented a novel sorting algorithm

where a thread picks up a value in the 16×16 array and

compares it sequentially with other values within the array.

Once more than n other points with higher s-t variance are

encountered, the thread abandons the point. Hence only up to

n points will run to termination on their threads and be

returned as detected IPs to global GPU memory.

4.3.2 NCM Computation

NCM computation does the real work of image correlation to

extract correspondences. We choose 64×64 as the NCM size

on the assumption that no object of interest will traverse the

breadth of a typical 640×480 video frame in less than 20

frames (667 ms). We segment NCM computation by IP.

Each IP is assigned to a computational block. The block

allocates a 64×64 convolution array for the NCM. Since we

use a 5×5 correlation template, the block also allocates

memory for, and reads a 68×68 sub-window from the source

video frame , and constructs the 5×5 correlation template

from the region around the IP in frame . The correlation is

parallelized across the available computational threads where

each thread computes the correlation result of its assigned

pixels sequentially. The pixels are distributed evenly across

the threads. The resulting NCM is returned to global GPU

memory. Since reading/writing to global memory is costly

(400-600 cycles per read/write, as opposed to approx 10

cycles for shared memory), we use a parallel writing

mechanism known as ‘coalesced access’ mode where

multiple threads can access global memory in parallel in a

single read/write process.

4.3.3 VCM Computation

VCM computation is also segmented by IP. Each IP is

assigned to a block, which instantiates a 64×64 array for

maintaining the VCM being accumulated. Similar to NCM

computation, every thread is in charge of the accumulation

results of its assigned VCM pixels. To enable caching

between global and shared memory, the IPs were cast into

texture memory and unpacked in the block. The threads read

relevant NCM pixels from global memory in a coalesced

manner for the reason we discussed in the last section. After

the accumulation of all the VCM pixels are complete, we

select the highest VCM point and return the vector starting at

the IP being processed and ending at this point.

4.3.4 Data Access and Pipelining

The CPU is capable of running concurrently with the GPU.

The overall running time can be reduced if expensive CPU

operations are run during GPU kernel execution. In our

Table 1. Computation phases in the VCM algorithm

implementation, disk access requires the most CPU time.

The best opportunity to load the next video frame is during

the VCM phase. This phase requires only the NCMs from

the previous phase, not the video frames. Therefore,

modifying a video frame during calculation will not affect

the result. Also, the VCM phase requires the most time,

which leaves the CPU idle longer than any other phase. On

one of our test computers, loading a single frame of video

requires 0.0521 seconds. When frame loading occurs

sequentially after the VCM phase is complete, the average

overall running time per frame was 0.177 seconds. When

frame loading occurs concurrently with the VCM phase, the

average loading time decreases to 0.125 seconds. This shows

that using the GPU allows opportunities for concurrent

execution, resulting in a significant speedup.

4.3.5 Results

In this section we present the results of video stream analysis

with GPU implementation of VCM algorithm. Figure 8

shows the VCM results on four different videos computed

using our CUDA code. The computed vectors are rendered

on top of the respective image. At the top-left, the camera is

rotated on its optical axis. Even fair amount of motion is

blurred, camera movement detected precisely. The top-right

shows the results of zoom-out video stream. The result

shows VCM’s ability to track the motion exactly though

image is grainy and movement is very subtle (Small vectors

that converges at the center of scene). At the bottom-left, the

sequence of hand moving is analyzed. The subject is dancing

while camera is zooming in the subject at the bottom-right.

VCM correctly extracted both the motion vectors on the

subject and the zooming vectors elsewhere.

To evaluate effectiveness of our approach for utilizing GPUs

as massive data-parallel processor, we used two different

implementation of VCM algorithm; one supports utilizing

GPU and the other is based on CPU. For the comparison,

two different GPUs executed the GPU version code: a

8600MGT which is equipped on Apple MacBookPro, and a

8800GTS-512. The CPU version is executed on 2.4 GHz

Inter Core 2 with Windows XP. The algorithm is

implemented in the similar way as much as possible; both of

them used the same data structure for IP, NCM, and VCM.

The same number and size of sub-windows and the same size

of IP list, NCM, and VCM were used.

Graph 9(a) and 9(b) show experiment results with 2048 IPs.

In the time graph, 8600MGT operation time had to be

multiplied by 2 and 8800GTS-512 operation had to be

multiplied 8 for visibility. The speed of CPU operation was

used as the base comparison in the speed up graph.

8600MGT showed 3.15 times speed enhancement, and

8800GTS-512 showed 22.96 times performance

enhancement.

5 Conclusion and future work 
In this paper, we analyze fundamental image processing

operations: Canny Edge detection, with respect to the CUDA

enabled GPU implementation. We identify general GPU

optimization strategies, memory latency hiding and

CPU/GPU switching avoidance. Based on the experiment

results, we present a CUDA-based GPU implementation of

the parallel VCM algorithm. We show that common desktop

graphics hardware can accelerate the algorithm more than 22

times over a state-of-the-art CPU. To achieve such a

performance gain, care has to be taken in optimization to

map computation to the GPU architecture. Since VCM is a

Figure 8. VCM Processing Results with GPU implementation.

Top-Left: Camera rotating on its optical axis; Top-Right: Camera zooming

out; Bottom-Left: Hand moving up; Bottom-Right: Girl dancing with

camera zooming in

Figure 9. (a) Time Comparison between GPU and CPU operation: The

8600 MGT tie was multiplied by 2, and the 8800 GTS-512 was

multiplied by 8 for visibility. (b) Speed Comparison between GPU and

CPU operation: The speed of CPU was set at 1.0 for to be base

comparison

more computationally and data intensive algorithm, we

believe that we have demonstrated the viability of applying

GPUs to general computer vision processing. We have also

shown that the CUDA programming framework is amenable

to coding vision algorithms. We expect to test this premises

against a broader array of computer vision algorithms, and to

test more optimization strategies to gain insights on how

these affect computation efficiency.

 

Acknowledgements 
This research has been partially supported by NSF grants

“Embodied Communication: Vivid Interaction with History

and Literature,” IIS-0624701, “Interacting with the

Embodied Mind,” CRI-0551610, and “Embodiment

Awareness, Mathematics Discourse and the Blind,” NSF-IIS-

0451843.

References 
[1] NVIDIA, CUDA Programming Guide Version 2.0. 2008,

NVIDIA Corporation: Santa Clara, California.

[2] Intel, Quad-Core Intel® Xeon® Processor 5400 Series.

2008, Intel Corporation: Santa Clara, California.

[3] Fan, Z., Qiu, F., Kaufman, A., and Yoakum-Stover, S.

GPU Cluster for High Performance Computing. in Proc. of

the 2004 ACM/IEEE Conf. on Supercomputing, 2004.

[4] Allard, J. and Raffin, B., A shader-based parallel

rendering framework. in Visualization, 2005. VIS 05. IEEE,

(2005), 127-134.

[5] NVIDIA, CUDA Programming Guide Version 1.1. 2007,

NVIDIA Corporation: Santa Clara, California.

[6] De Neve, W., et al., GPU-assisted decoding of video

samples represented in the YCoCg-R color space, in Proc.

ACM Int. Conf. on Multimedia. 2005.

[7] Ohmer, J. F., Maire, F., and Brown, R. 2006. Real-Time

Tracking with Non-Rigid Geometric Templates Using the

GPU. In Proc. of the Int. Conf. on Computer Graphics,

Imaging and Visualisation (July 26 - 28, 2006). CGIV. IEEE

Computer Society, Washington, DC, 200-206.

[8] Sinha, S.N., Frahm J.-M., Pollefeys M., and Genc Y.

Feature tracking and matching in video using programmable

graphics hardware. Machine Vision and Applications

(MVA), 2007.

[9] Mizukami, Y. and K. Tadamura. Optical Flow

Computation on Compute Unified Device Architecture. in

Image Analysis and Processing, ICIAP 2007.

[10] Horn, B.K.P. and B.G. Schunck, Determining optical

flow. Art. Intel., 1981. 17: p. 185--204.

[11] Canny, J., A Computational Approach To Edge

Detection, IEEE Trans. Pattern Analysis and Machine

Intelligence, 8:679-714, 1986.

[12] Quek, F. and R. Bryll. Vector Coherence Mapping: A

Parallelizable Approach to Image Flow Computation. in

ACCV 1998.

[13] Quek, F., X. Ma, and R. Bryll. A parallel algorithm for

dynamic gesture tracking. in ICCV'99 Wksp on

RATFGRTS. 1999.

