
 Open access Proceedings Article DOI:10.1109/ASAP.2008.4580158

Low-cost implementations of NTRU for pervasive security — Source link

A.C. Atici, Lejla Batina, Junfeng Fan, Ingrid Verbauwhede ...+1 more authors

Institutions: Katholieke Universiteit Leuven, Istanbul Technical University

Published on: 02 Jul 2008 - Application-Specific Systems, Architectures, and Processors

Topics: NTRU, Encryption, Clock gating, Cryptosystem and Cryptography

Related papers:

 NTRU: A Ring-Based Public Key Cryptosystem

 NTRU in Constrained Devices

 An FPGA implementation of the NTRUEncrypt cryptosystem

 Cryptography for Ultra-Low Power Devices

 Choosing NTRUEncrypt Parameters in Light of Combined Lattice Reduction and MITM Approaches

Share this paper:

View more about this paper here: https://typeset.io/papers/low-cost-implementations-of-ntru-for-pervasive-security-
4qdbl7ntwd

https://typeset.io/
https://www.doi.org/10.1109/ASAP.2008.4580158
https://typeset.io/papers/low-cost-implementations-of-ntru-for-pervasive-security-4qdbl7ntwd
https://typeset.io/authors/a-c-atici-4cvr4lmj2g
https://typeset.io/authors/lejla-batina-13rebfj5jc
https://typeset.io/authors/junfeng-fan-3boqfgtiek
https://typeset.io/authors/ingrid-verbauwhede-1wg8fugmik
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/institutions/istanbul-technical-university-2wf6tnqa
https://typeset.io/conferences/application-specific-systems-architectures-and-processors-3xo8snep
https://typeset.io/topics/ntru-3u65s7ik
https://typeset.io/topics/encryption-3by21bfi
https://typeset.io/topics/clock-gating-3pktl7gu
https://typeset.io/topics/cryptosystem-384taihb
https://typeset.io/topics/cryptography-i1w0hc3v
https://typeset.io/papers/ntru-a-ring-based-public-key-cryptosystem-4oyxwmzs2k
https://typeset.io/papers/ntru-in-constrained-devices-2tastmjlsd
https://typeset.io/papers/an-fpga-implementation-of-the-ntruencrypt-cryptosystem-sc0vikotpd
https://typeset.io/papers/cryptography-for-ultra-low-power-devices-52xi9ngrp3
https://typeset.io/papers/choosing-ntruencrypt-parameters-in-light-of-combined-lattice-2j33gcx5ni
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/low-cost-implementations-of-ntru-for-pervasive-security-4qdbl7ntwd
https://twitter.com/intent/tweet?text=Low-cost%20implementations%20of%20NTRU%20for%20pervasive%20security&url=https://typeset.io/papers/low-cost-implementations-of-ntru-for-pervasive-security-4qdbl7ntwd
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/low-cost-implementations-of-ntru-for-pervasive-security-4qdbl7ntwd
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/low-cost-implementations-of-ntru-for-pervasive-security-4qdbl7ntwd
https://typeset.io/papers/low-cost-implementations-of-ntru-for-pervasive-security-4qdbl7ntwd

Low-cost Implementations of NTRU for pervasive security∗

Ali Can Atıcı

Istanbul Technical University

Institute of Science and Technology

aticial@itu.edu.tr

Lejla Batina

Katholike Universiteit Leuven

ESAT/COSIC and IBBT

lejla.batina@esat.kuleuven.be

Junfeng Fan

Katholike Universiteit Leuven

ESAT/COSIC and IBBT

junfeng.fan@esat.kuleuven.be

Ingrid Verbauwhede

Katholike Universiteit Leuven

ESAT/COSIC and IBBT

ingrid.verbauwhede@esat.kuleuven.be

S. Berna Örs Yalçın

Istanbul Technical University

Faculty of Electrical and Electronics Engineering

siddika.ors@itu.edu.tr

Abstract

NTRU is a public-key cryptosystem based on the shortest

vector problem in a lattice which is an alternative to RSA

and ECC. This work presents a compact and low power

NTRU design that is suitable for pervasive security appli-

cations such as RFIDs and sensor nodes. We have designed

two architectures, one is only capable of encryption and the

other one performs both encryption and decryption. The

strategy for the designs includes clock gating of registers,

operand isolation and precomputation. This work is also

the first one to present a complete NTRU design with en-

cryption/decryption circuitry. Our encryption-only NTRU

design has a gate-count of 2.8 kgates and dynamic power

consumption of 1.72 µW . Moreover, encryption-decryption

NTRU design consumes about 6 µW dynamic power and

consists of 10.5 kgates.

1. Introduction

The feasibility of Public-key (PK) solutions for RFIDs

and sensor networks is an open research problem due to

severe limitations in costs, area and power. RFID tags

and sensor nodes are extreme examples as they imply very

∗This work is funded partially by IBBT, Katholieke Universiteit Leuven

(OT/06/40) and FWO projects (G.0300.07 and G.0450.04). This work was

supported in part by the IAP Programme P6/26 BCRYPT of the Belgian

State (Belgian Science Policy), by the EU IST FP6 projects (ECRYPT) and

by the IBBT-QoE project of the IBBT.

low budget for the number of gates, power, bandwidth etc.

whilst they sometimes require security solutions. Imple-

mentations of Public-key Cryptography (PKC) are very dif-

ficult in those environments as PKC deploys computation-

ally demanding operations. However, PKC protocols are

useful for applications that need strong cryptography and

services such as authentication, signatures, key-exchange

etc. In addition, the use of PKC reduces power due to less

protocol overhead [3].

In this paper, we present low-cost implementations of the

Public-key algorithm NTRU, which are viable for RFIDs

and sensor nodes. Section 2 investigates the previous im-

plementations of low-cost PKC. Section 3 summarizes the

basics of NTRU algorithm such as key generation, encryp-

tion and decryption. Section 4 gives brief information about

the low-power design methods used in the designs. Sec-

tion 5 gives the details of the architecture of encryption-only

NTRU whereas, section 6 shows the architecture of encryp-

tion/decryption NTRU. Section 7 discusses the power, area

and latency results of our implementation and previous im-

plementations. And finally, Section 8 concludes the paper.

2. Previous work

To the best of our knowledge very few papers discuss

the possibility for PKC (specifically NTRU) for RFIDs and

sensor nodes. In the master’s thesis of O’Rourke [7], a hard-

ware core is designed which performs only NTRU polyno-

mial multiplication. It has a gate count of minimum 1483

gates, but the design is not optimized for low-cost and there

is no power consumption data. Another NTRU design is im-

plemented by Bailey et al. [1], and it performs only encryp-

tion. The design has approximately 60 000 gates in a Xilinx

Virtex 1000EFG860 FPGA. The most detailed low-cost im-

plementation of NTRU is realized by Kaps [6]. The author

investigated implementations of two algorithms: Rabin’s

scheme and NTRUEncrypt. It is concluded that NTRU-

Encrypt features a suitable low-power and small footprint

solution with a total complexity of 3000 gates and power

consumption of less than 20 µW at 500 kHz. As one would

expect, he showed that Rabin’s scheme is not a feasible so-

lution. Apart from NTRU implementations, there also ex-

ist a compact ECC implementation in [2]. In this work, the

best solution has 6718 gates for modular arithmetic unit and

control unit (data memory not included), and it consumes

power less than 30 µW at 500 kHz.

3. NTRU algorithm

NTRU [4] is a public-key cryptosystem based on the

shortest vector problem in a lattice. Basic operations of

NTRU are realized in a truncated polynomial ring R =
Z[X]/(XN − 1). Polynomials in the ring have integer co-

efficients and a degree of N − 1. Addition is carried out in

a normal way by adding the coefficients that have the same

degree while multiplication is carried out in the following

way. During multiplication the rule XN ≡ 1 is applied

to all elements which have a degree equal or greater than

N . This multiplication is called star multiplication [1] and

denoted with the ∗ symbol. Thus, the product of two poly-

nomials a and b

a(X) = a0 + a1X + a2X
2 + · · · + aN−1X

N−1

b(X) = b0 + b1X + b2X
2 + · · · + bN−1X

N−1

can be calculated as,

c(X) = a(X) ∗ b(X)

ck = a0bk +a1bk−1 + · · ·+aN−1bk+1 =
∑

i+j≡k modN

aibj

In other notation, if we write the polynomials a, b and c as

coefficient vectors, then, the result c = a ∗ b simply equals

to convolution product of two vectors as shown below [7]:

a4 a3 a2 a1 a0

× b4 b3 b2 b1 b0
a4b0 a3b0 a2b0 a1b0 a0b0
a3b1 a2b1 a1b1 a0b1 a4b1
a2b2 a1b2 a0b2 a4b2 a3b2
a1b3 a0b3 a4b3 a3b3 a2b3

+ a0b4 a4b4 a3b4 a2b4 a1b4
c4 c3 c2 c1 c0

NTRU public-key cryptosystem has three integer param-

eters (N, q, p) and four sets Lf , Lg, Lr, Lm of polynomials

of degree N − 1 which have all integer coefficients. It is as-

sumed that N is prime, gcd(p, q) = 1 and q is always fairly

larger than p. NTRU with N = 263 provides an equiva-

lent security level of 1024-bit RSA and 160 bits long ECC

[5, 10].

Key Generation: To generate key sets of NTRU, one

must first choose two random polynomials f ∈ Lf and

g ∈ Lg . These two polynomials must be small polyno-

mials which means their coefficients must be much smaller

than q. Besides, fq ≡ f−1 (mod q) and fp ≡ f−1 (mod p)

must exist. Then, the following computation is performed,

h ≡ fq ∗g (mod q). Now h is our public key while f and fp

are our secret keys. For, more information about parameter

selection, small polynomials and finding inverses of poly-

nomials we refer to [4, 8, 9].

Encryption: Firstly, a message m which is a small

polynomial is chosen from the plaintext set Lm and then

a small random polynomial r is chosen from the set Lr

as blinding value. Finally, encrypted text is evaluated as,

e ≡ pr ∗ h + m (mod q). During encryption, h will be al-

ways multiplied by p. So, to avoid unnecessary computation

it is suggested to use h ≡ pfq ∗ g (mod q) [11].

Decryption: In order to decrypt the encrypted text e, one

must first compute a ≡ f ∗ e ≡ pr ∗ g + f ∗ m (mod q).

At this stage it is essential to chose the coefficients of a
between −q/2 and q/2 instead of 0 and q − 1. Otherwise,

message may not be properly recovered. After this step,

b ≡ a (mod p) = f ∗ m should be calculated. As the final

step, message can be recovered by the multiplication of fp

and b modulo p, c ≡ b ∗ fp (mod p) = m.

4. Low power design methods

There are many power reduction methods available for

both technological and architectural level. Here, we will

mention only the techniques we have used.

The circuit is planned to be running at low frequencies

(500 kHz) thus, we have used a low leakage technology

library for synthesizing our design, which enabled us to

obtain considerably lower static power consumptions. At

the same time, we have also used certain methods to de-

crease the dynamic power consumption such as clock gat-

ing, operand isolation and precomputation.

The aim of clock gating is to control the clock input of

the registers by an enable signal and isolating the clock in-

put unless new values are loaded to registers and decreasing

the switching activity by this way. In clock gating circuit

[13], it is preferred to use a latch in order to disable glitches

which may occur in the clock inputs of registers. Figure 1

shows a clock gated register.

Operand isolation is another way of reducing the switch-

ing activity by isolating the input of complex combinational

Figure 1. A gated register

circuits (i.e. multipliers, adders) when their outputs are not

used.

To avoid consuming power for key generation, public

key h ≡ r ∗ pfq ∗ g (mod q) is precomputed and stored

in the circuit, since we assume that h remains same at each

encryption.

5. Implementation of encryption-only NTRU

We have chosen N = 167, q = 128 and p = 3 among

the parameter sets of NTRU that yields to a high level of

security [4]. As a result of this choice public key h has

coefficients in the interval [0, 127], random polynomial r
and message m have coefficients from the set {−1, 0, 1}.

Thus coefficients of h are encoded in 7 bits, and coefficients

of r and m are encoded in 2 bits. And, while dealing with

negative numbers, two’s complement representation is used.

The main architecture of the encryption engine, as shown

in Figure 2, consists of a look-up table to store h, a polyno-

mial multiplier (PM) to perform the star multiplication, a

Partially Rotating Register (PRR) (N × 2 bits wide) to hold

and rotate r and a control logic that manages the whole en-

cryption process.

Figure 2. NTRU encryption architecture

In this design we do not consider generation of random

polynomials, so we assume that we are able to receive ran-

dom polynomial coefficients one by one from the input rin.

5.1. Look-up table

The Look-up table (LUT) is implemented in a com-

pletely combinational way, in order to give out the appro-

priate public key coefficients according to its address input.

5.2 Polynomial multiplier

This is the main arithmetic core where all computations

are carried out. It has a 7-bit multiplier, a 7-bit Carry Looka-

head Adder (CLA), and a 7-bit register as shown in Figure

3.

Figure 3. Polynomial multiplier unit

All the submodules of PM are realized for 7 bit com-

putations since we need to reduce the results modulo 128.

This way, intermediate and final results are directly reduced

during computations.

Multiplier has such a simple structure owing to small co-

efficients of random polynomial r. Since the coefficients of

r take values from the set {−1, 0, 1}, the product for a mul-

tiplicand x is easily computed from {−x, 0, x}. In case of

negative multiplicand, the product is generated by inverting

the bits and making the carry input of the CLA adder 1.

CLA adder is chosen because of its non-carry propaga-

tion property which we need for less switching activity. At

the same time, not to increase the area, the CLA is imple-

mented in two blocks. Intermediate products are saved in

the register, and partial sum value is always fed back to one

input of CLA adder. After all multiplication and accumu-

lation steps, message input is connected to one input of the

adder and final result is generated.

5.3 Partially rotating register

Partially rotating register is a modified version of regular

rotating register. We made a modification to benefit from

clock gating maximally. During encryption, random poly-

nomial coefficient at the input of PM is changing for every

new public key value. So in case of a regular register, whole

bits must be shifted one time, which means switching activ-

ity of N × 2 registers for every partial product computa-

tion. We have seen by our measurements that clock gating

a regular rotate register does not have a positive effect on

power consumption during NTRU encryption. On the con-

trary, it increases the dynamic power consumption due to

extra switching activity comes from gating circuits (see Ta-

ble 1). To overcome that negative situation we designed a

partially rotating register, as illustrated in Figure 4.

Figure 4. Partially rotating register

In this architecture the right hand side 32-bit register is

the part that is always rotating during encryption and load-

ing of random polynomial. During the loading stage most

significant two bits of that register are used as input and the

output is always the least significant two bits of that register.

A partial rotate signal is sent by the controller till all 16 val-

ues of the register have been used and then a whole rotate

signal is sent to renew the values of partial rotate register.

After receiving that signal, circuit makes a block rotation

with width of 32 bits. With this method, only 32 bits are

switching constantly during encryption while the rest of the

registers switch only 9 times, in the computation of each

cipher text word.

5.4 Control logic

Controller of the encryption engine is designed with a

finite state machine (FSM) which has four states. It con-

trols the whole process by two 8-bit counters and one 4-bit

counter. It starts with the initial state after reset and always

checks the Enc input. If it detects a high signal it transits

to the loading state. During loading state, the coefficients

of r are loaded to the PRR one by one. After loading all

coefficients, FSM passes to the multiplication state.

For multiplication, the coefficients of h and r are mul-

tiplied and accumulated. Multiplication is followed by the

add message state where message is added to the current

sum, cipher text is given out and a done signal is made 1
for one clock cycle. After addition of the message it again

transits to multiplication state to compute the next coeffi-

cient unless it is the last coefficient. After calculating last

coefficient it transits to the initial state.

6 Implementation of encryption-decryption

NTRU

The same parameter sets are used also for encryption-

decryption NTRU design. In this case, we have two more

polynomials that are, private keys f and fp. f has coeffi-

cients from the set {−1, 0, 1} while fp has coefficients from

the set {0, 1, 2}.

Figure 5 shows the architecture of the design. For sim-

plicity not all of the modules and inner signals are shown.

For decryption, a Mod-3 unit, two more look-up tables to

store private keys f and fp, a N × 7 bit PRR and a result

register is added to the previous design.

Figure 5. NTRU encryption decryption archi-
tecture

Moreover there are four routers, composed by multiplex-

ers, which direct the correct values to the correct inputs ac-

cording to encryption and decryption stage. During encryp-

tion, 7-bit and 2-bit input of PM are bounded to LUT h and

N × 2 wide register outputs, respectively. Output of PM is

connected to the result register. In the first multiplication

of decryption, 7-bit and 2-bit input of PM are bounded to

N × 7 wide PRR and LUT f , respectively. And output of

PM is connected to Mod-3 unit, while the output of Mod-

3 unit is connected to the input of register N × 2. During

second multiplication of decryption, 7-bit and 2-bit input of

PM are connected to LUT fp and register N × 2, respec-

tively. Output of PM is again connected to Mod-3 unit but

the output of Mod-3 unit is bounded to result register.

The components used in the NTRU encryption engine

are also used in this design. Again, we used look-up tables

to store the public key and private keys. N × 7 bits wide

PRR has the same architecture as defined in Sect. 5, only

with modified bit lengths. N × 2 bits wide register is im-

plemented as a regular left rotating register. Result register

is also a regular register with a load signal.

The only change has occurred in PM. Since, we designed

PM only working in modulo 128, we added an overflow
output, which is simply carry output of the CLA, to count

the number of modulo 128 reductions during second mul-

tiplication of decryption which the computations should be

done modulo 3. Also, in this design PM is capable of mul-

tiplying with 2 which is used during decryption process.

6.1 Routers

There are four routers in the design. One for address

input of the look-up tables, one for input of the PM, one

for rotating register inputs, and one for result register input.

These modules maintain the necessary connections between

modules according to the control signals generated by con-

troller.

6.2 Mod-3 Unit

Reduction mod 3 is done by a finite state machine based

circuit [12]. The FSM starts at state 0 and checks the bits

from left to right and makes state transitions according to

the value of that bit. The final state after checking the last

bit is the value of the number in modulo 3.

Figure 6. Mod-3 FSM

Overflow output of PM is also connected to this module.

There is a 2-bit overflow counter that counts the occurrences

of overflow. By using the value of this counter, we obtain

the correct reduction mod 3 results.

6.3 Control logic

Controller of the design is implemented as an FSM that

has seven states. It controls the state transitions with two 8-

bit counters and one 4-bit counter. The FSM starts with the

initial state following up the reset and directly transits to the

checking state by controlling the Enc and Dec inputs. Enc

and Dec inputs are checked continuously at checking state.

On detection of a high signal at one of these inputs, FSM

transits to loading state, otherwise state remains unchanged.

During loading state, if it is encryption, coefficients of r
are loaded to the register which is N × 2 wide, one by one.

If it is decryption, coefficients of cipher text e are loaded

to the N × 7 wide PRR, one by one. Loading is followed

by the multiplication state. Multiplication state is common

for encryption and decryption, since polynomial multipli-

cation is carried out in the same way for both situations.

After finishing the multiplication and accumulation of one

coefficient it transits to add message state during encryption

otherwise transits to reduction 3 state.

During add message state, message is added to the cur-

rent sum and controller goes to final result state. At reduc-

tion 3 state the result generated by PM is loaded in Mod-3

unit and the modulo 3 value of that number is calculated.

Both for the first and second reduction mod 3, controller

goes to final result state after computation.

At final result state, if the circuit is doing encryption,

controller loads the result to result register and makes the

done output 1 for one clock cycle. If decryption is being

carried out and circuit is performing the first multiplication,

FSM loads the reduction 3 result to N × 2 wide register. If

the second multiplication is being carried out, then reduc-

tion 3 result is loaded into result register and done output

is made 1 for one clock cycle. For all situations if the last

coefficient is given out, system transits to initial state, oth-

erwise, it transits to multiplication state.

7 Analysis

We wrote our designs in GEZEL [14] and optimized

them for low power and low area. As the technology library,

the Faraday Low Leakage 0.13 µm library is used. Designs

are synthesized by Synopsys Design Vision at 500 kHz and

average power measurements are done by Synopsys Power

Compiler. All power measurements are done by using the

switching activity which is captured by gate-level simula-

tion with ModelSim. Since, the most detailed low-cost

NTRU implementation belongs to the work of Kaps, we

compare our results with his work [6].

We synthesized three different designs for encryption.

One is without any enhancements for power consumption,

one is with clock gated registers, and the last one is with

clock gated registers and partially rotating registers. We

will denote them as Enc1, Enc2 and Enc3 respectively. Gate

counts of the designs found by dividing the whole area of

the circuit by the area of one 2-input NAND gate.

Area Power

Comb Non-comb Total Pdyn Psta Ptot
(µW) (nW) (µW)

Enc1 680 2, 537 3, 217 4.51 12.6 4.52

Enc2 666 2, 078 2, 744 5.57 12.3 5.58

Enc3 776 2, 107 2, 884 1.72 13 1.74

[6] 523 2, 327 2, 850 4.03 15.1e + 03 19.3

Table 1. Power and area results of only en-

cryption NTRU

As we can see from Table 1, our most optimized design

Enc3 and the previous work have almost same gate num-

bers whereas our design is superior to [6], with 1.72 µW
dynamic and 1.74 µW total power consumption. Owing

to technology library that has pW as the leakage power

unit, we also measured considerably lower static power con-

sumptions. Since the rotating register is the major source of

area (73.6%) and power (82.6 %) consumption in Enc1, us-

ing partially rotating registers enables us to obtain dynamic

power savings of more than 50 %. Furthermore, total power

consumption of the Enc3 design during idle state is mea-

sured as 0.18 µW .

Our design finishes encryption at N×(N +1)+N clock

cycles. For our case N = 167 and with a clock frequency

of 500 kHz, it takes 56.44 ms (28 223 clock cycles), which

is 3.5% faster than [6] that finishes encryption at 58.45 ms
(29 225 clock cycles).

To the best of our knowledge, no encryption-decryption

NTRU design is reported before, so we only give our re-

sults. Table 2 shows the consumption of optimized design.

As seen from the table total gate count is 10.5 kgates and

84% of the area is occupied by registers.

Block Comb Non-comb Total %

Controller 231 172 403 3.8
Luts 717 0 717 6.8
PM 109 81 190 1.8
Reduction 3 66 102 168 1.2
N × 2 33 1877 1910 18.2
N × 7 388 6473 6961 66.3
Others 104 42 146 1.4
Total 1651 8848 10500 100

Table 2. Area consumption of encryption-

decryption NTRU

Power consumption of the circuit is measured for three

different working states of the design: Encryption, decryp-

tion and idle. Table 3 shows these results.

As seen our optimized design consumes only about

6 µW while encryption and decryption and 0.5 µW during

idle state. Rotating registers are the major sources that con-

sume power. Around 80% of the power is consumed by

these registers during encryption and decryption.

For the encryption-decryption NTRU design, encryption

takes N × (N + 2) + N clock cycles while decryption

takes 2 × N × (N + 11) + N clock cycles. For the case

N = 167 and with a clock frequency of 500 kHz, encryp-

tion takes 56.78 ms (28 390 clock cycles), decryption takes

119.23 ms (59 619 clock cycles).

8 Conclusion

In this paper we presented a compact and low power

NTRU design that is suitable for pervasive security appli-

cations such as RFIDs and sensor nodes. We designed

two architectures. One is only capable of encryption and

the other one performs both, encryption and decryption.

Our encryption-only NTRU design has a gate-count of 2.8
kgates, which makes it a very compact solution. The en-

cryption takes 56.44 ms and this makes it 3.5% faster than

the best previous work. Our design consumes 1.72 µW of

dynamic power. This presents a saving of a factor more

than 2, when compared with the previous work. This work

is also the first one to present a complete NTRU design with

encryption/decryption circuitry.We obtained a gate count of

12.3 kgates for the design, which we further improved to

10.5 kgates. The optimized design has the following results,

5.93 µW , 6.04 µW and 0.45 µW for dynamic power con-

sumption during encryption, decryption and idle state, re-

spectively. The latency for encryption and decryption, takes

56.78 ms and 119.23 ms respectively.

Power

Pdyn(µW) Psta(nW) Ptot(µW)

NTRU Plain

Encryption 12.3 49.4 12.4
Decryption 15.9 50.5 16

Idle 10.1 49.7 10.2

NTRU Opt.

Encryption 5.93 46.6 5.98
Decryption 6.04 50.8 6.11

Idle 0.45 46.3 0.5

Table 3. Power results of encryption decryp-

tion NTRU

Furthermore, in order to speed up the designs more PM

units may be used in parallel with a little change in the rest

of the design. Also, it is possible to reduce the multiplica-

tion number needed for decryption from 2 to 1, by selecting

algorithm parameters in a different way.

References

[1] D. Bailey, D. Coffin, A. Elbirt, J. Silverman, and A. Wood-

bury. NTRU in Constrained Devices. In Cryptographic

Hardware and Embedded Systems, Paris, France, 2001.

[2] L. Batina, N. Mentens, K. Sakiyama, B. Preneel, and I. Ver-

bauwhede. Low-cost elliptic curve cryptography for wire-

less sensor networks. In 4th European Workshop on Security

and Privacy in Ad hoc and Sensor Networks, Lecture Notes

in Computer Science, volume 4537, pages 6–17. Springer-

Verlag, 2006.

[3] G. Gaubatz, J.-P. Kaps, E. Öztürk, and B. Sunar. State of the

art in ultra-low power public key cryptography for wireless

sensor networks. In Third IEEE Int. Conf. Pervasive Com-

put. Commun. Workshops, volume v2005, pages 146–150.

IEEE Computer Society, Mar 2005.

[4] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A Ring-

Base Public Key Cryptosystem. In J. P. Buhler, editor, Algo-

rithmic Number Theory (ANTS III), Lecture Notes in Com-

puter Science, volume 1423, pages 267–288, Berlin, 1998.

Springer-Verlag.

[5] N. Howgrave-Graham, J. H. Silverman, and W. Whyte.

Choosing Parameter Sets for NTRUEncrypt with NAEP and

SVES3. In Topics in Cryptology CT-RSA 2005, Lecture

Notes in Computer Science, volume 3376, pages 118–135,

Berlin, 2005. Springer.

[6] J. Kaps. Cryptography for Ultra-Low Power Devices. PhD

thesis, Worcester Polytechnic Institute, May 2006.

[7] C. M. O’Rourke. Efficient NTRU Implementations. Mas-

ter’s thesis, Worcester Polytechnic Institute, April 2002.

[8] J. H. Silverman. Invertibility in Truncated Polynomial

Rings. Technical report, NTRU Cryptosystems, 1998.

[9] J. H. Silverman. Almost Inverses and Fast NTRU Key Cre-

ation. Technical report, NTRU Cryptosystems, 1999.

[10] http://www.ntru.com/cryptolab/faqs.htm#sixteen.

[11] The NTRU Public Key Cryptosystem A-Tutorial.

[12] www.zenoli.net/category/mathematics/, 2007.

[13] Synopsys, Inc. Power Compiler User Guide, 2006.

[14] http://rijndael.ece.vt.edu/gezel2/index.php.

