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Abstract – Attitude determination systems utilizing low cost 
MEMS sensors are increasingly becoming important due to its 
advantages in terms of the quickly improved precision, robust, 
high dynamic response and more significantly inexpensive costs 
of development and usage. However the large noises inherent in 
low cost MEMS sensors degrade the derived attitude precision if 
utilized through the conventional methods, e.g. initial alignment, 
strapdown inertial navigation mechanization. Therefore the 
novel application approach suitable for MEMS needs to be 
investigated. This paper describes an attitude determination 
system that is based on low cost MEMS inertial sensor, a triad of 
magnetometers and a commercial GPS receiver. Two main issues 
are addressed in the paper; firstly determination of the attitude 
initials, the algorithm is based on a quaternion formulation, a 
representative of attitude, of Wahba’s problem, whereby the 
error quaternion becomes the estimated state and is corrected by 
two observations of the earth magnetic field and gravity 
respectively. After the estimates converge, the derived attitude 
parameters are employed to initialize the inertial navigation 
calculations. Due to the large noises in MEMS sensor, there is a 
demand for external velocity and/or position corrections in the 
MEMS navigation calculations when system experiences 
translational motions. Hence secondly, GPS solutions are 
integrated in a Kalman filter by providing external velocity and 
position observations. A Kalman dynamic model is designed 
appropriate for MEMS sensor noise characteristics. The bias and 
drift are estimated by the integrated Kalman filter, which enables 
the online calibrations of MEMS sensor. The proposed approach 
has been developed and its efficiency is demonstrated by various 
experimental scenarios with real MEMS data and they are 
compared with Novatel SPAN-IMU reference.  
 
 

I. INTRODUCTION 
 

Attitude determination is a requirement for most navigation 
and control problems. Traditionally, this issue has been well 
solved by the so-called Attitude and Heading Reference 

System (AHRS) (Crossbow, 2000). However a successful 
AHRS requires very expensive sensors that have exceptional 
long term bias stability. The sensor cost limits such kind of 
attitude determination to very expensive applications [2]. 
Meanwhile low cost Micro Electro Mechanical Sensors 
(MEMS) are experiencing rapid improvements in terms of 
precision, robust, size, high dynamic response and so on. With 
the rapid growth in demand, such as in applications of general 
aviation, unmanned automotive vehicle, personnel 
localization, mobile mapping systems, athletic training 
monitoring and computer games, .etc, it has become viable to 
construct low cost attitude determination systems. 
 

Today’s MEMS sensors are still much less precise than 
expensive accurate inertial sensors, such as tactic or 
navigation grade IMU which measurements are able to be 
directly used by inertial system self-alignment and strapdown 
inertial navigation algorithm. However, if applied by modern 
MEMS sensors, these standard inertial calculation procedures 
are not practical, or in another word, the solutions diverge 
quickly. For example, it takes approximately 5 minutes for the 
inertial self-alignment process to converge in quasi-stationary 
environment. The large MEMS noises cause this regular 
inertial self-alignment process to diverge within a few 
seconds. Similarly, the stand-alone use of MEMS sensors in 
strapdown inertial navigation system could deliver kilometre-
level positioning errors for the applications of several seconds 
duration. Therefore as aforementioned, there are two critical 
issues which should be solved in order to apply MEMS 
sensors in attitude determination system, which are firstly to 
determine the attitude initials, and secondly to have MEMS 
based inertial solution errors bounded in time.  
 

Recently there has been a considerable amount of effort 
paid at developing low cost MEMS based systems for attitude 
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determination [1], [2], [3]. As first published in 1965, Wabha 
proposed an attitude solution by matching two non-zero 
vectors that are known in one coordinate frame and measured 
in another [2], [4]. Many solutions to this method of attitude 
determination have been proposed and implemented. However 
Wabha’s problem of attitude determination is under the 
condition where there is no translational movement in the 
platform hosting MEMS sensors. Therefore the acceleration, 
velocity or position corrections should be introduced into the 
MEMS based attitude determination system in exists of any 
translational movement. Commonly INS and GPS are two 
complimentary technologies that can be integrated by Kalman 
filtering to provide reliable velocity and positioning 
information.  
 

 
Fig. 1 Navigation coordinates  

 
This paper presents an approach of applying low cost 

MEMS sensor for attitude determination system in dynamic 
environment, i.e. with both angular and translational 
movements. This system consists of a low cost MEMS sensor 
which includes a triad of angular rate sensors, a triad of 
accelerometers, a triad of magnetometers and a commercial 
GPS receiver. First of all, the proposed system is fixed to a 
known position with no translational but only angular 
movements, three accelerometers and three magnetometers 
measure components of the gravity and earth magnetic field in 
Body frame (B-frame). Because these values are known and 
constant for a given position in the Local Level frame (L-
frame), there exists a quaternion, a representative of attitude, 
relating the gravity and earth magnetic field measurements in 
B-frame to those known values in L-frame depicted in Fig. 1. 
The components of quaternion are able to be estimated by a 
complementary Kalman filter. The converged quaternion 
represents MEMS attitude. When there is neither translational 
nor angular movement, the estimated quaternion is constant 
which hence can be used as attitude initials for the following 
navigation calculations. Then, an integrated INS/GPS Kalman 
filter is developed to deliver the navigation solutions when 
there exist both of translational and angular movements. 
Strapdown INS mechanization and INS error equations based 
Kalman filter are specially designed considering MEMS large 
noise characteristics. Moreover, inertial sensor error modelling 
is employed in the integrated Kalman filter to estimate MEMS 
sensor errors which enables MEMS sensor in-motion 

calibration. The test of the proposed approach is conducted via 
real data experiments. The raw MEMS IMU data is acquired 
at a data rate of 150Hz. Attitude, velocity and position 
solutions are delivered at the same rate but corrected by GPS 
data at a rate of 5 Hz in the Kalman filter. The system 
performance is validated in the test with deliberated attitude 
manoeuvres. 
 

II. ATTITUDE INITIAL DETERMINATION 
 

The basic computational process of the inertial sensor 
based navigation system consists of the integration of attitude, 
velocity and position rate equations which must first be 
initialized at the beginning of the navigational calculation [5]. 
The problematic discussed in this paper confines to the 
determination of initials under quasi-stationary conditions, 
which represents many of the inertial navigation applications. 
The quasi-stationary conditions in this study are described as 
having bounded attitude and velocity movements with known 
and fixed position where the platform hosting MEMS sensors. 
By setting the initial velocity to zero, the problematic of 
initializing MEMS sensor based attitude determination system 
is simplified to the determination of the attitude initials. As 
aforementioned, Wahba’s problem proposed an attitude 
solution by matching two non-zero vectors that are known in 
one coordinate frame and measured in another under only 
existing angular movement condition.  

 
To determine the attitude initials, three accelerometers and 

three magnetometers measure components of the gravity and 
earth magnetic field in B-frame. These values are known and 
constant for the given/fixed position in L-frame. The attitude 
quaternion relates the gravity and earth magnetic vector 
measurements in B-frame to those known values in L-frame. 
The converged quaternion components estimated by a 
complementary Kalman filter represents MEMS true-attitude. 
When under quasi-stationary conditions in this study, i.e. there 
is neither translational nor angular movement; the derived 
quaternion is constant and therefore can be used as attitude 
initials. The transformation between the vector v  as expressed 
in B-frame and L-frame is  
 

BL
B

L vCv =  (1) 
 

The Direction Cosine Matrix (DCM) L
BC transforming the 

vectors from B-frame to L-frame is function of the attitude 
quaternion q. The DCM is expressed in terms of quaternion q 
as 
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Where the attitude quaternion relating the B-frame to non-

rotation L-frame is defined as  
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[ ]TL
B dcbaq =  (3) 

 
The definition of attitude quaternion components are from 

the “four-vector” 
 

dkcjbiau +++=  (4) 
 
Where a is a scalar component of q, b, c and d are vector 

component of L
Bq , i, j and k are unit vector along the 

coordinate frame axes. For example, the N, P and E unit 
vector in Fig. 1.  

 
The equation (1) is used to get the attitude initials in this 

study. Due to the fact that the observed vector Bv is 
contaminated by MEMS sensor noise, it is ideal to utilize 
Kalman filtering to estimate the attitude quaternion. The error 
state vector of the complementary Kalman filter consists of 
attitude quaternion components a, b, c and d. The B-frame 
measured gravity vector and earth magnetic field vector are 
directly employed as the observations in the Kalman filter. 
The linearized equation (1) constructs the Kalman 
measurement models which generate B-frame gravity/earth 
magnetic field vector measurements by use of the estimated 
attitude quaternion to transform the known/constant L-frame 
gravity/earth magnetic field vector to B-frame. By comparing 
the observations and measurements, the Kalman innovations 
are derived then to compensate the inaccuracy in the estimated 
quaternion components. The process model of Kalman filter is 
derived from the quaternion rate of change equation 
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Where B

IBω  is the B-frame expressed angular rate vector 
from B-frame to I-frame, i.e. the measurement from the gyro 
triad. Since there is no translational movement for MEMS 
sensor, therefore L-frame rotation rate L

ILω  expressed in L-

frame is simplified and equal to the earth rotation rate L
IEω , 

which is constant, i.e. 
 

 L
IE

L
IL ωω =  (6) 

 
After sufficient number of iterations, the estimated 

quaternion components should converge and can be utilized as 
the attitude initials. According to the quasi-stationary 
conditions, the initial velocity is zero and the initial position is 
a known constant. 
 

 
 

Fig. 2 Attitude Determination  
 

III. ATTITUDE DETERMINATION  
 

The navigation calculation in this study consists of two 
indispensible parts, i.e. the strapdown mechanization and a 
GPS integrated Kalman filter, which is depicted in Fig. 2. 
There are many solutions constructing strapdown 
mechanization for MEMS attitude determination system. 
Those solutions are divided into two categories, i.e. a multi-
speed digital processing design including accurate coning and 
sculling compensations for attitude and velocity calculation, 
and a simplified single speed design without any attitude and 
velocity compensation algorithm [5] and [6]. Both of these 
two algorithms have been implemented and investigated in 
[8]. According to the results from [8], due to the large noise 
characteristics of MEMS sensors, the errors generated by 
different strapdown mechanizations, i.e. the calculated coning 
and sculling compensation terms are much smaller than the 
errors generated by MEMS sensor noise. Therefore different 
strapdown mechanization implementations reach the same 
precision when MEMS sensor applied. Moreover, the 
complexity and computing load vary significantly in these two 
implementations referring to [1]. Hence the simplified single 
speed design is applied in this study to construct strapdown 
mechanization. The attitude, velocity and position solutions 
are derived by solving the rate equations 
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Where L

BC  is the attitude matrix, )( ×B
IBω  is the skew-

symmetric matrix of the angular rate vector in B frame, 
)( ×B

IBω is the skew-symmetric matrix of the angular rate vector 

caused by the translational motion in L frame, N
ENω  is the 

angular rate of N frame relative to E frame, Nv is the velocity 
vector, N

SFa  is the specific force vector, Pg  is the Plumb-bob 
gravity, g is the standard gravity and R is the position location 
vector from the earth centre. As a demonstration example, the 
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Matlab implementation of the attitude solution is depicted in 
Fig. 3. 

 

 
 

Fig. 3 Implementation of Attitude solution 
 
When the translational movement exists in the application, 

due to large MEMS noise characteristics, stand-alone MEMS 
navigation solutions diverge quickly, generally in few seconds, 
therefore external velocity and/or position correction must be 
introduced. Most commonly utilized method is the integrated 
INS/GPS Kalman filter. In this study, key issues become how 
to account for the high level noises contaminated raw MEMS 
measurements through the Kalman filter design. Two topics 
are addressed in the following, firstly the design of the 
Kalman filter process model, which is to propagate the 
estimated errors in attitude, velocity and position. Secondly 
the design of MEMS sensor error model, which is utilized in 
the in-motion calibration of MEMS raw measurements. 

 
The INS error model is commonly employed by the design 

of Kalman process model. Many different INS error models 
are available in [5], which are actually equivalent. In the 
present proposed system, the so-called psi-angle error model is 
applied, which defines errors in attitude, velocity and position 
parameters ( RV δδ ,,Ψ ) in the Earth frame (i.e. ECEF, Earth-
Centre Earth-fixed frame) and then transformed to the 
Navigation frame (N-frame, in the North-slaved 
implementation, where Navigation frame x, y and z axis is 
parallel to local east, north and up direction, depicted in Fig. 
1), i.e. 
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Where, RV δδ ,,Ψ  are errors in attitude, velocity and 

position parameters, N
BC  is the DCM from B-frame to N-

frame, B
IBδω  is the angular-rate error vector in B-frame, 

B
SF

N
SF aa δ,  are the specific force vector in N-frame and the 

specific force error vector in B-frame, N
Mdlgδ  is the plump-bob 

gravity error, N
EN

N
IE ωω ,  are the earth rotation rate vector and 

transport rate vector in N-frame, and N
INω  is the N-frame 

rotation rate in I-frame. In the Kalman filter design, the error 
parameters in attitude, velocity and position are represented as 
the error states which are propagated in the Kalman filter by 

the process model. As MEMS noises generate the main 
contribution in the attitude, velocity and position errors, i.e. 
many error terms in the INS error model are negligible when 
compared with raw measurements errors B

SFaδ  and B
IBδω . 

Therefore those negligible terms can be removed from the 
error model which in turn reduces the Kalman filter error 
vector dimension and remarkably decreases the computing 
load. Furthermore, the deleted error terms are equivalently re-
evaluated as the overall contribution by the MEMS bias/drift 
error model. For the attitude error differential equation, 
according to the aforementioned discussion, it can be 
simplified as 

 
B
IB

N
B

N C δω−=Ψ  (9) 
 

The velocity error equation can be simplified by deleting 
the contribution of the velocity error in its propagation and the 
gravity vector error compared to the specific force errors and 
the attitude error, which gives out 
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For the position error differential equation, the position 
errors are fairly small compared to the velocity errors, thus the 
position error equation can re-write as 
 

NN VR δδ =  (11) 
 

The simplified equation set containing (9), (10) and (11) 
constructs the Kalman filter process model. According to the 
150 Hz MEMS raw data rate in this study, by taking 
advantage of the maxim data rate of MEMS sensor, this 
continuous-mode Kalman process model is descretized at 150 
Hz to build the Kalman filter state transition matrix (Phi-
Matrix) and the integrated process noise matrix (Q matrix) 
facilitating Kalman filter implementation in a small digital 
processor.  
 

Due to MEMS sensor’s high level errors, an effective way 
to mitigate the errors in attitude, velocity and position 
parameters is to model/estimate MEMS sensor errors in 
Kalman filter. In this study, MEMS errors are assumed and 
estimated to be additive noise. The angular rate noise is 
modeled in this study as 

 

ωδωδω wB
IB

B
IB Bias

+=  (12) 
 

Where B
IBBias

δω  is the bias vector and ωw  is the random 
noise vector. The bias vector is modeled as a constant value; 
the process model can be derived from the following 
definition, i.e. 

 
0=B

IBBias
ωδ  (13) 
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The bias error vector B
IBBias

δω  is included in the Kalman 

error state vector; whereas the random noise vector ωw  is 
treated as a Gaussian process noise, which effect is evaluated 
in the Q matrix. The estimated MEMS bias is used in the 
feedback control, i.e. MEMS bias are directly used to calibrate 
the raw MEMS measurements at the end of each error state 
estimation update iteration and then the bias estimate vector is 
reset at the end of each correction update iteration. The 
accelerometer error model is derived in the same form. The 
error estimates are applied also in the feedback control. 

 
IV. EXPERIMENTAL RESULTS AND ANALYSIS 

 
Real data test is performed to validate and evaluate the 

proposed approach. The MEMS sensor used in the test is from 
MEMSenseTM’s nano Inertial Measurement Unit (nIMU) series 
product, which provides serial digital outputs of 3D 
acceleration, 3D rate of turn (rotational), temperature sensors 
and 3D magnetic field data. Digital outputs are factory 
configured to the I2C or RS422 protocols and custom 
algorithms provide high performance, temperature 
compensated 3D data in real time [10]. The navigation 
solutions (NovAtel SPANTM Best PVA) derived from a tactic 
grade IMU are employed to provide the reference due to its 
better performance vs. MEMS in terms of the long term bias 
stability. The inertial devices are shown in Fig. 4 and specs are 
provided in Table I. The testing assembly comprising the 
reference IMU, nIMU, GPS receiver, laptop computer and 
power supply is shown in Fig. 5. The test is made outside ETS 
University building with a good GPS signals visibility. 

 

 
Fig. 4 nIMU MEMS sensor and SPAN IMU 

 
Table I  nIMU MEMS Sensor Specs 

nIMU Sensor 
Components 

Dynamic 
Range Noise Nonlinerity 

Accelerometer ±2 (g) 4.87 (mg) ±0.4  
(% of FS) 

Angular Rate 
Sensor ±300 (º/s) 0.56 (º/s) 0.1  

(% of FS) 

Magnetometer ±1.9 (Gauss) 5.6×10-4 
(Gauss) 

0.5  
(% of FS) 

 

 
Fig. 5 Testing Device Units and Setup 

 
The procedure of the test is first, before starting the 

dynamic manoeuvres; the low cost MEMS system remains 
static for calculating the attitude initials for 30 seconds. After 
the attitude calculation converges with the aid of the 
embedded magnetometers, the results can be used as the 
attitude initials for the following dynamic test. Meanwhile, the 
velocity initials can be set to zero. Then, dynamic trajectory is 
made to validate the proposed design and it consists of a series 
of deliberate manoeuvres in attitude.  

 
The trajectory is depicted in Fig. 6. The duration of the test 

is 34 seconds. The green curve is the reference, i.e. derived 
from the SPAN best Position, Velocity and Attitude solutions. 
The black curve is the MEMS sensor integrated solution. It 
can be seen that MEMS integrated solution starts to diverge 
from the reference at the end of the test due to MEMS noises 
growing much faster than SPAN IMU sensor.  
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Fig. 6 Trajectory obtained with MEMS vs. SPAN 

 
Compared with the reference, the maximum position 

solution errors derived from MEMS integrated solution are 
about 5×10-7 radian shown in Fig. 7; which represents 1 to 2 
meters in Cartesian coordinates in Fig. 8. 
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End  
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Fig. 7 Position solution errors (in radian) 

The velocity solutions are shown in Fig. 9 while the 
velocity solution errors are depicted in Fig. 10. It can be seen 
that north and east velocity solutions fit the reference well; the 
errors remains small except up velocity starts to diverge at the 
end of the test. One of the reasons causing this divergence is 
the time growing bias/noise in MEMS accelerometer raw 
measurements. It can be seen that the raw specific force 
measurements of MEMS’s are much more noisy than those of 
the reference IMU’s in Fig. 11. Compared with the reference 
IMU, MEMS raw specific force measurement errors are 
shown in Fig. 12.  
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Fig. 8 Position solution errors (in meters) 

 
From the Figure 11, one can clearly see that each 

accelerometer measurement error consists of a constant bias 
and the random noise. Moreover, the Z axis raw measurement 
is much more noisy compared with X and Y axis. Since Z axis 
accelerometer measures the major component of the up 
direction translational movement according to the initial 

attitude setup utilized in this test, the up velocity solution is 
degraded by the large Z axis accelerometer noise. 
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Fig. 9 Velocity solutions  
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Fig. 10 Velocity solution errors 
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Fig. 11 Raw specific force measurements MEMS vs. SPAN 
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Fig. 13 Attitude determination solutions 
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Fig. 14 Attitude determination solution errors 

 
The attitude solutions are depicted in Fig. 13, from which 

we can see that attitude solutions derived from MEMS based 

attitude determination system are able to follow the reference. 
Due to the large noises contaminating MEMS raw angular rate 
measurements, there are distinct errors in the MEMS attitude 
solutions compared with the reference attitude. Similar to the 
velocity solutions, the attitude solutions start to diverge at the 
end of the trajectory. 

 
The attitude errors compared with the reference are 2.9º, 

2.7º and 11º respectively in roll, pitch and heading angle as 
shown in Fig. 14. From this figure, one can see that the 
heading error is growing with time. Referring to inertial 
navigation error equations (8), the attitude error is the essential 
reason causing the divergences in velocity and position 
solutions as seen in Fig. 10. The two big errors spotted in the 
heading are caused by the time synchronization errors, i.e. the 
slight time delay between MEMS and reference solutions. 
This type of errors becomes significant when the calculated 
heading angle changes from 2π to 0 or from 0 to 2π where 0 
and 2π represent the same heading. During the test, GPS 
observation is available every 200ms. Therefore the attitude 
solution derived from MEMS is updated at 5 Hz rate by GPS. 
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Fig. 15 Raw angular rate measurements MEMS vs. SPAN 
 
Similarly the raw angular rate measurements from MEMS 

and reference IMU are depicted in Fig. 15. Although 
measuring the same angular motion, the raw angular rate 
measurements of MEMS’ are much more noisy than those of 
the reference IMU’s. The errors between MEMS and the 
reference IMU are shown in Fig. 16. Similar to specific force 
measurements, the dominant components of the raw angular 
rate errors consists of the constant bias and the random noise. 

 
From those attitude, velocity and position results, it can be 

concluded that the proposed low cost MEMS inertial sensor 
based integrated navigation solutions have impressively mall 
errors compared with the tactic grade IMU-based navigation 
solutions. Specifically when the system experiences the 
dynamic movement, i.e. there is no direct attitude observation 
available in the navigation filter, the attitude solutions errors 
able to remain acceptable, i.e. 2.9º, 2.7º and 11º respectively in 
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roll, pitch and heading angle in 34-second duration in this test. 
In consideration of the low cost utilized in the test, this 
validates the proposed design architecture and strategy. 
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V. CONCLUSIONS 
 

This study focuses on the design of an approach applying 
low cost MEMS sensor integrated by magnetometer and GPS 
in attitude determination system in dynamic environment. Due 
to the large errors, it is not practical to employ MEMS sensors 
in the conventional algorithms, such as the initial self-
alignment or stand-alone inertial navigation calculations. 
Therefore, the problematic of MEMS inertial sensor based 
attitude determination system becomes the determination of 
navigational parameter initials (attitude, velocity and position) 
and bounding the calculation errors in time. The approach 
proposed in this paper is first to utilize the magnetometer 
compensated attitude solution as the attitude initials, which are 
constant under quasi-stationary conditions. Meanwhile the 
velocity initials can be set to zero under the same conditions. 
Furthermore, with the position parameters which are generally 
known in quasi-stationary conditions, the inertial calculation 
can be initialized. Second, an integrated INS/GPS Kalman 
filter is developed by utilizing GPS velocity/position data as 
observations. Navigation solution errors are limited in time by 
the proposed Kalman filter when the translation movement 
exists. Strapdown INS mechanization and INS error equations 
based Kalman filter process model are specially designed 
considering MEMS large noise characteristics. Moreover 
sensor error model is employed in the integrated Kalman filter 
to estimate MEMS sensor bias/drift which enables the in-
motion calibration of MEMS sensor errors.  
 

The dynamic test is developed to validate the proposed 
design. The navigation solution errors derived from this low 
cost MEMS system are small compared with the reference. 
Specifically, the advantages of this design can be seen that, 

since there is no direct attitude observation available for the 
integrated Kalman filter when the system experiences the 
translational motion, the attitude solutions errors are 
acceptable and generally stable in the short duration which 
validates the design. From this study, it can be concluded that 
low cost MEMS attitude determination system is able to be 
improved by mitigating the inherent large MEMS sensor 
errors with the aid of integrating GPS data. Considering its 
advantages of lost cost, high dynamic response, etc, and with 
the rapid innovation in MEMS technology, the application of 
MEMS is believed as one of the attitude determination 
research interests for the next decades. Moreover the future 
work of this study will be concentrated on improving 
performance of the integrated MEMS/magnetometer Kalman 
filter in terms of computing load, design complexity and filter 
stability.   
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