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This paper is dealing with the production and investigation (structural and mechanical) of composite metal
foams (CMFs) with AlSi9MgMn matrix and �60 vol% of different nominal diameter light expanded clay
particles (LECPs) filler. The main aim was to produce a cheap CMF grade for automotive industry. The
samples were produced by liquid state low pressure infiltration. Cubic samples were manufactured from the
produced CMF blocks for structural (optical microscopy, scanning electron microscopy and energy-dis-
persive x-ray spectrometry (EDS)) and for mechanical (compression) investigations and tests. The CMFs
were investigated in as-cast and in T6 heat-treated conditions. The macrostructural investigations showed
homogenous structure and sufficient quality infiltration. On the microscopic scale, the EDS investigations
revealed a complex interface layer affected by chemical reactions between the matrix material and the filler
particles. The compressive test proved the classic foam-like mechanical behavior of the CMFs (with long
plateau region). A relationship (valid for both the as-cast and T6 heat-treated conditions) was found
between the characteristic properties and the nominal diameter of the filler. Based on these results, the
LECPs filled CMFs are ideal candidates for automotive applications with tailorable properties.
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1. Introduction

Composite metal foams (CMFs) are metal matrix compos-
ites, made for density reduction in the base material and to gain
unique material properties and features such as high energy
absorption capacity and high specific strength values. Origi-
nally, CMFs were developed with Al alloy matrix and metallic
hollow spheres (Ref 1-3). Later, the CMFs were further
developed with steel matrix (Ref 4-7), and for defensive
(armor) applications (Ref 8-10). Other matrix materials are also
possible, and they are in the focus of the developments; for
example, Mg (Ref 11-18), Ti (Ref 19-22), Zn (Ref 23-27)
matrices are studied. One of the main challenges in the

production of CMFs is their high cost, due to the price of the
filler hollow spheres. Therefore, the cost reduction in CMFs is a
logic and reasonable aim. For that purpose, different filler
materials have been applied to produce CMFs, like expanded
perlite (Ref 28-32), expanded glass (Ref 33-37) or expanded
clay (Ref 38-42). Expanded perlite is polygonal; therefore, the
structure is loaded by strong stress concentrators. Expanded
glass is spherical, but mainly consisting of SiO2, that is strongly
reactive with Al matrix. Light expanded clay particles (LECPs)
are also spherical and consisting of mixed oxides, that provides
some resistance against chemical reactions with properly
selected Al alloy matrices. Szlancsik et al. (Ref 42) compared
the properties of different size LECPs and found that they are
promising candidates for CMF filler; therefore, this possibility
is further mapped in the literature.

For example, Bonabi et al. (Ref 39) produced 73-78 vol%
porosity CMFs via casting with A355.0 matrix. The produced
samples relative density was 0.44, and their yield strength and
energy absorption were measured to be 35.9 MPa and
18.0 MJ.m-3, respectively. Puga et al. (Ref 41) applied
AlSi7Mg matrix and LECPs with nominal diameter of 2.0,
3.5, 5.0 and 7.5 mm to produce CMFs by casting method. The
samples made from the CMF blocks had the compressive
strength of 32.2 MPa, densification deformation of 0.43 and
energy absorption of 32.2 MJ.m�3. Later, Kádár et al. (Ref 43)
investigated the deformation and failure of LECPs filled Al99.5
or AlSi12 matrix CMFs, produced by liquid state infiltration.
The deformation mechanisms were monitored by acoustic
emission recordings. Al99.5 CMFs showed ductile behavior
with long plateau, while AlSi12 matrix resulted in more brittle
fracture. The acoustic emission analysis revealed that, the
plastic deformation, and the fracture of the LECPs govern the
failure mechanism of the CMFs. Szlancsik et al. (Ref 40)
investigated AlSi10MnMg-based CMFs with LECPs fillers in
as-cast and in T6 heat-treatment. The production method, the
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mechanical properties and the failure mechanisms were detailed
in the paper.

More recently, LECPs filled tubes were also produced and
investigated. Movahedi and Linul (Ref 44) applied 4 mm
nominal diameter LECPs filled foam elements as the filler
material inside empty thin-walled Al tubes. The compressive
mechanical properties and the failure mechanisms were studied
under quasi-static uniaxial compression. The foam filling
resulted in 24% increment in the energy absorption and
ensured more controlled failure modes with suppressed classic
loss of mechanical stability of the tubes. Kemény et al. (Ref
45,46) modified the liquid state low pressure infiltration method
to produce in situ CMFs filled Al tubes. In this technology, the
infiltration of the LECPs happens in a thin-walled Al tube
resulting in perfect bonding between the CMF and the tube to
be filled (in classic (�ex-situ�) cases the CMFs are produced
separately, inserted into the tube, and fixed by gluing, soldering
or by close fitting). AlSi12 alloy was applied as matrix, and
AlMgSi0.5 tubes (inner diameter of 40 mm) were filled by the
CMFs produced with unimodal and bimodal LECPs (diameter
ranges of 2.5-3.0 mm and 3.5-4 mm). In situ filled tuber proved
superior properties compared to ex situ filled tubes; moreover,
the single step production is faster and cheaper.

The aim of this paper is to further investigate the LECPs
filled CMFs, by mapping its mechanical properties and energy
absorption capacity in the function of the diameter of LECPS
and T6 heat-treatment.

2. Materials and Methods

In this section, the applied materials to produce the CMFs
have been introduced along with the production and test
methods.

2.1 Materials

As matrix material, AlSi9MgMn alloy as hardenable
(precipitation hardening) aluminum alloy was applied. This
grade is frequently used alloy in automotive industry and ideal
for large series high pressure die casting. The AlSi9MgMn
alloy CMFs were investigated in as-cast and in peak hardened
(T6) conditions. The chemical composition of the matrix is
listed in Table 1.

As filler materials light expanded clay particles (LECPs)
were applied. The LECPs were provided by Liapor GmbH. &
Co. KG. (Hallerndorf-Pautzfeld, Germany). The chemical
composition of the LECPs is 60 ± 5 wt% SiO2, 17 ± 3 wt%
Al2O3, 14 ± 2 wt% Fe2O3 and �9 wt% other oxides in sum,
containing CaO, MgO, Na2O, etc. The particle density of the
LECPs was 0.75±0.05 g.cm-3, while the loose bulk density of
the particles was found to be 0.44±0.02 g.cm-3. The particle
density was calculated by measuring the weight and geometry
of the individual particles (100 particles have been measured);
then, the weight was divided by the calculated volume of the
particles. The loose bulk density was measured by pouring a set
of particles into a bin, and the overall weight of the particle set
was divided by the overall occupied volume (including the
space between the particles). The diameter of the LECPs was
used as a research variable, and the available LECPs set was
sieved into 3-5 mm, 7-9 mm and 10-11 mm subsets.

2.2 Production Methods

CMF blocks were produced by low pressure liquid state
infiltration, for details, please refer to (Ref 42). The blocks
contained �60 vol% LECPs. By the combination of the matrix
materials, the heat-treatment conditions, and the nominal
diameters of the LECPs nine types of CMF blocks were
produced. From the blocks, cubic samples (40 9 40 9 40 (3-5
mm LECPs filler) or 70 9 70 9 70 mm (7-9 and 10-11 mm
LECPs filler) in size) were machined, according to require-
ments of the ruling standard ISO13314:2011 (Ref 47). The
samples were in as-cast (AC) or in T6 treated condition (the
solution treatment was performed at 520�C for 1 h, cooled in
water and aged at 170�C for 10 h). The samples were
designated by the combination of the nominal LECPs diameter
and the applied heat treatment (for example 8-T6 is for an
AlSi9MgMn matrix CMF with 64 vol% 7-9 mm LECPs filler
aged for peak strength).

2.3 Test Methods

The samples were investigated microstructurally and
mechanically. The microstructural investigations were done
by optical microscopy (OM, Olympus PMG-3) and scanning
electron microscopy (SEM, Zeiss EVO MA10), with attached
energy-dispersive x-ray spectrometry (EDS). For the
microstructural investigations, the samples were carefully
prepared, including grinding and polishing down to 1 lm
diamond finishing.

The mechanical tests were performed on a computer
controlled MTS810 type 400 kN hydraulic universal testing
machine. The cubic samples were tested in a four-bar guided
tool and lubricated by a thin PTFE foil to reduce friction
between the sample and the tools. The velocity of the cross-
head was 1 mm.min-1 (quasi-static compression), and the
height reduction was measured by an extensometer (connected
to the rigid loading plates). The compressive test run to 0.5
engineering deformation.

3. Results and Discussion

The most important physical property of metal foams is their
density. The density of the samples was determined by the
Archimedes method, and the densities were measured to be
1.45±0.020, 1.51±0.017 and 1.53±0.038 g.cm-3 for 4 mm,
8 mm and 11 mm filler, respectively. The corresponding
relative densities are 54.5, 56.8 and 57.5%. Further in this
section, the results of the microstructural and mechanical
measurements are introduced and discussed.

3.1 Structural and Microstructural Investigations

The structure of CMFs was observed on cross sections by
optical microscopy, and a typical cross section is shown in
Fig. 1. The distribution of the LECPs is even and homogenous,

Table 1 Chemical composition of the matrix material (in
wt%)

Al Si Mg Mn Fe Other

AlSi9MgMn 88.8 9.80 0.30 0.80 0.10 0.20
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and the cross sections of the LECPs are circular and regular in
shape. Infiltrated LECPs cannot be observed, and the quality of
infiltration is sufficient since there are no unfilled voids
between the LECPs. The small metallic particles in the filler
particles are originating from the cutting and polishing of the
samples. The produced CMFs are sufficient in quality.

The microstructure of the LECPs filled CMFs was inves-
tigated by SEM in map data collection mode. The focus of the
investigation was on the interfacial layer between the LECPs
and the AlSi9MgMn matrix in order to gather information on
the possible chemical reactions in this region. As a typical
example, the interface of one single LECP is shown in
Fig. 2(a). In the high magnification SEM micrograph, the
matrix is shown on the left side, while the LECP is on the right
side. In the matrix, precipitations can be observed, while the
LECP�s porous nature is also clearly shown. The matrix
perfectly infiltrated the LECP pack, without voids between the
matrix and the LECPs. On the border of the two phases,
distinguished interface layer cannot be observed. Fig. 2(b)
represents the composite EDS map of the same SEM scene
pictured in Fig. 2(a). The precipitations in the matrix are Si-rich
phase (Fig. 2c) embedded in the Al matrix (Fig. 2d). The
presence of Fe is dominant in the LECPs (some Fe rich sites
can be observed in Fig 2e), but as natural contaminant can be
found in the Al matrix as well. K (Fig. 2f) and Ca (Fig. 2g) are
identified in the LECP. The distribution of K is very smooth
and even (Fig. 2f), and some enrichment can be found neat the
interface layer, but mostly still in the LECP. Similarly, Ca can
be found mainly in the LECP (Fig. 2g), but in coarser
distribution, forming Ca-rich spots near to and in the interface
layer. Mg (Fig. 2h) can be identified both in the matrix (smooth
and evenly dispersed) and in the LECP (also evenly dispersed,
but in higher concentration, due to the MgO content of the
LECPs). The situation is the same for Mn (Fig. 2i), but the
concentration is even in the matrix and in the LECP, with some
enrichment in the matrix material parallel to the Fe-rich sites.
The Na distribution (Fig. 2j) shows similar feature to the Mg,

but with less difference in the concentration between the matrix
and LECP. O can be found in the LECP only, in
detectable quantity (Fig. 2k), because it is connected to the
various oxides (SiO2, Al2O3, Fe2O3, K2O, CaO, MgO, MnO2,
Na2O). Last, the distribution of P (Fig. 2l) is very similar to the
distribution of Na, with enrichments around the Fe rich spots
(as one of the most important contaminant of Fe). In summary,
the interface layer is invisible in SEM pictures, but can be
found by the EDS. Fe, K and Ca enrichment in the matrix
material near the outer surface of the LECPs is distinguishable
due to the following chemical reactions between their oxides
and the molten Al of the matrix (Eqs. 1-3).

Fe2O3 þ 2Al ! 2Feþ Al2O3 ðEq 1Þ

3K2Oþ 2Al ! 6K þ Al2O3 ðEq 2Þ

3CaOþ 2Al ! 3Caþ Al2O3 ðEq 3Þ

These chemical reactions may have influence on the
mechanical properties of the CMFs. Similar reactions would
occur between SiO2, MgO and MnO, but they are hindered by
the significant Si, Mg and Mn content of the matrix material.

In summary, the microstructural features of the investigated
CMFs revealed good infiltration and complex interface layer
between the particles and the matrix material.

3.2 Mechanical Investigations

The most important loading mode of CMFs is compression,
and the only standardized test method of metal foams is the
compressive test (Ref 47). The compressive tests were per-
formed on cubic samples, and the calculated compressive stress
versus compressive deformation curves are plotted in Fig. 3,
for better comparison, the scales in the subfigures are identical.
In the plots, the engineering system was used.

The CMFs can be qualified by their characteristic strength
and energy absorption values. The most important strength
values are the yield strength (the strength value at a distin-
guished remaining (�plastic�) engineering deformation value,
typically at 0.01-analog to the 0.2% proof strength in the case
of classic tensile tests) and the plateau stress level (the average
stress level between two distinguished engineering deformation
limits, typically between 0.1 and 0.4 (Ref 47)). The yield
strength shows the onset of the large-scale deformation,
therefore important in the design process for structural appli-
cations, where the deformation should remain elastic only. On
the other hand, the plateau strength and the overall energy
absorption also characterize the CMFS. The plateau strength
shows the stress level of the energy absorption during the
irreversible deformation of the CMFs and crucial in the
applications aiming effective energy absorption (collision
dampers, crash boxes, etc.). The energy absorption shows the
overall capacity of the CMFs to absorb mechanical energy and
equals to the area below the stress–strain curve up to a given
deformation level (0.5 engineering deformation in our case).

The effects of the LECPs� nominal diameter and the heat
treatment are evident from Fig. 3. The lowest strength values
are provided by the largest LECP fillers both in AC and in T6
condition. Qualitatively, by decreasing the nominal diameter,
the strength values as well as the absorbed mechanical energy
increased. The T6 heat-treatment almost doubled the yield
strength and the plateau stress level as well. The same can be

Fig. 1 OM micrograph showing typical macrostructure of 10 mm
average diameter LECPs filled AlSi9MgMn CMFs

6956—Volume 31(9) September 2022 Journal of Materials Engineering and Performance



concluded for the energy absorption, too. The initial linear
elastic part of the compressive curves becomes higher and
higher by decreasing the nominal diameter of the filler. In
accordance with the correspondingly increasing strength val-
ues, the onset of the large-scale deformation occurs earlier, and
the CMFs show more brittle behavior.

The effects of the diameter and the heat treatment on the
characterizing properties can be plotted in individual graphs
(one for the strength properties and another for the absorbed
energy), visualized in Fig. 4.

In the case of the investigated strength and absorbed energy
values, an analytical relationship (Eq 4) was found that can be
used to predict the properties (P in general) of the CMFs based
on the nominal diameter (D) of the LECPs filler.

P ¼ Aþ Be�CD ðEq 4Þ

where P is the property in question, D is the nominal diameter
of the LECPs, while A, B and C are fitting parameters. A is the
asymptote of the decay function of Eq 4, B is the magnitude

Fig. 2 SEM picture (a), composite EDS map (b) and the distribution of each investigated elements (c-l)
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and exponent, and C is the rate of the decrement in the property
by the increment of the diameter.

The results of Table 2 show a �0.3 decay exponent for Eq 4
with a quite narrow scatter band, confirming the identical effect
of the LECPs diameter on the most important strength and
energy absorption properties. This fact makes LECPs filled
CMFs ideal candidates for energy absorbers with tailorable
energy absorption capacity and stress level.

The absorbed energy values at a single maximal compres-
sive deformation (e=0.5) provide limited details about the
energy absorption characteristics of the CMFs, therefore as
additional information, the energy absorption curves are plotted
in Fig. 5.

The energy absorption is almost a linear function of the
compressive deformation. Originating from the compressive
curves, the smallest filler particles ensured the highest energy
absorption at any deformation. In the initial (e<0.1) and in the
plateau region (shaded area in Fig. 5, 0.1e<<0.4), the energy
absorption was linear. After the plateau region, some positive
deviation from the linear relationship can be seen as the
densification begun. T6 heat-treated samples can absorb
significantly higher energy due to their higher plateau stress

level (resulting in higher reaction forces, on the other hand).
The energy absorption curves are useful for the design of
energy absorbing parts and elements.

During the compression tests, the CMF samples showed a
typical failure mode as it is presented in Fig. 5 for an
AlSi9MgMn matrix, 10 mm LECPs filled CMF at 0.5
compressive engineering deformation. As it can be seen in
the figure, the cell struts between the LECPs particles were

Fig. 3 Compressive stress versus compressive deformation curves of the CMFs in as-cast (a) and in T6 (b) condition

Fig. 4 The strength properties (a) and the absorbed energy values (b) as the function of the LECPs nominal diameter

Table 2 Fitting parameters for Eq. 4

Property Condition A B C R2

rY AC 27.85 47.39 0.3060 0.996
T6 48.13 115.01 0.3080 0.997

rP AC 28.81 57.47 0.3003 0.999
T6 47.10 170.04 0.3134 0.999

W@0.5 AC 15.17 26.21 0.2993 0.977
T6 24.89 82.28 0.3168 0.997

Average 0.3073
Standard deviation 0.0069
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deformed and broken and the LECPs were collapsed due to the
vertical compressive load. No distinguished shear band(s) can
be highlighted in the sample, and the failure was continuous
and uniform. The sample remained intact even at the highest
compressive deformation (Fig. 6).

4. Conclusions

Low-cost, light-weight LECPs filled AlSi9MgMn matrix
CMFs with �60 vol% filler content were produced and
investigated (structural and compressive investigations). From
the experiments and results detailed in the paper, the following
conclusions can be drawn.

• Low pressure infiltration is a proper method to incorporate
cheap, low density LECPs into the AlSi9MgMn matrix
material, well-known and widely used in automotive
industry.

• The structure of the produced CMFs was homogenous,
the interface layer between the LECPs and the matrix
material proved to be strong due to the chemical reactions
between the constituents.

• The investigated characteristic properties (yield strength,
plateau stress level and absorbed mechanical energy) were
influenced by the nominal diameter of the filler and by

the applied heat treatment.
• Mathematical relationship between the nominal diameter

and the investigated properties were found in as-cast and
in T6 treated conditions, too.

• The decay exponent in the relationship was found to be
0.3073±0.0069 and valid for all the investigated charac-
teristic properties, meaning identical effect of the nominal
diameter on all the investigated properties. This fact
makes LECPs filled CMFs ideal candidates for automotive
applications with tailorable properties.
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