Rajesh Venkatasubramanian,
John P. Hayes,
Brian T. Murray

Advanced Computer Architecture Laboratory
University of Michigan

Delphi Automotive Systems
Brighton Jiechinical Center

Proceedings of the 9th IEEE International On-Line Testing
Symposium (IOLTS’03)

Presented by Yeh Tsung-Yu

Introduction
Control Flow Faults
Fault Detection

Fault Injection Tool

Experiment Results
- = Conclusion

A

S

ritrociLcrior)

e

= \Why we need on-line fault detection ?

— Faulty behavior of embedded systems may lead to
mishaps, so they should detect faults as early as
possible.

= Faults can be classified into permanent, and
transient faults.

= TAUthor propose a mechanism;te detect controlflowifault:

-

due to) transientfault: -

AT ast, we evaluate this mechanismby: fault injection,
like simulation, or heavy-ion radiation.

NLroc

e i

= On-line fault detectionican be done using
Rardware-or software redundancy.

— Hardware:

= Two identical processors to execute the same program, their
outputs are compared pin-by-pin to detect faults.

= Disadvantage: It’s impractical in the cost-sensitive markets

— Software:

= A simple technigue to detect transients IS to re-execute the
Saime; program.on the. same processeiFand compare: tinerresultsis

-_-E

———

. Disadvantage: The technigue requires areund 100%
performance overhead

NLroc

e i

S

= As a result, a low-cost software-based technique
IS considered.

— Assertion checking — insert check code In target program.

= Fault model due to transient fault.

— Data fault : For ex, processor subtracts two numbers wrongly.
— Control flow fault : Processor jumps to aniincorrect next instruction.

——

S Here we prepeseaysystematictechnigie to detect™
SSlichrtransient-induced control flow. faults.

— Data faults Is application-dependent, it Is difficult to use a
systematic way to detect it.

= Overview of this control flow fault

— PDon’t check control transfer between subroutine
call, and between library function call.

— Don'’t check intra-block faults because: the
probability Is not so high.

— \\e just focus on inter-block faults within
subrouting.... —

NLroc

e i

= \What’s definition of basic block?

— A sequence of instruction which will' be
executed one by one sequentially.

— Head : locate next to conditional branech
Instruction.

— TJall : conditional branch Iinstruction.

Control -

- e
i = o

= Our classification oficontrol flow fault

— Fault type: skip, re-execute, multi-path.

— We insert XOR operation in every basic block, every block “only”
modify their own Dit.

— These fault will make ES word reset to initial state.(ES: execution
state, assigned to subroutine)

= Detection : Finally compare the ES word.

i —
——

-

= \What informatiencouldhelprmapping detected fault to fault
iype? See next slide.
— ES word sometimes can’t exactly help mapping fault type.

Speed = 50;
if (brake_applied == 1)
New_Speed = Speed - 5:
else
New_Speed = Speed - 3.

Accl = New_Speed - Speed;

—

Re-execute

ES_1=ES_1"01;

Speed = 50,

if (brake_applied = 1) {
ES_1=ES_1"010;
New_Speed = Speed - 5;

} else |
ES_1=ES_1"010;
New_Speed = Speed - 3;

h

ES_1=ES_1 " 0100

if (ES_1 !=0111) error();

Accl =New_Speed - Speed;

l 1=n-1;

while (i > 0) {

2 1=0;

while (j <1) {
3 if (arr[j] > arr[j+1]) {
4 tmp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = tmp;

S j

=it

6

1=1-1;

[

SR

We could transform CFG to DAG by removing the loop feedback edge.

Coritrol FIowW =

T1 A

= CFG : Control Flow Graph
= DAG : Direct Acyclic Graph

(a)

(b)

Figure 2. (a) A CFG and (b) the corresponding DAG

Coniro r

e
=, m— e

E

« How DAG help us tormap detected fault to
appropriate type?
— DAG means the normal execution flow. for ex,

block 2 execute before block 5. (2>=5)

— We call a fault that results in a jump (a — b) a
skip fault If a>= b.

S jump (8 ab)ifiub>=a ;. re-execute fault.

=ilmp (2 — b) if no order relationshipr: multi-path
fault.

mm——

= Besides the “ifrelse? discussed pbefore, we still
nave other control structures to solve.

= Here we discuss switch (as same structure as
nested if-else).

=i Figure 4, asmulti-path fault canmesultin
execution'ofblocks E1 and X2 (or X3).

— We force a parity error in such faults by complementing
X2’s and X3’s parity bits in the block E1.

rellll Derac UJFJ = :)VV“I/“ uelule

ES 1= 00000000

ES_1=ES_1& 0110001 ES 1=ES_1& 00111000

ES 1=ES 1200101010
assert (ES_B)

ES1=ES 1@ 00011100
assert (ES A)

S 1=ES 1 E&01000110
assert(ES 7))

Ty
@ ES 1 =ES 1@ 10000000

assert(ES 1==11111111)

Figure 4. Generic CFG of a nested if-then-else construct
with proposed instrumentation and assertions

= Now we discuss detection; within loop.

= Since we assign only one bit to a basic block, the
bit of the block should be destroyed(re-initial)
during loop execution.

= Tiherefore, wednsert.assertionsiatithie end of loop™
S constriicts’and reset the execution status variables.

1

1=n-1;
while (1> 0) ¢{
1=0;
while (J <1) {
if (arr[j] > arr[j+1]) §
tmp = arr|j]:
arr[j] = arr[j+1];
arr[j+1] = tmp;
h
=it
h

1=1-1;

ES_1=ES_1 " 01;
1=n-1;
while (1> 0) {
ES_1=ES_1 * 010;
j=0;
while (j <1) {
ES_1=ES_1 " 0100;
if (arr[j] > arr[j+1]) {
ES_1=ES_1 * 01000;
tmp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = tmp;
} else
ES_1=ES_1 * 01000;
ES=ES_1 " 010000;
if (ES_1!=011111) error();
ES_1=011;
=it L
}
ES_1=ES_1 " 0100000;
if (ES_1!=0100011) error();
ES_1=01;
1=1-1;
;
if (ES_1 !=01) error();

(b)

we have developed a software-based fault

njection tool SFIG (Software-based Fault Injection
using gdb).

SFIG is written in Python.

SFIG takes a target program, an instruction
address, an iteration number and'a fault type as
- [nputs.

=L ene faulttypess presentea 1 the “FERRARI
fault injection system”.

m<o~r1m~mr RS

("al] |"

_E_ﬂ.-"
Program I"'-Iunm y overhead % | Performance overhead %
{uptimi}:cd} FCCA | CFCSS | ACFC | ECCA | CFCSS ACFC
Bubble sort 490.2 | 1415 | 1122 | 6227 | 1858 136.2
Matrix mult 303.2 | 96.0 54.0 | 260.1 119.2 49.0
Quick sort 409.2 | 853 53.2 | 4020 | 1114 41.2
8-Queens problem | 427.7 | 109.1 | 80.5 | 5450 | 1552 120.6
Binary tree search | 3725 | 649 48.0 | 5159 | 1022 90.9
(a)
Program Memory overhead % | Performance overhead %
(unoptimized) ECCA | CFCSS | ACFC | ECCA | CFCSS ACFC
[Bubble sort 787 | 565 | 472 [1257 375 | 320
Matrix mult 1484 | 54.4 30.2 36.6 18.6 4.3
Quick sort 1322 | 296 188 | 131.0 40.3 13.7
8-Queens problem | 2084 | 599 45.6 | 200.7 61.9 48.7
Binary tree search | 213.8 | 40.7 30.3 | 276.8 60.2 53.9
(b)

Figure 8. (a) Overhead comparison with and (b) without
compiler optimization

= Fault coverage :

— Percentage of some type of fault that can be
detected during the test of an electronic system,
usually an integrated circuit.

= L0erlrrernt asL/fi

(|
?

Z Original
[] ECCA
N CFCSS
] ACFC

Fault coverage (%)

R NN RN Y Y NN SR N

o
3]
Q
\
\
\
3

F\l‘-ﬁ%\\‘ix*\\\ix\ NNNNAN

Bubble Sort Make Mult Quick Sort & Queens Binary Tree
Proble m Search

Figure 9. Comparison of tault coverage results of the test
programs

)

OERINEN

\
/

=

. ACFC

[] ECCA
R CFCSs

D Original

| NN NN |

| NN NN NN NN T NN AN S Ny

P

ANNNNNN |
I

100

NN DR SN NN NN N NN
I

= = = =" ="

=
- = o -+ e o4

(<) abeianoo ey

AddIF2 AddOF Add0 & DakIF DakOF Dak03 CndC R

AddI F

10. Comparison of fault coverage with respect to

Figure

€5

fault ty

= Key contribution:
— Classification of control flow fault.
— Improve performance but only incur less fault

coverage.

— Systematic : preprocessor automatically patch
the source code.

