
LOW-COST MEASUREMENT OF INDUSTRIAL SHOCK SIGNALS VIA DEEP LEARNING

CALIBRATION

Houpu Yao1⋆ , Jingjing Wen2⋆, Yi Ren1, Bin Wu2, Ze Ji3

1 Department of Mechanical and Aerospace Engineering, Arizona State University, United States
2 School of Astronautics, Northwestern Polytechnical University, China

3 School of Engineering, Cardiff University, United Kingdom

ABSTRACT

Special high-end sensors with expensive hardware are usually

needed to measure shock signals with high accuracy. In this

paper, we show that cheap low-end sensors calibrated by deep

neural networks are also capable to measure high-g shocks

accurately. Firstly we perform drop shock tests to collect a

dataset of shock signals measured by sensors of different fi-

delity. Secondly, we propose a novel network to effectively

learn both the signal peak and overall shape. The results show

that the proposed network is capable to map low-end shock

signals to its high-end counterparts with satisfactory accuracy.

To the best of our knowledge, this is the first work to apply

deep learning techniques to calibrate shock sensors.

Index Terms— Deep learning, sensor calibration, shock

signal, acclerometer

1. INTRODUCTION

Accurate measurement of shock signal is crucial for product

design in various industries. Some examples where shock sig-

nal matters include, the dropping of electronic devices [1], the

crashing of automobiles [2], and the landing of aircraft [3].

To verify and validate the design of these products, physical

experiments need to be conducted to measure their response

under shock loading. However, measuring shock signal with

high accuracy can be challenging with traditional accelerome-

ters due to the extreme loading condition especially under the

high-g shock environment [4]. While existing work in shock

signal measurement is mainly based on more reliable but ex-

pensive hardware[5], in this paper we show that, high-g shock

signals can be measured at a much lower cost with low-end

sensors after deep learning calibration.

In shock signal measurement, both the overall signal

shape and peak value are of interest to us. The peak value

of a shock signal is a very important index in board-level

shock test [6], while another important index shock response

spectrum (SRS) is decided by the entire shock signal shape

[7]. However, the complicated frequency content, short du-

ration, and high magnitude of the shock response pose many

⋆ These authors contributed equally to this work

difficulties to the accurate measurement of shock signals[8].

Due to the less capable piezoceramic material, the defect in

sensor structure design and manufacturing, those low-end

shock sensors will become easier to get noise-polluted when

measuring shock signals[9].

Traditional approaches to improve the sensor performance

are usually based on designing better but more expensive

hardware [10]. Existing research in calibrating shock sen-

sors is mainly focused on making use of Hopkinson bar [5].

However, instead of directly calibrating the measured signals,

Hopkinson bar is primarily used to calibrate the dynamic

linearity, sensitivity, and repeatability of the accelerometer.

Based on Hopkinson bar, researchers have tried to establish

the nonlinear relationship of the signal parameters between

the sensor output and physical models [11, 12]. Despite the

fact that these methods are very complicated, they are limited

to calibrating the peak value and/or pulse width and other

important features in the shock signals are ignored.

Although shock signals are complicated, their internal

dynamics are governed by similar physics laws. Inspired

by recent progresses in deep learning applied on time series

data[13, 14], we believe that deep learning can be a promis-

ing tool to find the internal correlations between these shock

signals. To the best of our knowledge, the only related work

to us is [15], which calibrates force sensors with neural net-

works and numerical simulated data. While both work use

data driven approaches to calibrate sensors, we are focusing

on high-g shock signals, which brings two extra difficulties:

(1) unlike in [15], numerical simulated data can be unreliable

to serve as references at high-g region due to the extremely

nonlinear dynamics [16], (2) we are interested in calibrating

both signal peak value and its overall signals shape, which

requires better network design to accomplish.

In this paper, we first collect a dataset of shock signals

through drop shock test. This dataset includes paired shock

signals simultaneously measured by low-end and high-end

sensors. Secondly, we propose a network that can accurately

map the signals measured by low-end to signals similar to

what high-end sensors will produce. Although our network is

similar to [13, 15] for time-series modeling, specific design
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Fig. 1. Illustration of the drop test platform. Sensors are

marked as “Accelerometer” mounted on the top of the drop

table. Figure adapted from [17].

needs to be made for modeling shock signals. We claim three

folds of major contributions in this paper:

• We establish the first dataset for industrial shock signal,

which will facilitate the future research in the field of

shock signal measurement.

• We propose a novel network which is able to map shock

signal to higher fidelity.

• We show that data driven approach is promising for

measuring complicated shock signals at low cost.

2. PROPOSED APPROACH

In the first part of this section, we describe the acquisition

procedure of our shock signal dataset. In the second part, we

describe our network structure and how it is trained.

2.1. Data collection

We conduct drop shock test to collect shock signals. The ex-

periment platform setting is based on our previous work in

[17], which is also illustrated in Fig.1. The logic behind this

drop shock test is simple: the drop table is lifted up and re-

leased, it falls freely along the guide columns and collides

with the rubber waveform generator (RWG) to produce the

shock signal. This shock signal is transmitted to and picked

up by the sensors mounted on the top of the drop table. The

higher we lift the drop table, the harder the drop table will

hit RWG, and the larger the shock signal the system will pro-

duce. For more details on the experimental setup, we encour-

age readers refer to [17].

We used a low-end sensor and a high-end sensor to mea-

sure the shock signal simultaneously. Both sensors are at-

tached to the top of the drop table. Low-end sensor is very

cheap, but its signal tend to be noisy and can have large er-

ror in signal peak value. Meanwhile, high-end sensor is much

more expensive but can produce a fairly accurate measure-

ment. We will use the high-end sensor output as the ground-

truth. In this study, all sensors are set to have the same sam-

pling frequency of 200kHz. Once a shock signal is generated,

these sensors will gather a pair of signals simultaneously with

different levels of fidelity. We change the dropping height to

obtain different pairs of the measured signal. A total of 660

drop tests are conducted, which leads to 660 collected shock

signal pairs.

The raw signal is pre-processed to have equal length. We

cut the signals to have an equal duration of 15 ms, with 2.5

ms and 12.5 ms before and after their peak. Considering the

sampling rate, each signal has a length of 3000. Samples sig-

nals after pre-processing can be seen from Fig.3, where the

signal to the left and right are produced by low-end sensor

and high-end sensor respectively. We randomly select and

hold back 160 pairs as testing set, while the rest 500 pairs are

used to train the network. The distributions of the peak value

of the signals from training set are shown in Fig.2. It can be

seen that this dataset covers a wide range of acceleration up

to 8,000 g. We will release this dataset to the community for

research purpose.
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Fig. 2. Statistics of the signal peak value in the training set.

2.2. Network architecture

In this subsection, we propose a novel network architecture to

learn the mapping between shock signals obtained with dif-

ferent sensors. The motivation is that, after training, our net-

work can transform the signals produced by low-end sensor

to some signals very similar to what high-end sensor will pro-

duce. Intuitively, we adopt encoder-decoder style network to

learn the mapping between signals produced by different sen-

sors. In addition, as peak value matters for shock signals, we

2893



2
5
6

𝐹
𝐶
	(
3
2
)	

𝐹
𝐶
	(
8
)	

𝐹
𝐶
	(
8
)	

𝐹
𝐶
	(
1
0
2
4
)	

𝐹
𝐶
	(
5
1
2
)	

𝐹
𝐶
	(
2
5
6
)	

𝐹
𝐶
	(
5
1
2
)	

𝐹
𝐶
	(
1
0
2
4
)	

𝐹
𝐶
	(
3
0
0
0
)	

𝑁
𝑜
𝑟𝑚
𝑎
𝑙𝑖
𝑧
𝑒

𝐹
𝐶
	(
5
1
2
)	

𝐹
𝐶
	(
2
5
6
)	

𝐹
𝐶
	(
5
1
2
)	

𝐹
𝐶
	(
1
0
2
4
)	

𝐹
𝐶
	(
3
0
0
0
)	

𝑈
𝑛
𝑛
𝑜
𝑟𝑚
𝑎
𝑙𝑖
𝑧
𝑒

1

1
3
0
0
0

3
0
0
0

𝐹
𝐶
	(
1
0
2
4
)	

𝑥"

𝑥#

𝑦"

𝑝&

𝑦'#()
𝑝*

𝑧

𝐹
𝐶
	(
3
2
)	

𝐹
𝐶
	(
1
2
8
)	

𝐹
𝐶
	(
1
2
8
)	

𝐹
𝐶
	(
4
)	

𝐹
𝐶
	(
2
)	

𝐹
𝐶
	(
1
)	

8
1

1+

𝑝#(,
&

Fig. 3. Illustration of proposed network architecture. PPN is the branch at the bottom. Our network takes in a noisy signal

xr as input, and will output a calibrated signal ypred. The global feature vector is first further encoded into 8 dimension and

then concatenated with the signal peak feature in PPN. Blocks in color denotes tensors, and transparent blocks denote network

layers. Numbers in the block corresponds to feature dimensions.

introduce peak prediction network (PPN) to further calibrate

the signal peak value.

As illustrated in Fig.3, our network has three main parts:

encoder, decoder, and PPN. Raw signal xr is normalized first

and its shape xn and magnitude px are feed into the encoder

and PPN separately. The normalized signal xn will be en-

coded to a 256 dimensional vector z, and reconstructed back

to a 3000 dimensional vector yn by the decoder:

z = enc(xn; θ1)

yn = dec(z; θ2)
(1)

where θ1 and θ2 are the network parameters for encoder and

decoder respectively.

Because the peak value is crucial for shock signals, we

used PPN to further calibrate it. We feed the encoded global

information of the normalized signal z as well as the peak

value of the input signal px to PPN. Its output pyres is the es-

timated error between the accurate peak value and the input

peak value, which will be added back to px to predict and the

correct peak value py:

pyres = ppn(px, z;φ)

py = px + pyres
(2)

where φ is the network parameter of PPN.

The network loss is composed of two parts:

Ls(θ) = |yn − yref |2 + |yn − yref |∞

Lp(φ) = |py − pref |
(3)

where Ls is the loss to regulate the normalized signal, which

is defined on θ1 and θ2. Lp is the loss to regulate the peak

value of the raw signal, which is defined on φ. The L2 term

in Ls loss encourages the transformed signal to have a similar

overall shape as the ground truth, and the L∞ term further

pushes normalized signal to have correct relative peak value

and location. We expect that by minimizing these losses in

Eq.3, the network will be able to predict both the overall shape

and the peak value of the shock signal well.

3. RESULTS AND DISCUSSION

As traditional “hardware” based approaches are costly and

the comparison is not quite “apple to apple”, we compare our

methods with several possible “software” based approaches in

this section. Candidate “software” approaches includes low

pass filter (LPF), linear regression (LR), and auto-encoder

(AE). For LPF, we choose to filter out frequency larger than

5,000 Hz. For AE, we removed the PPN component from the

proposed network and kept Ls as training loss.

We propose two metrics Ep and Eo to measure the cali-

bration performance on peak value and overall signal shape

respectively:

ǫp =
1

N

N∑

i

|max(ypredi )−max(yrefi )|/max(yrefi )

ǫs =
1

N

N∑

i

M∑

j

|ypredij − yrefij |/max(yrefi )

(4)

where M and N are signal length (3000 in this case) and the

number of signals respectively. yi is the i-th testing signal,

and yij is the signal value of yi at j-th time step. As a matter

of fact, ǫp is the relative prediction error of peak value, and ǫs
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Fig. 4. Signal calibration performance of proposed method. Left subplot: visualization in time-domain. Right: visualization in

frequency domain with SRS curve. Best viewed in color.

Raw LPF LR AE Ours

ǫp 13.5% 48.8% 7.9% 6.9% 5.7%

ǫs 228.6 138.6 44.8 37.9 35.2

Table 1. Comparison with other “software” approaches.

is the relative overall error w.r.t. the peak value. Without any

treatment, the raw signal from the low-end sensor will have

ǫp of 13.5% and ǫs of 228.6.

The comparison of the calibration performance of these

“software” based approach is listed in Tab.1. It can be seen

that the filtering approach will result in a large ǫp as expected,

as the signal peak is of high frequency and is hard to be main-

tained after denoising. In the meantime, all data driven ap-

proaches turns out to be effective in calibrating the shock sig-

nals. LR is the fastest, but its accuracy on peak prediction

is not very satisfactory. While vanilla AE has good perfor-

mance, proposed network achieves the best result on both ǫp
and ǫs. As the prediction of the peak value and signal overall

shape are decoupled, our proposed network is able to further

improve the performance of AE.

An example of the calibrated result from proposed method

is shown in Fig.4. The subplot to the left and right shows the

calibration effect in time and frequency domain respectively.

It can be seen from the left subplot that the signal noise has

been largely suppressed after passing through our network.

Notably, in the meantime, the signal peak is maintained and

even its value has been further calibrated. In the right subplot,

we adopted the SRS curve to visualize for the calibration ef-

fect in frequency domain. SRS is one of the most widely

adopted descriptor for shock signals, which can be used to

estimate the maximum dynamic response of structures. It is

calculated by imposing an excitation in a series of single de-

gree of freedom systems with progressively increasing natural

frequency. For more details on its computation we encourage

readers refer to [18]. It can been seen that while there is a

gap between the SRS curve from low-end and high-end sig-

nals, the difference is getting very small after our network

calibration. This means that the calibrated signal from low-

end sensors doesn’t have much difference with the signal from

high-end sensors in industrial applications.

In order to further understand the effect of each compo-

nent of our network, we conduct an ablation study on our net-

work structure and loss design. We first remove the global

information z in PPN and find that the ǫp increases to 9.7%.

This means that the global signal shape information actually

plays a very important role in predicting the signal peak value.

If we only remove L∞ term in Ls, it is observed that ǫp will

increase by 1%. This means L∞ term helps better learning of

the relative value and location of the shock signal peak. We

also tested that removing the ResNet style connection in PPN

will increase ǫp by 0.6%. These result show the effectiveness

of our network design.

4. CONCLUSION

This is the first time that data driven approaches are intro-

duced to measure shock signals. We designed a novel neu-

ral network that is able to calibrate low-end sensors. Results

show that, with deep learning calibration, low-end sensors can

be used to measure high-g shock signals with satisfactory ac-

curacy. Since industrial signals can be collected in large scale

with little effort, we expect that the proposed approach will

lower the cost of high-g shock sensor largely in the near fu-

ture.
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